Model Checking and Cross-validation
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BDA chapter 6 discusses ways of checking how well a Bayesian model is fitting the data,
with a focus on posterior predictive checks. BDA chapter 7 discusses ways of evaluating,
comparing, and expanding models, with a focus on model selection based on measures of
generalization performance. The only topic from chapter 7 we will discuss is cross-validation.

Jeffrey W. Miller (2016). Lecture Notes on Advanced Stochastic Modeling. Duke University, Durham, NC.
This work is licensed under a Creative Commons BY-NC-ND 4.0 International License.


http://creativecommons.org/licenses/by-nc-nd/4.0/

1 Introduction

Motivation

e “All models are wrong, but some are useful.” — George Box
e Model checking = Evaluating how well the model fits the data distribution.

e Lack of fit can be due to prior and/or likelihood. The likelihood usually has a bigger
impact, especially asymptotically.

e Note: “model” sometimes refers to just the likelihood, but sometimes (such as here) it
is used to mean both the likelihood and the prior.

e In practice, we can never hope to model the data distribution perfectly, but we can
often find a model that is adequate for a given application.

Goals of model checking

e A good model checking procedure not only tells you if the model is wrong, but also
in what way(s) the model is wrong, and ideally, whether the models’ inadequacies
significantly affect the results.

Comparison with sensitivity analysis

e Sensitivity analysis = Seeing whether other plausible models give similar results.

e This is important, but it is different than model checking. All of the other models you
consider might give similar results, and all of them might be very wrong.

e Conversely, even if the model seems to fit well, it’s still a good idea to do sensitivity
analysis.

Two general approaches to model checking

1. Checking whether the results are consistent with other information not used when con-
structing the model or computing the posterior. (For example, other domain knowl-
edge, other data, etc.) This is the approach taken by cross-validation.

2. Checking whether the results are consistent with the information used to construct the
model and compute the posterior. This is the approach taken by “posterior predictive
checks”. This has some issues due to the fact that it is “using the data twice”, but it
serves as a useful check of internal consistency.
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Figure 1: (BDA figure 6.1) Forecast of 1992 US presidential election. For each state, the
height of the black bar indicates the probability of Clinton winning the election, and the
width is the number of electoral votes. Polls from Texas and Florida not used in the forecast
indicated much less support for Clinton than predicted, indicating a possible inadequacy of
the model.
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Figure 2:

Top: (BDA figure 3.1) Histogram of 66 measurements of the speed of light made by Simon
Newcomb (Stigler, 1977). (See BDA for details.)

Bottom: (BDA figure 6.2) Twenty replicate data sets from the posterior predictive distribu-
tion under a normal model, given the Newcomb data.

2 Posterior predictive checking

The basic idea of posterior predictive model checking is that the observed data set should look
“typical”, relative to replicate data sets sampled from the posterior predictive distribution.

Example: Newcomb’s speed of light measurements

e Figure 2 (top) shows 66 measurements of the speed of light made by Simon Newcomb
in 1882. This is a classic example of a data set with outliers. Note that the lowest two
measurements are significantly lower than the rest. (Incidentally, Newcomb threw out
the lowest one, but kept the second lowest one.)

e A naive approach would be to model the data as N'(u, 0?). In this case, we can visually
see that there may be issues with this, but in more complicated, high-dimensional
situations, it is usually difficult to visually assess whether a model will fit. Let’s see
what happens if we use the normal model.

e Figure 2 (bottom) shows 20 replicate data sets sampled from the posterior predictive
(see BDA for prior details). Each of these was generated by first sampling (i, 0%) from
the posterior, and then sampling 66 points z;" from a normal with this mean and
variance (i.e., using the same mean and variance for all 66).

e Visually, none of these look much like the original observed data set. To quantify this,
Figure 3 shows a histogram of the 20 minimum values, min z;, obtained from the 20
replicate data sets, compared to the observed minimum value, min ;. The minimum
is just one possible choice of statistic that could be used to check the model fit.
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Figure 3: (BDA figure 6.3) Histogram of the minimum values over the 20 replicate data sets,
compared with the minimum value from the observed data set (the vertical line at around
—45).

The idea of posterior predictive checks

e [f by some miracle the likelihood is exactly correct, and we have a very large amount of
data, then the posterior should be highly concentrated at the true parameter value, and
the distribution of the observed data should be basically identical to the distribution
of the replicate data sets. However, this is more than we can hope for.

e On the other hand, if the likelihood or prior are way off, then basically none of the
replicate data sets will look like the observed data set. This is bad.

e [f the likelihood and prior are close enough to being correct, relative to the amount of
data, then some of the replicate data sets should look roughly like the observed data
set. This is what we aim for.

e The nice thing about posterior predictive checks (as opposed to something like cross-
validation) is that they are usually much less computationally intensive, since they only
involve generation of replicate data sets (which is usually relatively easy), as opposed
to computing the posterior for multiple data sets.

