
Chapter 4: Univariate Normal Model
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1 The normal distribution

The normal distribution N (µ, σ2) (sometimes called the Gaussian distribution) with mean
µ ∈ R and variance σ2 > 0 (standard deviation σ =

√
σ2) has p.d.f.

N (x | µ, σ2) =
1√

2πσ2
exp

(
− 1

2σ2
(x− µ)2

)
for x ∈ R. In Bayesian calculations, it is often more convenient to write the p.d.f. in terms of
the precision, or inverse variance, λ = 1/σ2 rather than the variance. In this parametrization,
the p.d.f. is

N (x | µ, λ−1) =

√
λ

2π
exp

(
− 1

2
λ(x− µ)2

)
since σ2 = 1/λ = λ−1.

The normal distribution has certain special properties that give it a unique position
in probability and statistics. Foremost among these is the central limit theorem (CLT),
which states that the sum of a large number of independent random variables tends to be
approximately normally distributed. The CLT explains why real-world data so often appears
approximately normal, and from a modeling perspective, it helps us to understand when a
normal model would be appropriate.
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Figure 1: Normal distribution with various choices of µ and σ.

Many real-world quantities tend to be normally distributed—for instance, human heights
and other body measurements, cumulative hydrologic measures such as annual rainfall or
monthly river discharge, errors in astronomical or physical observations, and diffusion of a
substance in a liquid or gas. Some things are products of many independent variables (rather
than sums), and in such cases the logarithm will be approximately normal since it is a sum
of many independent variables—this is often the case for economic quantities such as stock
market indices, due to the effect of compound interest.

Basic properties of N (µ, σ2)

• Mean, median, and mode are all the same (µ)

• Symmetric about the mean

• 95% probability within ±1.96σ of the mean (roughly, ±2σ)

• If X ∼ N (µ, σ2) and Y ∼ N (m, s2) independently, then

aX + bY ∼ N (aµ+ bm, a2σ2 + b2s2). (1.1)

• Careful: rnorm, dnorm, pnorm, and qnorm in R take the mean and standard deviation
σ as arguments (not mean and variance σ2). For example, rnorm(n,m,s) generates n
normal random variables from N (m, s2).

The normal distribution is also special due to its analytic tractability—inference for com-
plex models constructed by combining normal distributions can often be done analytically.
This makes it especially convenient to work with from a computational standpoint.

2 Conjugate prior for the mean

Suppose we are using an i.i.d. normal model with mean θ and precision λ:

X1, . . . , Xn
iid∼ N (θ, λ−1).
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Assume the precision λ = 1/σ2 is known and fixed, and θ is given a N (µ0, λ
−1
0 ) prior:

θ ∼ N (µ0, λ
−1
0 )

i.e., p(θ) = N (θ | µ0, λ
−1
0 ). This is sometimes referred to as a Normal–Normal model. It

turns out that the posterior is

θ|x1:n ∼ N (M,L−1) (2.1)

i.e., p(θ|x1:n) = N (θ |M,L−1), where L = λ0 + nλ and

M =
λ0µ0 + λ

∑n
i=1 xi

λ0 + nλ
.

Thus, the normal distribution is, itself, a conjugate prior for the mean of a normal distribution
with known precision.

2.1 Derivation of the posterior

There are various ways of deriving Equation 2.1, with “completing the square” being perhaps
the most common. Here, we take a slightly more streamlined approach. First, note that for
any x and `,

N (x | θ, `−1) =

√
`

2π
exp

(
− 1

2
`(x− θ)2

)
∝
θ

exp
(
− 1

2
`(x2 − 2xθ + θ2)

)
∝
θ

exp
(
`xθ − 1

2
`θ2)

)
. (2.2)

Due to the symmetry of the normal p.d.f.,

N (θ | µ0, λ
−1
0 ) = N (µ0 | θ, λ−1

0 ) ∝
θ

exp
(
λ0µ0θ − 1

2
λ0θ

2
)

(2.3)

by Equation 2.2 with x = µ0 and ` = λ0. Therefore, defining L and M as above,

p(θ|x1:n) ∝ p(θ)p(x1:n|θ)

= N (θ | µ0, λ
−1
0 )

n∏
i=1

N (xi | θ, λ−1)

(a)
∝ exp

(
λ0µ0θ − 1

2
λ0θ

2
)

exp
(
λ(
∑
xi)θ − 1

2
nλθ2

)
= exp

(
(λ0µ0 + λ

∑
xi)θ − 1

2
(λ0 + nλ)θ2

)
= exp(LMθ − 1

2
Lθ2)

(b)
∝ N (M | θ, L−1) = N (θ |M,L−1),

where step (a) uses Equations 2.2 and 2.3, and step (b) uses Equation 2.2 with x = M and
` = L.
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Figure 2: Heights of Dutch women and Dutch men.

