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In the (subjective) Bayesian framework, there is no way to objectively evaluate the per-
formance of a procedure—you assume a particular model, and all your inferences are based
on the assumption that the model is correct. In order to assess a Bayesian procedure, we
need to step outside the Bayesian framework. BDA chapter 4 discusses some of the non-
Bayesian properties that are often considered when evaluating a procedure. There is also
some discussion of connections between non-Bayesian and Bayesian approaches. I would
consider model checking (BDA chapter 6) and assessment of predictive performance (BDA
chapter 7) to also fall into the category of non-Bayesian methods of assessment (although
some people might argue that these are Bayesian). Note: This chapter is more theoretical
than most of the material in the course. Also, a word of caution—some of the results in
Appendix B of BDA seem to be missing some crucial conditions, and the proofs are very
sketchy in places, so I would not recommend using Appendix B as a reference.

Jeffrey W. Miller (2016). Lecture Notes on Advanced Stochastic Modeling. Duke University, Durham, NC.
This work is licensed under a Creative Commons BY-NC-ND 4.0 International License.

http://creativecommons.org/licenses/by-nc-nd/4.0/


1 Example and counterexample

1.1 Example

First, let’s look at a really simple example illustrating posterior consistency and asymptotic
normality. Some of the terminology here will be explained in the sections below. Consider
the following model:

θ ∼ Exp(1)

X1, . . . , Xn|θ ∼ Exp(θ),

and suppose the true distribution P0 is Exp(1). So, the model is correctly specified and the
true value of the parameter is θ0 = 1. The posterior distribution is θ|x1:n ∼ Gamma(1 +
n, 1 +

∑
i xi). As illustrated in Figure 1 (top), the posterior density appears to become more

Gaussian-like as the sample size n increases, and concentrates near the true value, θ0 = 1.
Indeed, Figure 1 (bottom) indicates that the Kolmogorov–Smirnov (KS) distance1 be-

tween the posterior and the “best” normal approximation to it (defined here as the normal
distribution with the same mean and variance as the posterior) appears to be going to zero as
n increases. In other words, the posterior is becoming more normal/Gaussian as n increases.
The fact that the KS distance is going to zero is not merely due to the fact that the posterior
is concentrating. The KS distance is invariant under affine transformations of θ, i.e.,

sup
θ∈R
|F (θ)−G(θ)| = sup

θ∈R
|F (aθ + b)−G(aθ + b)|

for any a 6= 0, b ∈ R. So in particular, KS is not dependent on the scale.

1.2 Counterexample

Now, let’s look at an example in which posterior consistency and asymptotic normality do
not hold. There are a number of ways in which this can happen, and they do occur in
practice, so one needs to be careful. One of the basic requirements is that the parameter be
identifiable—that is, that if we knew Pθ exactly, we could uniquely recover θ (i.e., if θ 6= θ′

then Pθ 6= Pθ′). To illustrate this with a very simple example, consider the model:

a, b ∼ Exp(1)

X1, . . . , Xn|a, b ∼ Exp(ab),

and suppose the true values of the parameters are a0 = 1 and b0 = 1, so that the true
distribution P0 is Exp(1). Note that any values of a and b such that ab = 1 will give rise to
a distribution that matches P0, so if we define θ = (a, b), then θ is not identifiable. To see
what happens if we sample from the posterior, Figure 2 shows 105 Gibbs samples, for each
n ∈ {1, 10, 100, 1000}.

Note that the posterior is concentrating on the curve satisfying the equation ab = 1.
However, it is not concentrating at any particular point on the curve, and it is far from
normal/Gaussian. Incidentally, this also serves as an example in which Gibbs sampling
mixes poorly when n is large. (Why?)

1The Kolmogorov–Smirnov distance between univariate distributions with CDFs F and G is KS(F,G) =
supx∈R |F (x)−G(x)|.
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Figure 1: Empirical demonstration of consistency and asymptotic normality in the exponen-
tial example.
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Figure 2: Example in which consistency and asymptotic normality fail due to a lack of
identifiability.
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2 Consistency

In the frequentist setting, consistency and asymptotic normality are two basic properties of
estimators. In the Bayesian setting, we also consider consistency and asymptotic normality
of posterior distributions, which, while similar, are slightly different than the corresponding
properties of estimators.