Definition of posterior predictive for replicate data sets

e Recall that the posterior predictive distribution of a single future sample is

(@i T100) = / (i1 |0)p(6]10)d0

(assuming the data is conditionally independent given 6).
e Here, we will be considering the posterior predictive distribution of an entire replicate
data set, 21",

P 20) = / p(2216)p(6]1,,) 6.

e We can sample from the posterior predictive distribution on replicate data sets by first
sampling 0|z1.,, and then sampling x}°-|6. To sample S replicate data sets, we would

sample 0',...,0° ii.d. ~ p(f|r1.,), and then sample 21>°|6 for s =1,...,S.

Test statistics and test quantities

e To perform a posterior predictive check, we compare the observed value of some test
statistic/quantity to its distribution under the posterior predictive.



Test statistic = function of the data only, T'(z1.,).

e Test quantity = function of data and parameter, T'(z1.,,0). This is a generalization
that can be useful in the Bayesian context.

The speed of light example used the test statistic T'(x1.,) = min z;.

Using different test statistics/quantities will allow you to probe different aspects of
model fit.

Posterior predictive p-values

e To simplify the notation, let’s abbreviate x = x1.,,.

e Recall that the classical frequentist p-value for a test statistic T'(z) is defined as
pe =P(T(X) > T(x) | fo).

where z is the observed data, X is distributed according to Fy,, and 6, usually cor-
responds to the null hypothesis. The idea is that if the p-value is very small, then
the observed data is very atypical under the null hypothesis, providing evidence for
rejecting the null.

e The posterior predictive p-value for T'(z) is defined as
pp =P(T(X*?) > T(2) | z),
or more generally, for a test quantity 7'(z,0),
pp =P(T(X™,0) > T(z,0) | z).

In this expression, z is fixed and equal to the observed data, and (X™P, 0)|x is dis-
tributed according to

p(&"®, 0]z) = p(«™*|0)p(0]x),

which can be sampled from according to the same process as described above.

e Using such samples, we can make a Monte Carlo approximation,

S
1 rep,s S S
szgsz;]l(T(x »*0%) > T(z,0%)).
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Figure 4: (BDA figure 6.4) Left: Histogram of the sample variance over the 200 replicate
data sets, compared with the observed sample variance. Right: Scatterplot of T'(x, ) versus
T'(z™P, ) for the asymmetry statistic; the p-value is the fraction of points above the diagonal.

Example: Speed of light (continued)

How well is the model capturing the variance? Choose T'(x) = 6%. The p-value is

around 0.48, indicating that the model is doing okay (see figure 4). However, the sample
variance is a poor choice of test statistic for this model, since it is a sufficient statistic,
so the model is already paying very close attention to matching it. Consequently, it
isn’t really helping us recognize poor model fit.

How well is the model capturing any asymmetry of the distribution? We can compare
distance from the 90% and 10% quantiles to the center, 6:

T([L’,@) = ’x(ﬁl) — 6" — ’IE(G) — 9‘

Here, x(;) indicates the jth order statistic. The p-value is around 0.26, so the model
seems to be doing okay in this respect as well.

Interpretation of posterior predictive checks

The primary purpose of posterior predictive checks is not to construct hypothesis tests,
but rather, to explore and visualize how well the model is capturing various aspects of
the data distribution.

Consequently, it is not really that important whether you compute the p-value using
an upper tailed (as above), lower tailed, or two-tailed approach—whenever the p-value
is very close to zero or one, this is a flag that something may be amiss.

As usual, if you are computing multiple p-values, it is important to be aware of the
fact that some of them may be small or large simply by chance—i.e., remember the
multiple testing issue. Since we are not constructing a formal hypothesis test, however,
it is sufficient to just keep this in mind when interpreting the results.

Ideally, a frequentist p-value is uniformly distributed over the interval from 0 to 1. Pos-
terior predictive p-values do not always have this property, which can complicate their
interpretation somewhat. This is another reason to view them as tools for exploratory
purposes, rather than precisely calibrated tests of model fit.

It’s also important to remember that each posterior predictive check is only assessing
model fit with respect to one particular statistic. So, even though things might look
okay for a given statistic, there might be issues with other aspects of the distribution
you haven’t considered.
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Figure 5: (BDA figure 6.6) Fraction of boys and girls in the study who were smoking at each
time (wave) t =1,...,6.

e What should you do if your posterior predictive check indicates a problem? In some
cases, the inferences you draw from the model might not be negatively affected by
the lack of model fit—if you are certain of this, then it might still be okay to use the
model. Otherwise, the results of the posterior predictive check can provide valuable
insight into how to modify the model in order to improve it.

e If you do modify the model, however, it is crucial to ensure that you do not overfit—
after all, you could match every statistic perfectly by using a model which simply
reproduces the observed data set every time!

