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Many times, the construction of a data set involves some selection or collection process
governing which samples we see. In many cases, we don’t need to model this data collection
process (it is “ignorable”), but sometimes there are biases in the data collection process that
are important to account for. Recognizing when such issues arise, and properly accounting
for them, is probably one of the more subtle aspects of using statistics in practice. (These
notes closely follow the notation and terminology of BDA chapter 8.)
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1 Introduction

1.1 A few motivating examples

• The local city government installed traffic cameras at the intersections that had the
highest number of accidents in the previous year. This year, they noticed that the
number of accidents at those intersections was lower, on average, compared to the
previous year. Is this evidence that installing traffic cameras helps decrease the number
of accidents? Not necessarily! The issue is that the number of accidents in any given
year will exhibit some randomness, and by choosing intersections with a high number
of accidents, we will tend to choose intersections that had higher numbers of accidents
than their individual means. So, in fact, we would expect the number of accidents at
those intersections to be less this year, even if the cameras were not there. Basically,
there is a selection bias in how the intersections were chosen.

• For several years, observational studies suggested that women receiving hormone ther-
apy have a lower risk of cardiovascular disease. However, this was more recently
contradicted by randomized controlled trials, which suggested that in fact, the risk
of cardiovascular disease was significantly increased. How could this happen? (By
the way, in lecture I mistakenly said “human growth hormone” instead of “hormone
therapy”, which is different.) One possibility is that the observational studies did
not properly account for all of the relevant “confounders” — for example, wealthier
women are more likely to have hormone therapy, but they are also more likely to have
a healthier lifestyle. Another, more subtle, possible explanation (Hernan et al., Epi-
demiology, 2008) is that it appears that the observational studies compared women who
were currently receiving hormone therapy to women who had never received hormone
therapy—however, this is missing is the subset of women who started taking hormone
therapy and then stopped taking it before the observations were made (possibly even
due to death). The underlying reason for both of these possible explanations is failure
to correctly model the data collection process.

• During World War II, the US military found that the bomber planes returning from
missions were being struck by bullets in certain parts of the plane more than other
parts. They were planning to provide armor to protect these frequently-struck parts
of the planes, however, statistician Abraham Wald was consulting for the military,
and he realized that this was precisely the opposite of what they should do. Why?
The key insight was that their observations were based on the planes that returned
from their missions—they were not considering all of the planes that were shot down!
He performed a careful statistical analysis and recommended that they reinforce the
planes in the parts where bullet holes had not been observed. Basically, the idea is
that these were critical regions, and the reason the observed planes returned was that
they were not struck there.
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1.2 Discussion

The basic point of this chapter is that sometimes, we need to model the biases in how the
data were collected. A canonical case of this is handling missing data—in other words,
handling the possibility that some potential samples were not included in the data set. It
is important to realize that missing data can contain information about the parameters you
are interested in, and ignoring it can bias your results. In some lucky cases we can ignore
the data collection process—we will study this property, called “ignorability”, and establish
some sufficient conditions under which it holds. When ignorability does not hold, the good
news is that if we model the data collection process correctly, we can just use standard
Bayesian methods to perform inference.

2 Of airplanes and bullet holes

• To introduce some of the basic concepts and notation, let’s consider a simplification of
the Wald story.

• Suppose we want to know the mean number of bullet holes occurring in planes during
a mission.

• Denote

yj = # of bullet holes in plane j

Ij = 1(plane j returned from its mission)

obs = {j : Ij = 1} = the set of indices of the observed values

mis = {j : Ij = 0} = the set of indices of the missing values.

• Let’s assume the following model:

Y1, . . . , Yn|θ i.i.d. ∼ Poisson(θ)

Ij|y, θ ∼ Bernoulli(φyj),

and for simplicity, let’s assume the parameters φ0, φ1, . . . are known, and are strictly
decreasing in size.

• Then

p(y, I|θ) =
n∏
j=1

p(yj|θ)p(Ij|yj) = p(yobs|θ)
( ∏
j∈obs

φyj

)( ∏
j∈mis

p(yj|θ)(1− φyj)
)
.

• It would be incorrect to use p(θ|yobs) for posterior inferences about θ, since this would
not take into account the bias in the data collection process due to the fact that planes
with more bullet holes are less likely to return.
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• Instead, the correct distribution to use is

p(θ|yobs, I) ∝ p(yobs, I|θ)p(θ) = p(θ)
∑
ymis

p(y, I|θ)

= p(θ)p(yobs|θ)
( ∏
j∈obs

φyj

)∑
ymis

( ∏
j∈mis

p(yj|θ)(1− φyj)
)

∝ p(θ)p(yobs|θ)
∏
j∈mis

∑
yj

p(yj|θ)(1− φyj)

= p(θ)p(yobs|θ)P(I1 = 0 | θ)|mis|.

where the sum
∑

ymis
is overall possible values of the vector ymis = (yj : j ∈ mis).