2.1 Consistency of estimators

Roughly speaking, an estimator β̂n of a quantity of interest β is said to be consistent if
β̂n → β as n → ∞, in other words, if it is guaranteed to converge to the true value. What
exactly does this mean? From the frequentist perspective, the observed data X1:n are viewed
as random variables generated from some unknown “true” distribution P0. Since β̂n is a
function of the observed data X1:n—often denoted by writing β̂n = β̂n(X1:n)—it follows that
β̂n is a random variable as well, from this perspective. Further, let’s consider β to be some
property of P0—that is, β = β(P0)—for example, β might be the mean of some statistic of
interest, or the mean and covariance matrix, or some other vector of properties. Then, more
precisely, (almost sure) consistency occurs when β̂n(X1:n)→ β(P0) with probability 1, for all
P0 in some relevant class. The phrase “almost surely”, often abbreviated a.s., means “with
probability 1”. Consistency in terms of weaker modes of convergence, such as convergence
in probability, can also be useful.2

2.2 Consistency of posterior distributions

So, now we know what it means for an estimator to be consistent. What does it mean for a
posterior distribution to be consistent? Roughly speaking, the posterior is consistent for β
if the posterior distribution on β concentrates in neighborhoods of the true value β(P0). To
make this more precise, we first need to have a model p(x|θ) and a prior p(θ). Let’s use Pθ
to denote the distribution with density p(x|θ). (Sometimes, the quantity of interest β will
be θ itself, but this requires one to assume the model is “correctly specified”—see definition
below). Formally, the posterior is said to be (almost surely) consistent for β if for any ε > 0,

P
(
|β(Pθ)− β(P0)| > ε

∣∣ X1:n

)
→ 0

with probability 1, as n→∞, for all P0 in some relevant class. To understand what this is
saying, it is crucial to note that we are dealing with two different probability models here:
the true distribution, P0, which is the distribution of X1:n, and the assumed model family,
Pθ, which is used to compute the posterior. To clarify further, for any given x1:n, we can
write the conditional probability above as

P
(
|β(Pθ)− β(P0)| > ε

∣∣ x1:n) =

∫
1
(
|β(Pθ)− β(P0)| > ε

)
p(θ|x1:n)dθ.

(Here, 1(E) is the indicator function, which equals 1 if E is true, and equals 0 otherwise.)
When x1:n are replaced by random variables X1:n with distribution P0, this conditional

2Definitions: Zn → Z a.s. if P(limn Zn = Z) = 1. Zn → Z in probability if P(|Zn − Z| > ε) → 0 for all
ε > 0.
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probability becomes a random variable, and consistency occurs if it converges to 0 (a.s., or
in probability, etc.) for any ε > 0.

2.3 Consistency guarantees for Bayesian models

First, let’s assume that the model is “correctly specified”, that is, P0 = Pθ0 for some θ0.
If θ is finite-dimensional, then under quite general conditions, the posterior mean of β(Pθ)
will be a consistent estimator—that is, E(β(Pθ)|X1:n) → β(P0)—and the posterior will be
consistent for β. When θ is infinite-dimensional, things are quite a bit more subtle, and the
study of asymptotic properties such as consistency in infinite-dimensional cases has been an
area of research in recent years.

Usually, consistency theorems require several regularity conditions, but there is a re-
markable result called Doob’s theorem that is relatively easy to understand and applies very
generally. Suppose θ is identifiable. Roughly, Doob’s theorem says that with probability 1,
if the true parameter θ0 is drawn from the prior, and X1, . . . , Xn are drawn i.i.d. from Pθ0 ,
then

1. the posterior mean of β(Pθ) is a consistent estimator, and

2. the posterior distribution of β(Pθ) is consistent.

Doob’s theorem is very general3, but if you think carefully about the statement of the
theorem, you will see that it has one big weakness—it only guarantees consistency on a set
of θ0’s that has probability 1 under the prior. In the finite-dimensional setting, this is not a
big deal4, but in the infinite-dimensional setting, it is a significant limitation.

So far, we’ve been assuming that the model is correctly specified. What if the model is
misspecified, i.e., what if there is no θ0 such that P0 = Pθ0? Typically, what happens in
this case is that the posterior concentrates at a point θ∗ minimizing the Kullback–Leibler
divergence from P0, that is, at θ∗ = argminθD(p0‖pθ), where

D(p0‖pθ) =

∫
p0(x) log

p0(x)

pθ(x)
dx,

assuming P0 and Pθ have densities p0 and pθ, respectively. This makes intuitive sense, since

argmin
θ

D(p0‖pθ) = argmax
θ

∫
p0(x) log pθ(x)dx ≈ argmax

θ

1

n

n∑
i=1

log pθ(Xi)

= argmax
θ

n∏
i=1

pθ(Xi),

which is the maximum likelihood estimator (MLE).

