
Homework: Variational inference for population
structure mixture models

1 Background

In a large number of biology applications, the data consist of measurements from a number
of organisms, and it is important to understand the “population structure” exhibited by
these organisms. Organisms tend to segregate into populations, such that individuals within
a given population interbreed commonly, while breeding between populations is much less
common. This causes the data to tend to fall into clusters corresponding to these populations.
It is important to infer these clusters and take them into account for many types of analysis.
Failure to account for population structure can lead to misleading results, due to Simpson’s
paradox. The standard way to infer population structure from genotype data is to use what is
called an “admixture model”. We will consider a simplification based on an ordinary mixture
model. The article introducing these models (Pritchard et al., 2000) is one of the most highly
cited statistics papers of all time, with 16,498 citations as of this writing, according to Google
Scholar.

2 Data

We will consider data from Lorenzen and Siegismund (2004) and Lorenzen et al. (2006),
consisting of genotypes from n = 216 common impala and black-faced impala from Southern
Africa (see Figure 1). The common impala is widespread throughout the eastern part of
Southern Africa, whereas the black-faced impala is an endangered subspecies that is localized
to a small region in the western part. These researchers were interested in understanding
the genetic diversity of these animals, in order to help save the black-faced impala from
extinction.

For each animal j = 1, . . . , n, its genotype was determined at L = 8 loci (i.e., 8 locations
on the genome). At each locus ` = 1, . . . , 8, the genotype of animal j consists of two allele
copies, xj`1, xj`2 ∈ {1, . . . , V`} (since each animal has two copies of each chromosome, one
from each parent). Here, V` is the number of different variants of allele copy that can occur
at locus `, and for this data set, V = (15, 13, 6, 6, 9, 14, 16, 9). For example, Table 1 shows
the data for animal j = 86. Missing entries are indicated by −1. The file “x.txt” contains
the genotype data for all n = 216 animals.
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Figure 1: Left: Male common impala. Middle: Male black-faced impala. Right: Female and
offspring black-faced impala.1

Table 1: Genotype of animal j = 86
Locus ` 1 2 3 4 5 6 7 8
Allele copy c 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
Variant observed, xj`c 5 3 2 2 -1 -1 2 2 1 2 3 6 3 2 1 1

3 Model

Consider the following model. Suppose there are k mixture components, representing k
different populations. The component weights are w = (w1, . . . , wk), where wi ≥ 0 and∑k

i=1wi = 1. The component parameters are α = (α1, . . . , αk), where for each component
i = 1, . . . , k,

αi =


αi1(1), . . . , αi1(V1)

...
αi`(1), . . . , αi`(V`)

...
αiL(1), . . . , αiL(VL)

 ,
with αi`(v) being the probability of observing variant v at locus ` for an animal in population
i. Note that this is a “ragged matrix”, i.e., the rows have different lengths. Each row αi` is
a probability vector, in other words, αi`(v) ≥ 0 and

∑V`

v=1 αi`(v) = 1.
The data is modeled as

Zj|w ∼ Categorical(w)

Xj`1, Xj`2 | α, Zj = i ∼ Categorical(αi`) independently for ` = 1, . . . , L,

independently for each j = 1, . . . , n.2 See Figure 2 for the graphical model. We will use
uniform priors on w and on αi` for all i, `.

1Image credits: Common impala, Filip Lachowski, CC BY-SA 2.0. Black-faced impala, Yathin S Krish-
nappa, CC BY-SA 3.0. Female and offspring, Yathin S Krishnappa, CC BY-SA 3.0.

2Technically, the allele counts at each locus should be Multinomial(2, αi`), since the order of the two
allele copies is undetermined. However, to keep the assignment from getting too complicated, we will use
the simpler Categorical model.
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Figure 2: Directed graphical model.

In this homework, you will construct a variational approximation to the posterior on
z, w, α for this model. The target distribution is

π(z, w, α) = p(z, w, α|x) ∝ p(x, z, w, α) ∝ p(x|z, α)p(z|w)

=
n∏

j=1

( L∏
`=1

2∏
c=1

αzj`(xj`c)
)
wzj .

Taking the log and using indicator functions to simplify the dependence on the parameters,
we get

log π(z, w, α) =
n∑

j=1

k∑
i=1

1(zj = i)
(

logwi +
L∑

`=1

2∑
c=1

V∑̀
v=1

1(xj`c = v) logαi`(v)
)

+ const.

To handle the missing data, let’s assume the data collection process is ignorable (since the
model is already complicated enough for this homework exercise). With this assumption,
the same exact expression as above can be used for log π(z, w, α), for roughly the following
reason: in the sum over v = 1, . . . , V`, the indicator 1(xj`c = v) will always be zero if xj`c is
missing, because −1 is never equal to v; therefore any missing data will not factor into the
likelihood. Note, however, that you will need to be careful in manipulating this expression,
since this means that

∑V`

v=1 1(xj`c = v) logαi`(v) 6= logαi`(xj`c) if xj`c is missing, because
the left-hand side is zero and αi`(−1) is undefined.

4 Exercises

1. Derive the variational inference algorithm for this model based on an approximating
distribution of the form q(z, w, α) = q(z)q(w, α). Hint: Similarly to the mixture
model we considered in class, for the q(z) update, the algorithm will involve computing
rj(i) = Pq(Zj = i) (but with a different formula than before), and for the q(w, α)
update, it will involve computing Ri =

∑n
j=1 rj(i) as well as some other quantities

Si`(v) that you will need to determine.

2. Implement the algorithm using a random initialization. For the convergence criterion,
stop when the root-mean-square difference between rnew and rold is less than 10−10,
that is, when ( 1

nk

n∑
j=1

k∑
i=1

(
rnewj (i)− roldj (i)

)2)1/2
< 10−10.
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Figure 3: Example results from five runs with different random initializations.

3. Now, with k = 4 components, run the algorithm five times on the data in “x.txt”,
using a different random initialization each time. For each of these five runs, report
the number of iterations until convergence, and plot the final values of rj(i) in a stacked
bar plot as shown in Figure 3. Discuss the interpretation of these plots.

4. Table 2 indicates the subspecies (“C” for common impala or “B” for black-faced im-
pala) and the region of origin for each animal. Do your results appear to make sense,
at least roughly, in light of this additional information? Discuss. Are there any indi-
vidual animals who are consistently clustered differently than other members of their
subspecies and region? Give the indices j of two or three animals like this, and discuss
possible explanations.

Note that the algorithm does not converge to the same thing every time. For exam-
ple, sometimes, two given animals will be assigned to the same component with very high
probability in one run, but assigned to two different components with very high probability
in another run. This may be because these kinds of variational approximations tend to
underestimate uncertainty (in other words, they tend to be “overconfident”).
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Table 2: Subspecies and region for each animal.
Animal j Subspecies Region code
1-15 B KA
16-31 B OM
32-64 B OL
65-98 B HA
99-127 B NA
128-137 B ON
138-147 C CH
148-158 C SH
159-163 C KAF
164-169 C LU
170-181 C SE
182-194 C BU
195-206 C IM
207-216 C SA
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