• Note that (in this example) the correct posterior is proportional to the naive incorrect
posterior p(θ|yobs) times the factor P(I1 = 0 | θ)|mis| accounting for the missing data.

2.1 Ignorability

• This example (airplanes and bullet holes) is one in which the data collection process is
not “ignorable”. On the other hand, if it were the case that φ0 = φ1 = · · · = c for some
constant c ∈ (0, 1), then I ⊥ (Y, θ), and it turns out that when this is so, the data
collection process is “ignorable” in the sense that p(θ|yobs, I) = p(θ|yobs). Actually,
this is easy to see in this example since if φ0 = φ1 = · · · = c then P(I1 = 0 | θ)|mis| =
(1− c)|mis| ∝θ 1.

• More generally, the parameters φ0, φ1, . . . might be unknown, in which case we would
put a prior on them. Also, we might have covariates xj associated with plane j. In
this more general setting, the appropriate distribution to use for inferences about θ is

p(θ | x, yobs, I) =

∫
p(θ, φ | x, yobs, I)dφ.

• In general, the data collection process is said to be ignorable if

p(θ | x, yobs, I) = p(θ | x, yobs).

• Some care is needed to properly interpret the quantity on the right-hand side of this
equation, since the convention of using the same letter for both a random variable
and its value makes this expression ambiguous. The short explanation is that the
right-hand side should be interpreted formally as

p(θ|x, yobs) ∝ p(yobs|x, θ)p(θ|x).

This might seem obvious, but consider the following thought process: “if we know the
observed values yobs, then we must know which subset of variables we observed, so
conditioning on yobs should be the same as conditioning on both yobs and I.” To clear
up the confusion, we need to make the notation a little more precise. Let I denote
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the random variable taking values I, and write yI instead of yobs to denote the values
of the observed variables. The reason why the thought process above is invalid is
that the expression p(θ | x, yobs) should be interpreted as p(θ | x, YI = yI), and not
p(θ | x, YI = yI , I = I) which would be equal to p(θ | x, yobs, I).

• To further understand the distinction, here’s a simple example. Suppose your model is
Y1, Y2|θ i.i.d. ∼ N(θ, 1) and you have a prior on θ. Consider the following two scenarios:

(a) I tell you that y1 = 2.4. What is your posterior on θ?

(b) I tell you that y1 = 2.4 and y1 < y2. What is your posterior on θ?

It should be clear that these two scenarios lead to different posteriors for θ. Now, to
make the connection with yobs and I, suppose p(I|y, θ) is such that I1 = 1, I2 = 0
whenever y1 < y2, and otherwise, I1 = 0, I2 = 1. When y1 < y2, scenario (a) above
corresponds to using p(θ|yobs), and scenario (b) corresponds to using p(θ|yobs, I). The
difference is that in scenario (a), I didn’t tell you why you were only seeing y1.

3 Medical treatment example

• Before considering the general setup and establishing some general conditions under
which ignorability is guaranteed, let’s look at another example.

• Suppose a doctor has n patients with some disease, and each patient is given one of
two treatments, A or B.

• Denote by y the matrix of “potential outcomes”,

y =


yA1 yB1
yA2 yB2
...

...
yAn yBn


where yTj denotes the outcome patient j would exhibit if given treatment T .

• Likewise, denote by I the matrix of observation indicators,

I =

I
A
1 IB1
...

...
IAn IBn


where ITj = 1(patient j is given treatment T ). It is assumed that each patient is given
exactly one treatment, A or B; in other words, IBj = 1− IAj .

• Suppose we have a vector of covariates xj = (xj1, . . . , xjd)
T ∈ Rd for patient j.
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• Consider the following simple model for y and I:

Y A
j |x, θ ∼ N (θA + βTxj, σ

2)

Y B
j |x, θ ∼ N (θB + βTxj, σ

2)

IAj |x, y, φ ∼ Bernoulli(logit−1(φTxj))

where θ = (θA, θB)T ∈ R2 and φ = (φ1, . . . , φd)
T ∈ Rd. Assume a prior p(θ, φ|x) on

these parameters. For simplicity, let’s assume that the vector of regression coefficients
β and the variance σ2 are known, but of course more generally we could put priors on
them.