Figure 3: Heights of Dutch women and men, combined.

2.2 Example: Is human height bimodal?

The distribution of heights of adult humans—when separated according to sex (female or
male)—is a classic example of a normal distribution. It seems that the reason why height
tends to be normally distributed is because there are many independent genetic and envi-
ronmental factors which contribute additively to overall height, and this leads to a normal
distribution due to the central limit theorem. However, the combined distribution of heights
(pooling females and males together) is not normal, and is often said to be bimodal—that
is, having two modes (i.e., two maxima). But is it really bimodal?1

Figure 2 shows estimated densities of the heights of Dutch women and Dutch men, based
on a sample of 695 women and 562 men (Krul et al., 2011)2, and Figure 3 shows the estimated

1This example is inspired by Schilling et al. (2002).
2Data from the selfreport dataset in the MICE package for R.
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density for women and men together, assuming there is an equal proportion of women and
men in the population. At a glance, while the heights of women and men separately do appear
to be roughly normally distributed, the combined distribution does not look bimodal. How
could we test whether it is bimodal in a more precise way?

Let’s assume female heights and male heights are each normally distributed. To keep
things relatively simple, let’s assume they have the same standard deviation, and also that
there is an equal proportion of women and men in the population. Then, it is known that the
combined distribution is bimodal if and only if the difference between the means is greater
than twice the standard deviation (Helguerro, 1904).

Model

In mathematical notation: Assume the female heights are

X1, . . . , Xk
iid∼ N (θf , σ

2),

where k = 695, the male heights are

Y1, . . . , Y`
iid∼ N (θm, σ

2),

where ` = 562, and the p.d.f. of the combined distribution of heights is

1
2
N (x | θf , σ2) + 1

2
N (x | θm, σ2).

(This is an example of what is called a two-component mixture distribution.) Let’s put
independent normal priors on θf and θm:

p(θf , θm) = p(θf )p(θm) = N (θf | µ0,f , σ
2
0)N (θm | µ0,m, σ

2
0).

In Section 3, we will see how to put a prior on σ2 (or equivalently, on λ = 1/σ2), but for
now, let’s assume σ2 is known. For the purposes of this example, let’s use σ = 8 centimeters
(about 3 inches). Based on common knowledge of typical human heights, let’s choose the
prior parameters (a.k.a. hyperparameters) as follows:

µ0,f (mean of prior on female mean height) 165 centimeters (≈ 5 feet, 5 inches)
µ0,m (mean of prior on male mean height) 178 centimeters (≈ 5 feet, 10 inches)
σ0 (std. dev. of priors on mean height) 15 centimeters (≈ 6 inches)

Another way to choose these parameters would be to estimate them from the distribution
of the mean heights in various countries around the world—and the Dutch are known for
being especially tall, so that could also be taken into account. Note that σ0 represents our
uncertainty about the mean heights, not about the heights of individuals.

It is known (Helguerro, 1904) that the combined distribution is bimodal if and only if

|θf − θm| > 2σ.

So, to address our question of interest (“Is human height bimodal?”), we would like to
compute the posterior probability that this is the case, i.e., we want to know

P(bimodal | data) = P
(
|θf − θm| > 2σ | x1:k, y1:`

)
.
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Figure 4: Priors and posteriors for the mean heights of Dutch women and men.

Results

We can compute the posteriors for θf and θm using Equation 2.1 for each of them, indepen-
dently. Figure 4 shows the priors and posteriors.

• Sample means: x̄ = 168.0 cm (5 feet 6.1 inches) for females, and ȳ = 181.4 cm (5 feet
11.4 inches) for males.

• Posterior means: Mf = 168.0 cm for females, and Mm = 181.4 cm for males. (Es-
sentially identical to the sample means, due to the relatively large sample size and
relatively weak prior.)

• Posterior standard deviations: 1/
√
Lf = 0.30 cm and 1/

√
Lm = 0.34 cm.

