STA 360/601: Bayesian and Modern Statistics
 Bayesian hypothesis testing \& Bayes factors

Jeff Miller

Department of Statistical Science, Duke University

Bayesian hypothesis testing

- Problem: You have two or more competing hypotheses $\mathrm{H}_{0}, \mathrm{H}_{1}, \ldots$, and want to consider the evidence in favor of each, based on some data.
- Examples:

1. Does drug X reduce the risk of stroke $\left(H_{1}\right)$ or not $\left(H_{0}\right)$?
2. Does Patient X have disease $Y\left(H_{1}\right)$ or not $\left(\mathrm{H}_{0}\right)$?
3. Does the Higgs boson exist $\left(\mathrm{H}_{1}\right)$ or not $\left(\mathrm{H}_{0}\right)$?
4. You are Gregor Mendel. Which of several models of trait inheritance $\mathrm{H}_{0}, \mathrm{H}_{1}, \ldots, \mathrm{H}_{m}$ is correct?
5. Data on 5000 subjects was collected over 60 years. Which variables are predictive of heart disease risk? (Each subset of variables is a competing hypothesis.)

A simple example

- Data: $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \mathrm{~N}\left(\mu, \sigma^{2}\right)$, where σ is known.
- Hypotheses: $\mathrm{H}_{0}: \mu=0$ versus $\mathrm{H}_{1}: \mu \neq 0$
- Same setup as a classical frequentist hypothesis test.
- Let's say the data is

$$
x=\left(x_{1}, \ldots, x_{8}\right)=(0.8,-0.4,0.1,0.0,1.2,0.8,1.0,0.9) .
$$

What is your intuitive judgment of the plausibility of H_{0} and H_{1} ?

- What would be a natural Bayesian approach? Any ideas?

A Bayesian approach

- Put a prior on the hypotheses, say, $p\left(\mathrm{H}_{0}\right)=\pi$ and $p\left(\mathrm{H}_{1}\right)=1-\pi$.
- Under $\mathrm{H}_{0}: \mu=0$, the data is simply $\mathrm{N}\left(0, \sigma^{2}\right)$.
- Under $\mathrm{H}_{1}: \mu \neq 0$, we don't know μ, so let's put a prior on it: $\mu \sim \mathrm{N}\left(0, \sigma_{1}^{2}\right)$. (Technically, perhaps we should exclude the point $\mu=0$ from the prior, but it makes no difference since this has probability zero anyways.)
- Now, we want to know the posterior probabilities $p\left(\mathrm{H}_{0} \mid x\right)$ and $p\left(\mathrm{H}_{1} \mid x\right)$ where $x=\left(x_{1}, \ldots, x_{n}\right)$.
- By Bayes' rule, $p\left(\mathrm{H}_{k} \mid x\right) \propto p\left(x \mid \mathrm{H}_{k}\right) p\left(\mathrm{H}_{k}\right)$. So, we need $p\left(x \mid \mathrm{H}_{0}\right)$ and $p\left(x \mid \mathrm{H}_{1}\right)$ (the marginal likelihoods).

Computing the marginal likelihoods

- H_{0} is easy: $p\left(x \mid \mathrm{H}_{0}\right)=\prod_{i=1}^{n} \mathrm{~N}\left(x_{i} \mid 0, \sigma^{2}\right)$
- ... and H_{1} is not too hard:

$$
\begin{aligned}
& p\left(x \mid \mathrm{H}_{1}\right)=\int p\left(x \mid \mu, \mathrm{H}_{1}\right) p\left(\mu \mid \mathrm{H}_{1}\right) d \mu \\
&=\int\left(\prod_{i=1}^{n} \mathrm{~N}\left(x_{i} \mid \mu, \sigma^{2}\right)\right) \mathrm{N}\left(\mu \mid 0, \sigma_{1}^{2}\right) d \mu \\
&=(\text { typical Gaussian integral. . complete the square, etc.) } \\
&=\frac{s}{\sigma_{1}} \exp \left(\frac{1}{2} m^{2} / s^{2}\right) \prod_{i=1}^{n} \mathrm{~N}\left(x_{i} \mid 0, \sigma^{2}\right) \\
& \text { where } 1 / s^{2}=n / \sigma^{2}+1 / \sigma_{1}^{2} \text { and } m=\left(s^{2} / \sigma^{2}\right) \sum_{i} x_{i} .
\end{aligned}
$$

Outcome for our simple example

- Our data is

$$
x=\left(x_{1}, \ldots, x_{8}\right)=(0.8,-0.4,0.1,0.0,1.2,0.8,1.0,0.9)
$$

- Let's suppose $p\left(\mathrm{H}_{0}\right)=p\left(\mathrm{H}_{1}\right)=1 / 2, \sigma=1$, and $\sigma_{1}=1$.
- Plugging the marginal likelihood and prior into $p\left(\mathrm{H}_{k} \mid x\right) \propto p\left(x \mid \mathrm{H}_{k}\right) p\left(\mathrm{H}_{k}\right)$ we get

$$
p\left(\mathrm{H}_{0} \mid x\right)=0.506 \text { and } p\left(\mathrm{H}_{1} \mid x\right)=0.494
$$

- So, basically, we have no idea.

