Chapter 3: Exponential Families and Conjugate Priors
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1 Introduction

Exponential families are a unifying generalization of many basic probabilistic models, and
they possess many special properties. In fact, we have already encountered several exponen-
tial families—Bernoulli, Beta, Exponential, and Gamma—and there are many more. From
the Bayesian perspective, a key feature of exponential families is that often the posterior
has a nice form. While exponential families are useful in their own right, they can also be
combined to construct more complex models in a way that is amenable to inference with
Markov chain Monte Carlo, as we will see later.

Most of the familiar distributions are exponential families, such as Bernoulli, binomial,
Poisson, exponential, beta, gamma, inverse gamma, normal (Gaussian), multivariate normal,
log-normal, inverse Gaussian, Dirichlet, and others. On the other hand, the Cauchy distri-
bution and Student’s t-distribution are familiar examples that are not exponential families.

The concept of exponential families was developed by E. J. G. Pitman (1897-1993),
Bernard Koopman (1900-1981), and Georges Darmois (1888-1960).
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2 One-parameter exponential families

A one-parameter exponential family is a collection of probability distributions indexed
by a parameter § € O, such that the p.d.f.s/p.m.f.s are of the form

p(]0) = exp (p(0)t(z) — K(0)) h(x) (2.1)
for some functions ¢(0),t(x),x(0), and h(x). Note that k() acts a log-normalization

constant—for example, in the continuous case, in order to have f p(z|f)dx = 1, it must
be that

#(0) = log / exp (0(0)t(2)) h(z) da.
Terminology: t(z) is called the sufficient statistic function.

Example 2.1 (Exponential). The Exp(#) distributions form an exponential family, since
the p.d.f.s are

p(x|0) = Exp(z]0) = e "1 (2 > 0) = exp(—bz + log )1 (x > 0)
for 0 € © = (0,00), and we can put this in the form of Equation 2.1 by choosing

t(z) = —x

p(0) =

k(0) = —log0
h(z) =1(z > 0)

Example 2.2 (Poisson). The Poisson(f) distributions form an exponential family, since the
p-m.f.s are

xT

p(z|0) = Poisson(z|0) = exp(—@)%]l(m € S) =exp(zlogh — 0)1(z € S)/x!

for 0 € © = (0,00), where S = {0, 1,2,...}, and we can choose

t(r)=ux

¢(0) =logt

k(0) =0

h(z) =1(x € S)/x!



2.1 Natural form

An exponential family is in natural form (a.k.a. canonical form) if p(0) = 6. In this
case, 0 is called the natural parameter.

Example 2.3 (Exponential). Choosing t(x) = —z and ¢(#) = 6 as above puts the family
Exp(#) in natural form. If we had instead chosen t(z) = z and p(f) = —0, this would not
be in natural form.

Example 2.4 (Poisson). When written as above, the Poisson(#) family is not in natural
form. To put it in natural form, we can reparametrize by letting n = log§. Then

p(z|n) = exp(xn — el (x € S)/x!,

for n € R, gives us the same collection of probability distributions, and is in natural form,
with natural parameter 7.

3 Conjugate priors

Given a family {p(z|f) : 6 € ©} of generating distributions, a collection of priors p,(6)
indexed by a € H is called a conjugate prior famaily if for any o and any data, the
resulting posterior equals p./(#) for some o € H.

Example 3.1 (Beta-Bernoulli). The collection of Beta(f|a, b) distributions, with a,b > 0, is
conjugate to Bernoulli(#), since the posterior is p(0|z1.,) = Beta(0 | a+ >z, b+n—> x;).

Example 3.2 (Gamma-Exponential). The collection of Gamma(#|a,b) distributions, with
a,b > 0, is conjugate to Exp(#), since the posterior is p(f|z1.,) = Gamma(f | a+n, b+>_ x;).

3.1 Existence and uniqueness?

Technically, for any generating family, a conjugate family always exists—mnamely, the family
of all distributions on . However, usually when people discuss conjugate priors they mean
conjugate families which are computationally-tractable or have a closed-form.