3The main assumptions are identifiability of θ and certain measurability conditions; also for (1), the prior
mean of β(Pθ) needs to exist. The proof is an elegant application of martingale theory, which Doob himself
developed, and which is now a cornerstone of advanced probability.

4For those familiar with measure theory: if the prior has a density that is strictly positive with respect
to Lebesgue measure, then the exceptional set will have Lebesgue measure zero.
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3 Asymptotic normality

What is the point of establishing asymptotic normality of the posterior? How is it useful?
Having a simple interpretation of the asymptotic behavior of the posterior is useful for a
variety of purposes. For example, when appropriate, normal approximations to the posterior
can significantly reduce computation (recall that Gaussians are particularly nice to work
with). Additionally, having a good intuition for the asymptotic behavior of a model can
be very helpful when determining what modeling assumptions are appropriate for a given
problem. Further, asymptotic normality can be used to ensure that the posterior is correctly
calibrated in terms of frequentist coverage.

3.1 Approximate normality of the posterior

We will focus on the intuition, without going into rigorous details. Assume θ is finite-
dimensional. Given any (sufficiently smooth) function f(θ), and a point θ̂ in the interior of
its domain, we can approximate f(θ) near θ̂ using a second-order Taylor approximation:

f(θ) ≈ f(θ̂) + f ′(θ̂)T(θ − θ̂) + 1
2
(θ − θ̂)Tf ′′(θ̂)(θ − θ̂),

where f ′(θ) is the gradient and f ′′(θ) is the Hessian matrix, i.e., f ′(θ)i = ∂f
∂θi

(θ) and f ′′(θ)ij =
∂2f
∂θi∂θj

(θ). If we choose f(θ) = log pθ(x1:n), and let θ̂ = θ̂n(x1:n) be the MLE, then the second

term vanishes and we have

log pθ(x1:n) ≈ log pθ̂(x1:n)− 1
2
(θ − θ̂)TI(θ̂;x1:n)(θ − θ̂),

where I(θ;x1:n) is the observed information matrix, defined5 as the matrix in which entry
(i, j) is I(θ;x1:n)ij = −

∑n
k=1

∂2

∂θi∂θj
log pθ(xk). Exponentiating both sides yields

pθ(x1:n) ∝∼θ exp
(
− 1

2
(θ − θ̂)TI(θ̂;x1:n)(θ − θ̂)

)
∝θ N

(
θ | θ̂, I(θ̂;x1:n)−1

)
,

where ∝∼ θ means “approximately proportional to, as a function of θ”. So, the likelihood
is approximately proportional to a normal distribution with mean equal to the MLE, and
precision equal to the observed information. Note that the observed information grows with
n, and thus, the likelihood becomes more and more concentrated around the MLE as n
increases. In particular, if the prior density p(θ) is continuous at θ̂ and p(θ̂) > 0, then p(θ)
will be approximately constant over all θ near θ̂ when n is sufficiently large, and therefore,
the posterior will behave similarly to the likelihood:

p(θ|x1:n) ∝ pθ(x1:n)p(θ) ∝∼ pθ(x1:n) ∝∼ N
(
θ | θ̂, I(θ̂;x1:n)−1

)
. (3.1)

Thus, the posterior is approximately normal when n is large.

5BDA defines it to include the prior, but the definition here is more standard.
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3.2 An interesting symmetry

Further insight into the asymptotic normality of the posterior can be obtained from the
following thought experiment. Suppose θ̂|θ ∼ N (θ, C) and θ is given a prior that is very
diffuse relative to C. Then

p(θ|θ̂) ∝θ p(θ̂|θ)p(θ) ∝∼θ p(θ̂|θ) = N (θ̂ | θ, C) = N (θ | θ̂, C).

Thus, we would have both

θ̂|θ ∼ N (θ, C) and θ|θ̂ ≈ N (θ̂, C).