3 Example: random effects model of adolescent smok-
ing
Data/setup
e (This is the example starting on page 148 of the BDA.)
e 2000 Australian adolescents (teenagers)
e Smoking behavior was recorded every six months, for three years. (Figure 5)

e Questions of interest: How well can smoking behavior be predicted based on parental
smoking and other background variables? At what ages do boys and girls start smok-
ing?

Model 1: Logistic regression with random effects

e Covariates used:

xj; = 1(parent smokes)

zjo = 1(female)
e Target variables: For each person j, for timest =1,...,6,
yjr = L(person j is smoking at time ¢)

e Target variables are modeled as:

Y}”ZL‘, 67 « ~ Bernoulli (10git_1 (ﬁo + ﬁlle + 52!Ej2 + 53(1 - I’jg)t + ﬁ4[L‘j2t + O./j))



e logit(p) = log(p/(1 — p)) and logit *(a) = e?/(1 + €%)

e «; is referred to as a “random effect” or “individual effect” for person j. (The term
“random effect” is misleading, but unfortunately common— in this case, it just means
that there is a different value for each person.)

e Priors: a; ~ N(0,72), improper uniform priors on 3, 7. (Incidentally, it’s generally
a bad idea to assume a parametric prior for the individual effects «;, since the num-
ber of parameters is growing with the size of the data set, and this can lead to lack
of consistency if this prior is even slightly wrong. This can be fixed by using an in-
ference method which eliminates the individual effects in some way or by placing a
nonparametric prior on them.)

Model 2: Mixture of model 1 and a zero component

e Assume each person j has an unobserved “susceptibility” S;, which is 1 if the person
might possibly smoke, and 0 if she/he will never smoke no matter what.

e These are modeled as

Sjlf)/ ~ Bernoulli (10git71(’}/0 -+ Y1251 + ’YQl'jz))
e Given 5; = 1, Y] is distributed as in model 1, and given S; = 0, Y; = 0 with probability
1.

e Improper uniform priors on v’s.

Posterior predictive checks of the two models
o Test statistics:
— fraction of subjects who never smoked during the study

— fraction of subjects who always smoked during the study

— fraction of subjects who started smoking during the study and did not stop smok-
ing (“incident smokers”)

Results:

(figure omitted due to copyright reasons, sorry about that)

Both models capture the fraction of never-smokers well.

Model 2 captures the fraction of always-smokers much better than model 1.

Neither model captures the fraction of incident smokers very well. (P-values this small
will only occur by chance about 1 in 200 times, and we have only looked at three
p-values.)
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Figure 6: (BDA figure 6.7) Left: Observed data is a binary matrix of responses for each of 6
subjects. Right: Seven samples from the posterior predictive distribution for the 6 subjects.

(figure omitted due to copyright reasons, sorry about that)

Figure 7: (BDA figure 6.9) Left: Histogram of ¢1,..., ¢gy, for a single sample from the
posterior, compared with the density of the prior, Beta(2,2). Right: Same for ¢, ..., go.

4

4.1

4.2

Related methods

Graphical checks

Rather than looking at a single test statistic T'(z), sometimes it is useful to look at a
bunch of test statistics T1(x), ..., Ty(z) simultaneously.

BDA refers to this as a graphical posterior predictive check, since the model fit is
assessed by visual inspection of some graphical display of (T (x),...,Tu(x)).

In this case, rather than displaying the posterior predictive distribution of the test
statistics/quantities in a histogram, you would typically display one or several samples
of the test quantities.

Example: See Figure 6. See BDA section 6.4 for details.

Comparing posterior samples to the prior

The basic idea

If the model were perfect (i.e., both the likelihood and the prior were correct), then
for a typical data set x, a sample from the posterior should look like a sample from
the prior. Note: The claim here is not that p(6|x) will look like p(6), but rather that if
we were to draw 0y ~ p(0), draw xg ~ p(z|fy) (so that z¢ is a “typical” data set under
the model), and then draw 6; ~ p(0|x,), then 6; is actually distributed according to
the prior, p(6).

For this reason, it can be useful to compare posterior samples to the prior, particularly
in models with a large number of parameters.

(figure omitted due to copyright reasons, sorry about that)

Figure 8: (BDA figure 6.10) Same as Figure 7, with the revised prior.



Example

5)

(This is the example on page 155 of BDA.)

It just so happens that in this example, the test quantities are functions of 6 only (and
not x), but that is just a coincidence.