By Equation 1.1 (a linear combination of independent normals is normal),

θm − θf | x1:k, y1:` ∼ N (Mm −Mf , L
−1
m + L−1

f ) = N (13.4, 0.452)

so we can compute P(bimodal | data) using the normal c.d.f. Φ:

P(bimodal | data) = P
(
|θm − θf | > 2σ | x1:k, y1:`

)
= Φ(−2σ | 13.4, 0.452) +

(
1− Φ(2σ | 13.4, 0.452)

)
= 6.1× 10−9.

Intuitive interpretation: The posteriors are about 13 or 14 centimeters apart, which is
under the 2σ = 16 threshold for bimodality, and they are sufficiently concentrated that the
posterior probability of bimodality is essentially zero.

3 Conjugate prior for the mean and precision

Now, suppose that both the mean µ and the precision λ = 1/σ2 are unknown, with

X1, . . . , Xn
iid∼ N (θ, λ−1) as before. The NormalGamma(m, c, a, b) distribution, with m ∈ R
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and c, a, b > 0, is a joint distribution on (µ, λ) obtained by letting

λ ∼ Gamma(a, b)

µ|λ ∼ N (m, (cλ)−1).

In other words, the joint p.d.f. is

p(µ, λ) = p(µ|λ)p(λ) = N (µ | m, (cλ)−1) Gamma(λ | a, b)

which we will denote by NormalGamma(µ, λ | m, c, a, b) following our usual convention. It
turns out that this provides a conjugate prior for (µ, λ). Indeed, the posterior is

µ,λ|x1:n ∼ NormalGamma(M,C,A,B) (3.1)

i.e., p(µ, λ|x1:n) = NormalGamma(µ, λ |M,C,A,B), where

M =
cm+

∑n
i=1 xi

c+ n

C = c+ n

A = a+ n/2

B = b+ 1
2

(
cm2 − CM2 +

∑n
i=1 x

2
i

)
.

For interpretation, B can also be written (by rearranging terms) as

B = b+
1

2

n∑
i=1

(xi − x̄)2 +
1

2

cn

c+ n
(x̄−m)2. (3.2)

Interpretation of posterior parameters

• M : Posterior mean for µ. It is a weighted average (convex combination) of the prior
mean and the sample mean:

M =
c

c+ n
m+

n

c+ n
x̄.

• C: “Sample size” for estimating µ. (The standard deviation of µ|λ is λ−1/2/
√
C.)

• A: Shape for posterior on λ. Grows linearly with sample size.

• B: Rate (1/scale) for posterior on λ. Equation 3.2 decomposes B into the prior
variation, observed variation (sample variance), and variation between the prior mean
and sample mean:

B = (prior variation) + 1
2
n(observed variation) + 1

2
cn
c+n

(variation bw means).
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3.1 Derivation of the posterior

First, consider the NormalGamma density. Dropping constants of proportionality, multiply-
ing out (µ−m)2 = µ2 − 2µm+m2, and collecting terms, we have

NormalGamma(µ, λ | m, c, a, b) = N (µ | m, (cλ)−1) Gamma(λ | a, b)

=

√
cλ

2π
exp

(
− 1

2
cλ(µ−m)2

) ba

Γ(a)
λa−1 exp(−bλ)

∝
µ,λ

λa−1/2 exp
(
− 1

2
λ(cµ2 − 2cmµ+ cm2 + 2b)

)
. (3.3)

Similarly, for any x,

N (x | µ, λ−1) =

√
λ

2π
exp

(
− 1

2
λ(x− µ)2

)
∝
µ,λ

λ1/2 exp
(
− 1

2
λ(µ2 − 2xµ+ x2)

)
. (3.4)

Using Equations 3.3 and 3.4, we get

p(µ, λ|x1:n) ∝
µ,λ

p(µ, λ)p(x1:n|µ, λ)

= NormalGamma(µ, λ | m, c, a, b)
n∏
i=1

N (xi | µ, λ)

∝
µ,λ

λa−1/2 exp
(
− 1

2
λ(cµ2 − 2cmµ+ cm2 + 2b)

)
× λn/2 exp

(
− 1

2
λ(nµ2 − 2(

∑
xi)µ+

∑
x2i )
)

= λa+n/2−1/2 exp
(
− 1

2
λ
(
(c+ n)µ2 − 2(cm+

∑
xi)µ+ cm2 + 2b+

∑
x2i
))

(a)
= λA−1/2 exp

(
− 1

2
λ
(
Cµ2 − 2CMµ+ CM2 + 2B

))
(b)
∝ NormalGamma(µ, λ |M,C,A,B)

where step (b) is by Equation 3.3, and step (a) holds if A = a + n/2, C = c + n, CM =
(cm+

∑
xi), and

CM2 + 2B = cm2 + 2b+
∑

x2i .