It turns out that this thought experiment fairly accurately represents what happens in
many models (subject to some regularity conditions, of course) when the sample size is
sufficiently large and θ̂ is the MLE. Typically, in exponential families, p(θ|x1:n) = p(θ|θ̂)
(the technical term here is that θ̂ is a sufficient statistic). In fact, in many other models
p(θ|x1:n) ≈ p(θ|θ̂) — basically, once we know θ̂, knowing x1:n doesn’t tell us much more
about θ. So, combined with equation 3.1, this explains the θ|θ̂ part:

θ|θ̂ ≈ θ|x1:n ≈ N
(
θ̂, I(θ̂;x1:n)−1

)
.

What about θ̂|θ? It is a classical result that the MLE is asymptotically normally distributed6:

θ̂|θ ≈ N (θ, I(θ;x1:n)−1).

3.3 Discussion

Theorems proving asymptotic normality of the posterior (usually in a stronger sense than
what the discussion above would suggest) are often called Bernstein–von Mises results.
Asymptotic normality results for the posterior distribution of a function of θ (for exam-
ple, β(Pθ)|X1:n) can be derived from the asymptotic normality of θ|X1:n using a technique
called the delta method.

4 Frequentist coverage

Having posterior consistency gives us a guarantee that the posterior will concentrate near the
true parameter value θ0, however, it is also important that the posterior be appropriately cal-
ibrated in terms of how concentrated it is. Roughly speaking, θ0 should be “well-supported”
under the posterior, on average. If the posterior is too concentrated, then θ0 might fall
outside the range of well-supported values, while if the posterior is not concentrated enough,
then it will be indicating a greater amount of uncertainty than necessary.

From the subjective Bayesian perspective, the posterior is always correctly calibrated
with respect to the assumed prior beliefs. Sensitivity analysis can be used to see how much
the posterior depends on the particular prior assumed, however, some set of priors must still
be chosen. Is there a more objective method of evaluation?

6The precise statement is that I(θ;X1:n)1/2(θ̂n − θ) converges in distribution to N (0, I).
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From the frequentist perspective, uncertainty about parameters is usually communicated
using confidence intervals (or more generally, confidence regions) rather than posterior dis-
tributions. A confidence region C(x1:n) is a subset of parameter values that depends on the
data x1:n. The coverage probability of C(x1:n) is the probability that C(X1:n) will contain
the true parameter θ0 when the data X1:n is generated according to θ0:

P
(
θ0 ∈ C(X1:n)

∣∣ θ0). (4.1)

Confidence regions are usually constructed with the intent of providing coverage as close as
possible to some user-specified level for all θ0. For instance, ideally, a 95% confidence interval
would have coverage equal to 0.95 for all θ0.

How can we use this concept to evaluate the calibration of a posterior? Well, we could use
the posterior to construct a credible region with posterior probability equal to the desired
coverage, and see how well it attains that coverage. For example, a 95% credible region is a
subset C(x1:n) of parameter values with the property that

P
(
θ ∈ C(x1:n)

∣∣ x1:n) = 0.95.

Note that in this expression, θ is a random variable and x1:n is fixed, while in equation
4.1, X1:n is a random variable and θ0 is fixed. (This is essentially the difference between
Bayesianism and frequentism.) Interestingly, although they are not specifically designed to
do so, Bayesian credible intervals often have very good frequentist coverage—sometimes even
better than standard frequentist confidence intervals.

To illustrate, consider the following model:

p ∼ Beta(1, 1)

X1, . . . , Xn|p ∼ Bernoulli(p).

A classical frequentist approach to constructing a 95% confidence interval for p is the Wald-
type interval:

p̂± 1.96
√
p̂(1− p̂)/n

where p̂ is the sample mean, x̄. A standard Bayesian approach to constructing a 95% credible
interval for p is the equal-tailed interval [a(x1:n), b(x1:n)] where

P(θ < a(x1:n)|x1:n) = P(θ > b(x1:n)|x1:n) = 0.025.

Figure 3 shows typical intervals for these two methods, as well as their coverage probabilities,
for increasing sample sizes n, when the true distribution is Bernoulli(0.1) (i.e., when the true
value of p is 0.1). There are a few salient points to note. First, and most importantly,
the credible interval has significantly better coverage than the Wald-type confidence interval
when n < 100. Second, when n = 1, the Wald confidence interval is always degenerate at
either 0 or 1, so it has coverage equal to zero. Third, the Wald interval may contain values
outside [0, 1], which is unnecessary, of course. Finally, note that both intervals have coverage
tending to 0.95 as n increases.
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Figure 3: Comparison of Wald-type intervals versus Bayesian credible intervals for the
Bernoulli example.
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