
STA531 Midterm Exam 1 Solutions

1. Posterior consistency and asymptotic normality

(a) The log likelihood is

`(θ;x1:n) = log p(x1:n|θ) = log θne−θ
∑
xi = n log θ − θ

n∑
i=1

xi.

The first and second derivatives are

∂

∂θ
` =

n

θ
−

n∑
i=1

xi

∂2

∂θ2
` = − n

θ2
< 0.

Since the second derivative is negative for all θ > 0, the function is strictly
concave. So, setting the derivative equal to zero and solving tells us that the
maximum likelihood estimator is θ̂ = 1/x̄. The observed information is

I(θ;x1:n) = − ∂2

∂θ2
` =

n

θ2
.

Therefore, the asymptotic normal approximation to the posterior is

θ|x1:n ≈ N (θ̂, I(θ̂;x1:n)−1) = N (1/x̄, 1/(nx̄2)).

(b) The (strong) law of large numbers tells us that with probability one (i.e., almost
surely), x̄→ Eθ0X = 1/θ0 as n→∞. Therefore, θ̂ = 1/x̄→ θ0 and 1/(

√
nx̄)→ 0

(a.s.) as n → ∞. In other words, the mean of the asymptotic normal approxi-
mation is converging to θ0, and the standard deviation of the asymptotic normal
approximation is converging to zero. Hence, for any neighborhood of θ0, as n
grows, the amount of probability given to that neighborhood (by the normal ap-
proximation) will eventually go to one.

To make this argument formal (which was certainly not required), one would
have to argue that (i) convergence of the standard deviation to zero implies the
claimed result about the probability in a neighborhood going to one (this can be
done using Chebyshev’s inequality), and (ii) the normal approximation is good
enough (this can be done by stating the approximation more precisely in terms
of convergence with respect to the total variation distance).

2. Posterior predictive checks

(a) p(θ|x) ∝ p(x|θ)p(θ) ∝ N (x|θ, 1) = N (θ|x, 1).

(b) The posterior predictive is p(xrep|x) =
∫
p(xrep|θ)p(θ|x)dθ. Therefore, we can

sample Xrep|x by first drawing θ|x ∼ N (x, 1) and then drawing Xrep|θ ∼ N (θ, 1).
In other words, we can sample Xrep|x by drawing Y, Z ∼ N (0, 1) independently,
and setting Xrep = x + Y + Z. Therefore, Xrep|x ∼ N (x, 2) by the formula for
linear combinations of independent normal random variables.
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(c) The posterior predictive p-value is

P(T (Xrep) ≥ T (x) | x) = P(Xrep ≥ x | x) = 1/2

by part (b) since Xrep|x is normal with mean x.

3. Modeling the data collection process

(a) p(θ|x, yobs, I) = p(θ|x, yobs).
(b) Here is one of many possible examples. Suppose Y1, . . . , Yn|θ i.i.d. ∼ Bernoulli(θ),

and given y, θ, suppose Ij = Yj for all j = 1, . . . , n. Suppose there are no covariates
x. Then the observed y’s are all ones, however, all of the y’s can be recovered
perfectly from I. Consequently, p(θ|yobs) will concentrate at 1, but p(θ|yobs, I)
will concentrate at the true value θ0.

4. Credible intervals and frequentist coverage

(a) First, note that since the function f(x) = xa is monotone increasing for any a > 0,

we have that (i) θ0 ≤ x0.1 if and only if θ
1/0.1
0 ≤ x, and (ii) x0.9 ≤ θ0 if and only if

x ≤ θ
1/0.9
0 . Therefore, the frequentist coverage probability is

P(θ0 ∈ C(X) | θ0) = P(X0.9 ≤ θ0 ≤ X0.1 | θ0)
= P(θ

1/0.1
0 ≤ X ≤ θ

1/0.9
0 | θ0)

=

∫ θ
1/0.9
0

θ
1/0.1
0

p(x|θ0)dx =
1

θ0
(θ

1/0.9
0 − θ1/0.10 ),

since θ
1/0.9
0 < θ0.

(b) We need to show that

P(θ < x0.9 | x) = P(θ > x0.1 | x) = 0.1.

First, the posterior is

p(θ|x) ∝ p(x|θ)p(θ) =
1

θ
1(0 < x < θ)1(0 < θ < 1) ∝ 1

θ
1(x < θ < 1).

Since
∫ t
x
(1/θ)dθ = log θ|tx = log t− log x, then

p(θ|x) =
1/θ

− log x
1(x < θ < 1),

and

P(θ < t | x) =

∫ t

x

p(θ|x)dθ =
log t− log x

− log x
= 1− log t

log x
.

Therefore,

P(θ < x0.9 | x) = 1− log x0.9

log x
= 0.1

and

P(θ > x0.1 | x) =
log x0.1

log x
= 0.1.
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