STA531 Midterm Exam 1

Instructions

- Write your name, NetID, and signature below.
- If you need extra space for any problem, continue on the back of the page.

Community Standard

To uphold the Duke Community Standard:

- I will not lie, cheat, or steal in my academic endeavors;
- I will conduct myself honorably in all my endeavors; and
- I will act if the Standard is compromised.

I have adhered to the Duke Community Standard in completing this exam.

Name: \qquad
NetID: \qquad
Signature: \qquad

Score

1. \qquad
2. \qquad
3. \qquad
4. \qquad

Overall: \qquad

List of common distributions

$\operatorname{Geometric}(x \mid \theta)=\theta(1-\theta)^{x} \mathbb{1}(x \in\{0,1,2, \ldots\})$ for $0<\theta<1$
Bernoulli $(x \mid \theta)=\theta^{x}(1-\theta)^{1-x} \mathbb{1}(x \in\{0,1\})$ for $0<\theta<1$
$\operatorname{Binomial}(x \mid n, \theta)=\binom{n}{x} \theta^{x}(1-\theta)^{n-x} \mathbb{1}(x \in\{0,1, \ldots, n\})$ for $0<\theta<1$
$\operatorname{Poisson}(x \mid \theta)=\frac{e^{-\theta} \theta^{x}}{x!} \mathbb{1}(x \in\{0,1,2, \ldots\})$ for $\theta>0$
$\operatorname{Exp}(x \mid \theta)=\theta e^{-\theta x} \mathbb{1}(x>0)$ for $\theta>0$
$\operatorname{Uniform}(x \mid a, b)=\frac{1}{b-a} \mathbb{1}(a<x<b)$ for $a<b$
$\operatorname{Gamma}(x \mid a, b)=\frac{b^{a}}{\Gamma(a)} x^{a-1} e^{-b x} \mathbb{1}(x>0)$ for $a, b>0$
$\operatorname{Pareto}(x \mid \alpha, c)=\frac{\alpha c^{\alpha}}{x^{\alpha+1}} \mathbb{1}(x>c)$ for $\alpha, c>0$
$\operatorname{Beta}(x \mid a, b)=\frac{1}{B(a, b)} x^{a-1}(1-x)^{b-1} \mathbb{1}(0<x<1)$ for $a, b>0$
$\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)$ for $\mu \in \mathbb{R}, \sigma^{2}>0$
$\mathcal{N}(x \mid \mu, C)=\frac{1}{(2 \pi)^{d / 2}|C|^{1 / 2}} \exp \left(-\frac{1}{2}(x-\mu)^{\mathrm{T}} C^{-1}(x-\mu)\right)$ for $\mu \in \mathbb{R}^{d}, C \in \mathbb{R}^{d \times d}$ symmetric positive definite.

Exponential family form

$$
p(x \mid \theta)=\exp \left(\varphi(\theta)^{\mathrm{T}} t(x)-\kappa(\theta)\right) h(x)
$$

List of special functions

Beta function: $B(a, b)=\int_{0}^{1} t^{a-1}(1-t)^{b-1} d t$ for $a, b>0$
Gamma function: $\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t$ for $x>0$

1. (25 points) Posterior consistency and asymptotic normality

Suppose our model is $X_{1}, \ldots, X_{n} \mid \theta$ i.i.d. $\sim \operatorname{Exp}(\theta)$, along with an improper uniform prior on θ.
(a) (Asymptotic normality) Given observed data x_{1}, \ldots, x_{n}, what is the asymptotic normal approximation to the posterior $p\left(\theta \mid x_{1: n}\right)$? (Make sure you provide explicit expressions for the mean and variance in terms of x_{1}, \ldots, x_{n}.)
(b) (Posterior consistency) Suppose the true distribution is $\operatorname{Exp}\left(\theta_{0}\right)$, in other words, the observed data x_{1}, \ldots, x_{n} are i.i.d. from $\operatorname{Exp}\left(\theta_{0}\right)$. Give an informal argument that the posterior is consistent for θ_{0}, using the law of large numbers and the asymptotic normal approximation you derived in part 1a.
2. (25 points) Posterior predictive checks

Suppose we have a single observation $x \in \mathbb{R}$, which we model as $X \mid \theta \sim \mathcal{N}(\theta, 1)$ with an improper uniform prior on θ.
(a) What is the posterior $p(\theta \mid x)$?
(b) What is the posterior predictive distribution for a replicate, $x^{\text {rep }} \in \mathbb{R}$? (Your answer should be a specific distribution with parameters depending on x, not a general formula.)
(c) Consider the test statistic $T(x)=x$. What is the posterior predictive p-value? (Your answer should be a specific numerical value, not a general formula.)
3. (25 points) Modeling the data collection process
(a) What is the definition of ignorability?
(b) Give an example of a model in which the data collection process is not ignorable.
4. (25 points) Credible intervals and frequentist coverage

Suppose we have a single observation $x \in(0,1)$ (i.e., $0<x<1$), which we model as $X \mid \theta \sim \operatorname{Uniform}(0, \theta)$ with prior $\theta \sim \operatorname{Uniform}(0,1)$.
(a) Consider the interval $C(x)=\left[x^{0.9}, x^{0.1}\right]$. What is the frequentist coverage probability of this interval when the true distribution is $\operatorname{Uniform}\left(0, \theta_{0}\right)$ for a given value $\theta_{0} \in(0,1)$?
(b) Show that $C(x)=\left[x^{0.9}, x^{0.1}\right]$ is an equal-tailed 80% posterior credible interval.