It is also important to recognize that conjugate priors are usually not unique, so it doesn’t
make sense to talk about “the conjugate prior” for a given generating family—instead it is
more accurate to discuss “a conjugate prior”. For instance, suppose {p,(0) : « € H} is a
conjugate family, and ¢(f) is any nonnegative function. If 0 < z(a) < oo for all « € H,
where z(a) = [ pa(0)g(0)do, then

{Pa(0)9(0)/2() : 0 € H}

is also a conjugate family. A useful special case is to take g(6) = 1(0 € A) for some set A.



3.2 Conjugate priors for exponential families
e Under general conditions, any exponential family has a conjugate prior, with p.d.f.
Proto (0) o exp (notop(0) — nor(9))1(6 € O)
for the values of ng > 0 and ¢y, € R for which this is normalizable.

e However, the normalization constant is not always computationally tractable. Often,
when people speak of conjugate priors, it is implied that they mean computationally
tractable ones.

e The resulting posterior is p,s (#) where n' = ng +n and

n

y _ Twoto + Do tw)  ng n 1

e 0+ —
ng+n ng+n no—l—nn,l
1=

t(x;).

Note that this is a convex combination of ¢y and & 3 ¢(x;).

e This gives us an insight into the interpretation of the prior parameters ¢y and ngy that
suggests how one might choose them: ¢y represents a prior “guess” at the expected
value of t(x), and ng represents the prior “number of samples” (roughly speaking, how
certain we are about tp).

4 Multi-parameter exponential families

The generalization to more than one parameter is straightforward. An exponential family
is a collection of distributions indexed by 6 € ©, with p.d.f.s/p.m.f.s of the form

p(x]0) = exp (p(0)"t(x) — #(6)) h(2) (4.1)
for some vector-valued functions
p1(0) ti(x)
p(0)=| and  t(z)=|
o (0) t(z)

and some real-valued functions k() and h(z). Here, vT denotes the transpose of v. As
before, k(#) is the log-normalization constant, and the content above regarding natural form
and conjugate priors applies also to the multi-parameter case.

Example 4.1 (Beta). The Beta(a, b) distributions, with a,b > 0, are an exponential family:

1
B(a,b)

= exp <(a —1)logx + (b —1)log(1 — x) — log B(a, b))]l(O <z<l)

Beta(z|a,b) = M1 —2)"10 <z <1)

which can be put in the form of Equation 4.1 by choosing, for example, § = (a — 1,0 — 1)7,
0(0) =0, t(x) = (logz,log(1 — x))", and h(z) =1(0 <z < 1).
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Example 4.2 (Gamma). The Gamma(a, b) distributions, with a,b > 0, are an exponential
family:

['(a)
:exp<—bx—|— (a —1)logz + log

Gamma(z|a, b) = 7% exp(—bz)1(z > 0)

a

[(a)

)]l(x > 0),

and we can choose, for example, = (a,b)?, p(0) = (=b,a — 1), t(x) = (x,logz)’, and
h(z) = 1(z > 0).

5 Exercises

1. Show that the Bernoulli(#) distributions form a one-parameter exponential family.

2. If Xy, X, S Bernoulli(¢), then the distribution of the sum Z = """ | X; has the
Binomial(n, #) distribution. Show that with n fixed, the Binomial(n, #) distributions
form a one-parameter exponential family.

3. Consider the Gamma(a, b) distributions with a fixed. Find a conjugate prior for b.

4. Show that for a certain choice of ¢(z) and h(x), the Gamma(a, b) distributions are in
natural form with natural parameter § = (a,b)".

5. Section 3.2 presented the general form of the posterior for a one-parameter exponential
family with a conjugate prior. Derive this.

6. Suppose {p,(#) : « € H} is a conjugate family for some generator family {p(x|f): 0 €
O}, let g(#) be a nonnegative function, and define z(a) = [ p,(0)g(#)db. Show that if
0 < z(a) < oo for all & € H, then

{Pa(0)9(0)/2(c) 1 a € H}
is also a conjugate family.

7. Suppose {p(0) : a € H} is a conjugate family for some generator family. Show that
the following is also a conjugate family for the same generator family:

k
{Zmpai(ﬁ) : al,...,akEH,WEAk}
i=1
where
k
Ak:{ﬂ'ERkIﬂ,...,WkZO,Zﬂ'Z'Zl}.
i=1

In other words, finite mixtures of conjugate priors are conjugate priors. This enables
one to construct very flexible classes of conjugate priors.

5



Supplementary material

e Hoff (2009), Section 3.3.
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