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Bayesian hypothesis testing

I Problem: You have two or more competing hypotheses
H0,H1, . . . , and want to consider the evidence in favor of
each, based on some data.

I Examples:

1. Does drug X reduce the risk of stroke (H1) or not (H0)?
2. Does Patient X have disease Y (H1) or not (H0)?
3. Does the Higgs boson exist (H1) or not (H0)?
4. You are Gregor Mendel. Which of several models of trait

inheritance H0,H1, . . . ,Hm is correct?
5. Data on 5000 subjects was collected over 60 years. Which

variables are predictive of heart disease risk? (Each subset of
variables is a competing hypothesis.)



A simple example

I Data: X1, . . . ,Xn
iid∼ N(µ, σ2), where σ is known.

I Hypotheses: H0 : µ = 0 versus H1 : µ 6= 0

I Same setup as a classical frequentist hypothesis test.

I Let’s say the data is

x = (x1, . . . , x8) = (0.8,−0.4, 0.1, 0.0, 1.2, 0.8, 1.0, 0.9).

What is your intuitive judgment of the plausibility of H0 and
H1?

I What would be a natural Bayesian approach? Any ideas?



A Bayesian approach

I Put a prior on the hypotheses, say, p(H0) = π and
p(H1) = 1− π.

I Under H0 : µ = 0, the data is simply N(0, σ2).

I Under H1 : µ 6= 0, we don’t know µ, so let’s put a prior on it:
µ ∼ N(0, σ21). (Technically, perhaps we should exclude the
point µ = 0 from the prior, but it makes no difference since
this has probability zero anyways.)

I Now, we want to know the posterior probabilities p(H0|x) and
p(H1|x) where x = (x1, . . . , xn).

I By Bayes’ rule, p(Hk |x) ∝ p(x |Hk)p(Hk). So, we need
p(x |H0) and p(x |H1) (the marginal likelihoods).



Computing the marginal likelihoods

I H0 is easy: p(x |H0) =
∏n

i=1 N(xi | 0, σ2)

I . . . and H1 is not too hard:

p(x |H1) =

∫
p(x |µ,H1)p(µ|H1)dµ

=

∫ ( n∏
i=1

N(xi | µ, σ2)
)

N(µ | 0, σ21)dµ

= (typical Gaussian integral. . . complete the square, etc.)

=
s

σ1
exp

(
1
2m

2/s2
) n∏
i=1

N(xi | 0, σ2),

where 1/s2 = n/σ2 + 1/σ21 and m = (s2/σ2)
∑

i xi .



Outcome for our simple example

I Our data is

x = (x1, . . . , x8) = (0.8,−0.4, 0.1, 0.0, 1.2, 0.8, 1.0, 0.9).

I Let’s suppose p(H0) = p(H1) = 1/2, σ = 1, and σ1 = 1.

I Plugging the marginal likelihood and prior into
p(Hk |x) ∝ p(x |Hk)p(Hk) we get

p(H0|x) = 0.506 and p(H1|x) = 0.494.

I So, basically, we have no idea.



Decisions, decisions, . . .

I Suppose we have to choose one of the hypotheses.

I Suppose that when we choose d and the truth is h, we incur a
loss L(h, d).

I Since we have put a prior on h, we may as well consider it as
a random variable, H.

I The posterior expected loss associated with choosing d given
data x is

E
(
L(H, d) | x

)
=
∑
h

L(h, d)p(H = h | x)

where the sum is over all hypotheses h = H0,H1, . . . .



Example: 0 - 1 loss
I 0 - 1 loss is the loss function L(h, d) = 1(h 6= d), i.e., you lose

1 if wrong, 0 if right.
I The posterior expected loss in this case is

E
(
L(H, d) | x

)
=
∑
h

L(h, d)p(H = h | x)

=
∑
h

1(h 6= d)p(H = h | x)

= 1− p(H = d | x).

I So, to minimize our posterior expected loss, the optimal
decision d∗ (under 0 - 1 loss) is the hypothesis with highest
posterior probability p(H = d |x).

I In the case of two hypotheses, H0 and H1,

d∗ =


H0 if p(H0|x) > 1/2
H1 if p(H1|x) > 1/2
either otherwise.



A few remarks

I If L(h, d) is not 0 - 1 loss, the optimal decision will not
necessarily be the hypothesis with highest posterior probability.

I The Bayesian hypothesis testing approach described above is
very different than frequentist hypothesis testing.

I For frequentist hypothesis testing of H0 versus H1:
I The usual approach is to minimize Type II errors (choosing H0

when H1 is true) subject to an upper bound on the probability
of Type I error (choosing H1 when H0 is true).

I There is an asymmetry in the frequentist approach: H0 is a null
hypothesis, i.e., a default position (the reigning champion),
and H1 is an alternative hypothesis (the challenger).

I Metaphor: It is like a criminal trial, in which the defendant is
presumed innocent (H0) unless proven guilty beyond all
reasonable doubt (H1).