This example involves a hierarchical model from psychology (the details are not im-
portant) that has parameters ¢y, ..., ¢gg and 1)1, ..., gy corresponding to patients and
psychological symptoms.

Independent Beta(2,2) priors were placed on all of these parameters. If the model
(including prior) were correct, then for a typical data set, these parameters should
look roughly like draws from a Beta(2,2) distribution.

However, Figure 7 indicates that this is not the case.

The prior was revised to use mixtures of beta distributions:

¢; ~ 3 Beta(1,6) + 3 Beta(1,1)
¥; ~ 5 Beta(1,16) 4 3 Beta(1, 1).

Figure 8 indicates that the posterior sample is more concordant with the prior, when
using this revised prior.

Cross-validation

The basic idea

Often, the ideal way of evaluating a statistical method is to see how well it generalizes
to new data.

We could simulate such an evaluation by splitting the observed data set into a “train-
ing” set T" and a “held-out” set H, running the method on T as if it were all of the
observed data, and then evaluating its performance H as if this were new data.

The basic idea of cross-validation is to do this for multiple splits (71, Hy), .. ., (Tk, Hy),
and average the results.

Cross-validation is most often used for assessing predictive models of y|z (such as
in regression or classification problems), but it can also be used when modeling the
distribution of x alone.

Cross-validation is probably the most commonly-used method of choosing among com-
peting models. It can also be used to estimate the generalization performance of a
single model of interest.
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e The great thing about cross-validation, compared to many other model selection crite-
ria, is that it is directly getting at what matters—how well does the method generalize.
The crappy thing is that it requires you to run your method on multiple training sets,
which takes time.

Common schemes

Leave-one-out cross-validation (LOO-CV)
e Involves n splits: (T}, H;) fori=1,... n.
o H;, ={i} (ie., data point ¢ only).
o T, ={1,...,n}\ H; (i.e., everything else).

k-fold cross-validation
e Involves k splits: (7}, H;) fori =1,... k.

e Divide the data set into k disjoint (i.e., non-overlapping) subsets Si, ..., Sy that are
equally sized, or roughly equally sized.

o H,=35; andTi:U#iSj.

e Note that LOO-CV is a special case of k-fold CV in which k = n.

Choosing k

e LOO-CV: Low bias (good), high variance (bad). More computation (bad) — except
in special cases where tricks are possible.

e 2-fold CV: High bias (bad), low variance (good). Less computation (good).
e k-fold CV for well-chosen k: Juuust right.

e [t is standard to use k = 10 or maybe k = 5.

Measuring generalization performance

e Suppose that when we run the method on training data zr = (z; : ¢ € T), the
generalization performance on a new data point x is measured by a loss ¢(z|zr).

e Suppose we want to minimize the expected loss:
E, (X |xr) = /€(x|$T)p0(x)dx

where pg is the true distribution of the data.

e Examples:

11



— Log posterior predictive density / KL divergence. If we choose
U(z|zr) = —log p(z|zr),

where p(x|zr) is the posterior predictive density, then the expected loss is

By ((X |7) = — / po() log p(elzr)dz = D(po() |p(aler)) — H(po)

where H(py) = — [ polog po is the entropy of py. So, basically, by choosing a model
that minimizes this expected loss, we are trying to minimize the KL divergence
from the true distribution.

— 0-1 loss / probability of misclassification. In the classification setting, instead of
just z’s, we have pairs (z,y). If we choose

Uz, yler, yr) = Wy # fr(z)),

where fr(zx) is the predicted value of y corresponding to  when the training set
is (xr,yr), then the expected loss is

Ep (X, Y |2, yr) = /]l(y # fr(x))po(z,y)dzdy = P(Y # fr(X)),

which is the probability of misclassification.

Cross-validation

e Suppose we would like to estimate E, ¢(X|z;.,). At first, it might seem like a natural
idea to form a Monte Carlo approximation of this expectation, using the observed data
to approximate py: i.e. to use - Z] LUz j|T1.,). However, if you think about it, this
will tend to make the performance look better than it actually is, since it is evaluating
performance on the same data that was used for training/estimation/inference.

e [f T is a training subset, then

E, /(X |x1.) = E, 0(X|zr) + bias.

e The bias will be larger when T is small relative to n. There are methods for estimating
the bias (see BDA page 175). However, if the only goal is to choose among competing
models, this bias is often ignored (I guess the hope that the bias doesn’t change too
much from model to model).

e Now, we can use a held-out set H (disjoint from 7T") to form the Monte Carlo approxi-
mation

E, ((X|xr) ~ T Zf zj|er)

JjEH

without the issue of “using the data twice.”
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e The cross-validation estimate of generalization performance is obtained by averaging
these Monte Carlo approximations over all splits into training/held-out sets:

P Y taler),

JEH;

1
| H,|
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