STA531 Midterm Exam 2 Solutions

1. Graphical models
(a) $p\left(x_{1}, \ldots, x_{8}\right)=p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3}\right) p\left(x_{4} \mid x_{1}, x_{2}\right) p\left(x_{5} \mid x_{2}, x_{3}\right) p\left(x_{6} \mid x_{4}\right) p\left(x_{7} \mid x_{4}, x_{5}\right) p\left(x_{8} \mid x_{5}\right)$
(b) Yes, Indeterminate, Yes, Indeterminate
(c)

2. Markov chains and graphical models
(a) Suppose p respect G_{D}. Then

$$
p\left(x_{1}, \ldots, x_{n}\right)=p\left(x_{1}\right) \prod_{i=1}^{n-1} p\left(x_{i+1} \mid x_{i}\right)=\prod_{i=1}^{n-1} \varphi_{i}\left(x_{i}, x_{i+1}\right)
$$

if we define $\varphi_{1}\left(x_{1}, x_{2}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right)$ and $\varphi_{i}\left(x_{i}, x_{i+1}\right)=p\left(x_{i+1} \mid x_{i}\right)$ for $i=$ $2, \ldots, n-1$. The functions $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n-1}$ are nonnegative, and the maximal cliques of G_{U} are $\{1,2\},\{2,3\}, \ldots,\{n-1, n\}$. Therefore, p respects G_{U}.
(b) Suppose p respects G_{U}. Then

$$
p\left(x_{1}, \ldots, x_{n}\right)=p\left(x_{1}\right) \prod_{i=2}^{n} p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)=p\left(x_{1}\right) \prod_{i=2}^{n} p\left(x_{i} \mid x_{i-1}\right)=\prod_{i=1}^{n} p\left(x_{i} \mid x_{\mathrm{pa}(i)}\right)
$$

since

- $X_{i} \perp X_{1}, \ldots, X_{i-2} \mid X_{i-1}$ by the separation criterion for undirected graphical models, because all paths from i to $\{1, \ldots, i-2\}$ pass through $i-1$, and
- $\mathrm{pa}(1)=\varnothing$ and $\mathrm{pa}(i)=\{i-1\}$ for $i=2, \ldots, n$.

Therefore, p respects G_{D}.
3. Modeling the data collection process

As usual, the appropriate posterior on θ to use is $p\left(\theta \mid y_{\mathrm{obs}}, I\right)$, since this is the posterior obtained by conditioning on all of the observations. Since $I_{j}=1$ for all $j=1, \ldots, n$, obs $=\{1, \ldots, n\}$. Further, the distribution of $I \mid y, \theta$ does not depend on θ (because $\left.p(I \mid y, \theta)=\prod_{j=1}^{n} \phi_{y_{j}}^{I_{j}}\left(1-\phi_{y_{j}}\right)^{1-I_{j}} \propto_{\theta} 1\right)$. Consequently, the data collection process plays no role:

$$
\begin{aligned}
p\left(\theta \mid y_{\text {obs }}, I\right) & =p(\theta \mid y, I) \propto p(y, I, \theta)=p(\theta) p(y \mid \theta) p(I \mid y, \theta) \\
& \propto_{\theta} p(\theta) p(y \mid \theta) \propto_{\theta} \theta^{a-1}(1-\theta)^{b-1} \prod_{j=1}^{n} \theta^{y_{j}}(1-\theta)^{1-y_{j}} \\
& \propto_{\theta} \operatorname{Beta}\left(\theta \mid a+\sum y_{j}, b+n-\sum y_{j}\right) .
\end{aligned}
$$

4. Viterbi algorithm

Define $\nu_{n}\left(z_{n}\right)=1$ for each $z_{n}=1, \ldots, m$, and denote $p\left(z_{1}\right)=p\left(z_{1} \mid z_{0}\right)$ for notational simplicity. Then

$$
\begin{aligned}
\max _{z_{1: n}} p\left(x_{1: n}, z_{1: n}\right) & =\max _{z_{1: n}} \prod_{t=1}^{n} p\left(z_{t} \mid z_{t-1}\right) p\left(x_{t} \mid z_{t}\right) \\
& \vdots \\
& =\max _{z_{1: j}}\left(\prod_{t=1}^{j} p\left(z_{t} \mid z_{t-1}\right) p\left(x_{t} \mid z_{t}\right)\right) \underbrace{\max _{z_{j+1}} p\left(z_{j+1} \mid z_{j}\right) p\left(x_{j+1} \mid z_{j+1}\right) \nu_{j+1}\left(z_{j+1}\right)}_{\text {call this } \nu_{j}\left(z_{j}\right)} \\
& \vdots \\
& =\max _{z_{1}} p\left(z_{1}\right) p\left(x_{1} \mid z_{1}\right) \nu_{1}\left(z_{1}\right) .
\end{aligned}
$$

Therefore, we have the following algorithm:
(1) Set $\nu_{n}\left(z_{n}\right)=1$ for $z_{n}=1, \ldots, m$.
(2) For each $j=n-1, n-2, \ldots, 1$, for each $z_{j}=1, \ldots, m$, compute

$$
\nu_{j}\left(z_{j}\right)=\max _{z_{j+1}} p\left(z_{j+1} \mid z_{j}\right) p\left(x_{j+1} \mid z_{j+1}\right) \nu_{j+1}\left(z_{j+1}\right)
$$

(3) Return $\max _{z_{1}} p\left(z_{1}\right) p\left(x_{1} \mid z_{1}\right) \nu_{1}\left(z_{1}\right)$.
(Note: If you showed that your algorithm takes $n m^{2}$ time, then that is great, but this was not required - as long as your algorithm actually does take $n m^{2}$ time, then that is sufficient.)