Decisions, decisions, ...

- Suppose we have to choose one of the hypotheses.
- Suppose that when we choose d and the truth is h, we incur a loss $L(h, d)$.
- Since we have put a prior on h, we may as well consider it as a random variable, H.
- The posterior expected loss associated with choosing d given data x is

$$
\mathrm{E}(L(H, d) \mid x)=\sum_{h} L(h, d) p(H=h \mid x)
$$

where the sum is over all hypotheses $h=\mathrm{H}_{0}, \mathrm{H}_{1}, \ldots$.

Example: 0-1 loss

- 0-1 loss is the loss function $L(h, d)=\mathbb{1}(h \neq d)$, i.e., you lose 1 if wrong, 0 if right.
- The posterior expected loss in this case is

$$
\begin{aligned}
\mathrm{E}(L(H, d) \mid x) & =\sum_{h} L(h, d) p(H=h \mid x) \\
& =\sum_{h} \mathbb{1}(h \neq d) p(H=h \mid x) \\
& =1-p(H=d \mid x)
\end{aligned}
$$

- So, to minimize our posterior expected loss, the optimal decision d^{*} (under 0-1 loss) is the hypothesis with highest posterior probability $p(H=d \mid x)$.
- In the case of two hypotheses, H_{0} and H_{1},

$$
d^{*}= \begin{cases}\mathrm{H}_{0} & \text { if } p\left(\mathrm{H}_{0} \mid x\right)>1 / 2 \\ \mathrm{H}_{1} & \text { if } p\left(\mathrm{H}_{1} \mid x\right)>1 / 2 \\ \text { either } & \text { otherwise }\end{cases}
$$

A few remarks

- If $L(h, d)$ is not $0-1$ loss, the optimal decision will not necessarily be the hypothesis with highest posterior probability.
- The Bayesian hypothesis testing approach described above is very different than frequentist hypothesis testing.
- For frequentist hypothesis testing of H_{0} versus H_{1} :
- The usual approach is to minimize Type II errors (choosing H_{0} when H_{1} is true) subject to an upper bound on the probability of Type I error (choosing H_{1} when H_{0} is true).
- There is an asymmetry in the frequentist approach: H_{0} is a null hypothesis, i.e., a default position (the reigning champion), and H_{1} is an alternative hypothesis (the challenger).
- Metaphor: It is like a criminal trial, in which the defendant is presumed innocent $\left(\mathrm{H}_{0}\right)$ unless proven guilty beyond all reasonable doubt $\left(\mathrm{H}_{1}\right)$.
- The Bayesian approach does not have this asymmetry, allowing for a more balanced approach to minimize overall loss. However, as always, the outcome depends on the prior.

Bayes factors

- Bayes factors provide a way to be a little less dependent on the prior.
- The Bayes factor in favor of H_{1} over H_{0}, for data $x=\left(x_{1}, \ldots, x_{n}\right)$, is

$$
B_{10}=\frac{p\left(x \mid \mathrm{H}_{1}\right)}{p\left(x \mid \mathrm{H}_{0}\right)}
$$

- Note that this doesn't depend on $p\left(\mathrm{H}_{0}\right)$ or $p\left(\mathrm{H}_{1}\right) \ldots$
- ... but it does still depend on the priors we choose for parameters required to define the distribution of x given H_{0} or H_{1} (e.g., μ in our simple example).
- When $B_{10}>1$, this is evidence in favor of H_{1}, when $B_{10}<1$, it is evidence in favor of H_{0}.
- Some have suggested scales for interpreting Bayes factors, e.g., $10-30$ is "strong evidence", but this is purely heuristic and not universally accepted.

Some properties of Bayes factors

- In the case of two competing hypotheses, the Bayes factor is related to the posterior probability as follows:

$$
\begin{aligned}
p\left(\mathrm{H}_{0} \mid x\right) & =\frac{p\left(x \mid \mathrm{H}_{0}\right) p\left(\mathrm{H}_{0}\right)}{p\left(x \mid \mathrm{H}_{0}\right) p\left(\mathrm{H}_{0}\right)+p\left(x \mid \mathrm{H}_{1}\right) p\left(\mathrm{H}_{1}\right)} \\
& =\frac{1}{1+\frac{p\left(x \mid \mathrm{H}_{1}\right) p\left(\mathrm{H}_{1}\right)}{p\left(x \mid \mathrm{H}_{0}\right) p\left(\mathrm{H}_{0}\right)}} \\
& =\frac{1}{1+\text { Bayes factor } \times \text { Prior odds }}
\end{aligned}
$$