• We will revisit this example to illustrate various concepts.

4 General framework

4.1 Setup

• The framework described here is used in a large number of situations, including models
for missing data, censored data, surveys/polls, randomized experiments, and causal
inference.

• Let y denote a matrix of “potential outcomes” yij, some of which will be observed, and
some of which will not be observed.

• Let Iij = 1(entry i, j of y is observed).

• Let obs = {(i, j) : Iij = 1} and mis = {(i, j) : Iij = 0}.

• Let x denote some accompanying collection of covariates.

• Let θ denote parameters governing the distribution of the potential outcomes y, and
let φ denote parameters governing the distribution of the data collection process I.

• Typically, we get to see x, yobs, and I (but not ymis).

• Assume the following factorization holds:

p(y, I|x, θ, φ) = p(y|x, θ)p(I|x, y, φ).

This is referred to as the complete-data likelihood.

4.2 Basic properties

• The joint posterior on (θ, φ) is then

p(θ, φ|x, yobs, I) ∝ p(θ, φ|x)p(yobs, I|x, θ, φ)

= p(θ, φ|x)

∫
p(y, I|x, θ, φ)dymis
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= p(θ|x)p(φ|x, θ)
∫
p(y|x, θ)p(I|x, y, φ)dymis.

Note that here we are assuming the y’s are continuous, but of course if they were
discrete, the integral above would be replaced by a sum. Also, the proportionality here
is with respect to both θ and φ.

• The posterior on θ is then obtained by just integrating this over φ, i.e.,

p(θ|x, yobs, I) =

∫
p(θ, φ|x, yobs, I)dφ

∝θ p(θ|x)

∫
p(φ|x, θ)

(∫
p(y|x, θ)p(I|x, y, φ)dymis

)
dφ. (4.1)

4.3 Ignorability and related concepts

• We say that ignorability holds if

p(θ|x, yobs, I) = p(θ|x, yobs).

• When ignorability holds, we don’t have to worry about modeling the data collection
process. This makes life easier, and also makes our inferences more robust (since there
are fewer modeling assumptions to possibly get wrong).

• Note that ignorability, as defined here, is a property of the assumed model—but of
course your model might not actually be a good representation of the true distribu-
tion. If you assume a model in which ignorability holds, but the assumptions underlying
your model are invalid, then obviously your resulting inferences will be compromised.
In some cases, fortunately, the true data collection process is directly under our con-
trol (for example, in randomized controlled trials), so we can guarantee that it has a
particular distribution—and thus, in such cases we can be confident that our model
for the data collection process is correct.

• We say that data is missing at random (MAR) if

p(I|x, y, φ) = p(I|x, yobs, φ).

• We say that data is missing completely at random (MCAR) if

p(I|x, y, φ) = p(I|x, φ).

• We say that strong ignorability holds if

p(I|x, y, φ) = p(I|x).

• We say that the condition of distinct parameters holds if

p(θ, φ|x) = p(θ|x)p(φ|x).

(This terminology is really bad, but unfortunately it seems to be standard.)
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• Based on these definitions, we can derive the following results:

strong ignorability =⇒ MCAR =⇒ MAR

strong ignorability =⇒ ignorability

MAR + distinct parameters =⇒ ignorability.

The first line can be seen directly from the definitions (if this is not obvious to you, re-
view conditional independence). The second and third lines can be derived by plugging
the definitions into equation 4.1.

5 Medical treatment example, revisited

• Here we illustrate the concepts above in the context of this example.

• In the original setup for this example, the data collection process was modeled as

IAj |x, y, φ ∼ Bernoulli(logit−1(φTxj))

independently for j = 1, . . . , n. This satisfies MCAR.

• If φ were known exactly, a priori, then we would also have strong ignorability. But if
φ is unknown and we need to put a prior on it, then strong ignorability does not hold
and we only have MCAR.

• To illustrate a situation in which MAR holds, but MCAR does not hold, suppose the
treatment of patient j is adaptively chosen based on the observed outcomes of patients
1, . . . , j − 1, in addition to x and φ. This would be the case if the doctor adjusts her
treatment decisions based on what she has learned from previous patients. In this case,
MAR holds, but not MCAR.

• If θ and φ are independent in the prior (given x), then we have “distinct parameters”.
However, assuming such independence might not be reasonable in this example, since
if θB − θA is large then it is plausible that the doctor would have domain knowledge
indicating this (perhaps from her background knowledge or from the medical litera-
ture), and so the doctor would be more likely to assign one treatment over the other
(and thus our prior on φ would depend on θ).
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