I The Bayesian approach does not have this asymmetry,
allowing for a more balanced approach to minimize overall
loss. However, as always, the outcome depends on the prior.



Bayes factors

I Bayes factors provide a way to be a little less dependent on
the prior.

I The Bayes factor in favor of H1 over H0, for data
x = (x1, . . . , xn), is

B10 =
p(x |H1)

p(x |H0)
.

I Note that this doesn’t depend on p(H0) or p(H1) . . .

I . . . but it does still depend on the priors we choose for
parameters required to define the distribution of x given H0 or
H1 (e.g., µ in our simple example).

I When B10 > 1, this is evidence in favor of H1, when B10 < 1,
it is evidence in favor of H0.

I Some have suggested scales for interpreting Bayes factors,
e.g., 10 – 30 is “strong evidence”, but this is purely heuristic
and not universally accepted.



Some properties of Bayes factors

I In the case of two competing hypotheses, the Bayes factor is
related to the posterior probability as follows:

p(H0|x) =
p(x |H0)p(H0)

p(x |H0)p(H0) + p(x |H1)p(H1)

=
1

1 + p(x |H1)p(H1)
p(x |H0)p(H0)

=
1

1 + Bayes factor × Prior odds

I Also, “Posterior odds = Bayes factor × Prior odds”, i.e.,

p(H1|x)

p(H0|x)
= B10

p(H1)

p(H0)
.



Back to our example

I Data: x = (0.8,−0.4, 0.1, 0.0, 1.2, 0.8, 1.0, 0.9).

I p(H0) = p(H1) = 1/2, σ = 1, and σ1 = 1.

I Posterior probabilities:

p(H0|x) = 0.506 and p(H1|x) = 0.494.

I Bayes factors:

B10 =
p(x |H1)

p(x |H0)
= 0.98

B01 =
p(x |H0)

p(x |H1)
= 1.02



Sensitivity to the prior

I Bayes factors can depend strongly on the prior on parameters
(e.g., µ in our example).

I In our example, the prior standard deviation σ1 of µ given H1

has a significant effect on the Bayes factor:

I In particular, B10 → 0 as σ1 →∞.

I Improper priors CANNOT be used here.



Lindley’s “paradox”

I This sensitivity is the issue underlying Lindley’s “paradox”
(which is, as usual, not actually a paradox).

I The original “paradox” is that it is possible for very reasonable
frequentist and Bayesian approaches to give contradictory
answers about which hypothesis is favored by the evidence.

I e.g., frequentist rejects H0 while Bayesian finds strong
evidence for H0.

I This underlying issue also shows up in Bayesian models over
variable-dimension parameter spaces, e.g., mixture models.



Non-monotonicity wrt sample size

I Another thing to be careful of is that Bayes factors can be
non-monotone in the sample size n.

I Example: Same as before, but with σ1 = 5 and

X1, . . . ,Xn
iid∼ N(0.1, 1). Plot is averaged over many samples:

I H1 is true, but if we only had 100 samples, we would only see
B10 decreasing down to ≈ 0.05, seeming to suggest that it is
converging to 0, and we might mistakenly be convinced of H0.



Remarks

I The Bayesian approach allows for principled (but subjective)
decision-theoretic hypothesis testing.

I Also, the Bayesian approach extends naturally to more
complicated models.

I The prior really matters here — only trust the results to the
extent that you trust the prior.

I It’s a good idea to do a sensitivity analysis: vary the prior and
see how the result changes.

I Careful: Bayes factors can be non-monotone in n.



Homework exercise

I You have data from an experiment collecting cell counts for a
control group and treatment group.

I Control group:

x1:n = (204, 215, 182, 225, 207, 188, 205, 227, 190, 211, 196, 203)

I Treatment group:

y1:m = (211, 233, 244, 241, 195, 252, 238, 249, 220, 213)

I The counts are assumed to be Poisson distributed.

I There are two hypotheses, H0: Poisson with same mean, vs.
H1: Poisson with different means.



Homework exercise (continued)

I Model this as follows.

I p(H0) = 3/4, p(H1) = 1/4.

I Under H0: X1, . . . ,Xn,Y1, . . . ,Ym ∼ Poisson(λ) i.i.d. given λ,
and λ ∼ Gamma(a, b) where a = 4 = shape and b = 0.02 =
rate (i.e., λ has pdf baλa−1 exp(−bλ)/Γ(a)).

I Under H1: X1, . . . ,Xn ∼ Poisson(λc) i.i.d. given λc , and
Y1, . . . ,Ym ∼ Poisson(λt) i.i.d. given λt , and
λc , λt ∼ Gamma(a, b) independently, with the same a, b as
above.

I Compute p(Hk |x , y) for k = 0, 1. Compute B10.

I Compute the prior odds and posterior odds. Interpret your
results.

I Does the prior on the λ’s appear to be reasonable (judging by
the data)? Why or why not? Try different values of a and b
and interpret what you see.



Further reading

I Kass & Raftery, Bayes factors, JASA, 1995.