- Also, "Posterior odds $=$ Bayes factor \times Prior odds", i.e.,

$$
\frac{p\left(\mathrm{H}_{1} \mid x\right)}{p\left(\mathrm{H}_{0} \mid x\right)}=B_{10} \frac{p\left(\mathrm{H}_{1}\right)}{p\left(\mathrm{H}_{0}\right)}
$$

Back to our example

- Data: $x=(0.8,-0.4,0.1,0.0,1.2,0.8,1.0,0.9)$.
- $p\left(\mathrm{H}_{0}\right)=p\left(\mathrm{H}_{1}\right)=1 / 2, \sigma=1$, and $\sigma_{1}=1$.
- Posterior probabilities:

$$
p\left(\mathrm{H}_{0} \mid x\right)=0.506 \text { and } p\left(\mathrm{H}_{1} \mid x\right)=0.494
$$

- Bayes factors:

$$
\begin{aligned}
& B_{10}=\frac{p\left(x \mid \mathrm{H}_{1}\right)}{p\left(x \mid \mathrm{H}_{0}\right)}=0.98 \\
& B_{01}=\frac{p\left(x \mid \mathrm{H}_{0}\right)}{p\left(x \mid \mathrm{H}_{1}\right)}=1.02
\end{aligned}
$$

Sensitivity to the prior

- Bayes factors can depend strongly on the prior on parameters (e.g., μ in our example).
- In our example, the prior standard deviation σ_{1} of μ given H_{1} has a significant effect on the Bayes factor:

- In particular, $B_{10} \rightarrow 0$ as $\sigma_{1} \rightarrow \infty$.
- Improper priors CANNOT be used here.

Lindley's "paradox"

- This sensitivity is the issue underlying Lindley's "paradox" (which is, as usual, not actually a paradox).
- The original "paradox" is that it is possible for very reasonable frequentist and Bayesian approaches to give contradictory answers about which hypothesis is favored by the evidence.
- e.g., frequentist rejects H_{0} while Bayesian finds strong evidence for H_{0}.
- This underlying issue also shows up in Bayesian models over variable-dimension parameter spaces, e.g., mixture models.

Non-monotonicity wrt sample size

- Another thing to be careful of is that Bayes factors can be non-monotone in the sample size n.
- Example: Same as before, but with $\sigma_{1}=5$ and $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \mathrm{~N}(0.1,1)$. Plot is averaged over many samples:

- H_{1} is true, but if we only had 100 samples, we would only see B_{10} decreasing down to ≈ 0.05, seeming to suggest that it is converging to 0 , and we might mistakenly be convinced of H_{0}.

Remarks

- The Bayesian approach allows for principled (but subjective) decision-theoretic hypothesis testing.
- Also, the Bayesian approach extends naturally to more complicated models.
- The prior really matters here - only trust the results to the extent that you trust the prior.
- It's a good idea to do a sensitivity analysis: vary the prior and see how the result changes.
- Careful: Bayes factors can be non-monotone in n.

Homework exercise

- You have data from an experiment collecting cell counts for a control group and treatment group.
- Control group:

$$
x_{1: n}=(204,215,182,225,207,188,205,227,190,211,196,203)
$$

- Treatment group:

$$
y_{1: m}=(211,233,244,241,195,252,238,249,220,213)
$$

- The counts are assumed to be Poisson distributed.
- There are two hypotheses, H_{0} : Poisson with same mean, vs. H_{1} : Poisson with different means.

Homework exercise (continued)

- Model this as follows.
- $p\left(\mathrm{H}_{0}\right)=3 / 4, p\left(\mathrm{H}_{1}\right)=1 / 4$.
- Under $\mathrm{H}_{0}: X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m} \sim \operatorname{Poisson}(\lambda)$ i.i.d. given λ, and $\lambda \sim \operatorname{Gamma}(a, b)$ where $a=4=$ shape and $b=0.02=$ rate (i.e., λ has pdf $\left.b^{a} \lambda^{a-1} \exp (-b \lambda) / \Gamma(a)\right)$.
- Under $\mathrm{H}_{1}: X_{1}, \ldots, X_{n} \sim \operatorname{Poisson}\left(\lambda_{c}\right)$ i.i.d. given λ_{c}, and $Y_{1}, \ldots, Y_{m} \sim \operatorname{Poisson}\left(\lambda_{t}\right)$ i.i.d. given λ_{t}, and $\lambda_{c}, \lambda_{t} \sim \operatorname{Gamma}(a, b)$ independently, with the same a, b as above.
- Compute $p\left(\mathrm{H}_{k} \mid x, y\right)$ for $k=0,1$. Compute B_{10}.
- Compute the prior odds and posterior odds. Interpret your results.
- Does the prior on the λ 's appear to be reasonable (judging by the data)? Why or why not? Try different values of a and b and interpret what you see.

Further reading

- Kass \& Raftery, Bayes factors, JASA, 1995.