This choice of A and C match the claimed form of the posterior, and solving for M and B,
we get M = (cm+

∑
xi)/(c+ n) and

B = b+ 1
2
(cm2 − CM2 +

∑
x2i ),

as claimed.
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Figure 5: Histograms of change in IQ score for the two groups.

3.2 The Pygmalion effect

Do a teacher’s expectations influence student achievement? In a famous study, Rosenthal
and Jacobson (1968) performed an experiment in a California elementary school to try to
answer this question. At the beginning of the year, all students were given an IQ test.
For each class, the researchers randomly selected around 20% of the students, and told the
teacher that these students were “spurters” that could be expected to perform particularly
well that year. (This was not based on the test—the spurters were randomly chosen.) At
the end of the year, all students were given another IQ test. The change in IQ score for the
first-grade students was:3

spurters (S)
x = (18, 40, 15, 17, 20, 44, 38)

controls (C)
y = (–4, 0, –19, 24, 19, 10, 5, 10, 29, 13, –9, –8, 20, –1, 12, 21, –7, 14, 13, 20, 11,
16, 15, 27, 23, 36, –33, 34, 13, 11, –19, 21, 6, 25, 30, 22, –28, 15, 26, –1, –2, 43,
23, 22, 25, 16, 10, 29)

Summary statistics:

• spurters: nS = 7, x̄ = 27.4, σ̂x = 11.7

• controls: nC = 48, ȳ = 12.0, σ̂y = 16.1

See histograms in Figure 5. The average increase in IQ score is larger for the spurters. How
strongly does this data support the hypothesis that the teachers’ expectations caused the
spurters to perform better than their classmates?

3The original data is not available. This data is from the ex1321 dataset of the R package Sleuth3, which
was constructed to match the summary statistics and conclusions of the original study.
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Model

IQ tests are purposefully calibrated to make the scores normally distributed, so it makes
sense to use a normal model here:

spurters: X1, . . . , XnS

iid∼ N (µS, λ
−1
S )

controls: Y1, . . . , YnC

iid∼ N (µC , λ
−1
C ).

We are interested in the difference between the means—in particular, is µS > µC? We don’t
know the standard deviations σS = λ

−1/2
S and σC = λ

−1/2
C , and the sample seems too small

to estimate them very well. The frequentist approach to this problem is rather complicated
when σS 6= σC (involving approximate t-distributions based on the Welch–Satterthwaite
degrees of freedom).

On the other hand, it is easy using a Bayesian approach: we just need to compute the
posterior probability that µS > µC :

P(µS > µC | x1:nS
, y1:nC

).

Let’s use independent NormalGamma priors:

spurters: (µS,λS) ∼ NormalGamma(m, c, a, b)

controls: (µC ,λC) ∼ NormalGamma(m, c, a, b)

with the following hyperparameter settings, based on subjective prior knowledge:

• m = 0 (Don’t know whether students will improve or not, on average.)

• c = 1 (Unsure about how big the mean change will be—prior certainty in our choice
of m assessed to be equivalent to one datapoint.)

• a = 1/2 (Unsure about how big the standard deviation of the changes will be.)

• b = 102a (Standard deviation of the changes expected to be around 10 =
√
b/a =

E(λ)−1/2.)

Aside: How to check whether a prior conforms to our beliefs?

1. Draw some samples from the prior and look at them—this is probably the best general
strategy. See Figure 6. It’s also a good idea to look at sample hypothetical datasets
X1:n drawn using these sampled parameter values.

2. Plot the c.d.f. and check various quantiles (first quartile, median, third quartile), if
univariate.

3. Plot the p.d.f., but beware—it can be misleading.

4. Look at various moments (e.g., mean, standard deviation), but beware—they can be
misleading.
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Figure 6: Samples of (µ, σ) from the prior.

Figure 7: Samples of (µ, σ) from the posteriors for the two groups.
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Results

Using Equation 3.1, the posterior parameters are

for spurters:

M =
1 · 0 + 7 · 27.43

1 + 7
= 24.0

C = 1 + 7 = 8

A = 1/2 + 7/2 = 4

B = 100/2 + 1
2
· 7 · 11.662 + 1

2

1 · 7
1 + 7

(27.43− 0)2 = 855.0

for controls:

M =
1 · 0 + 48 · 12.04

1 + 48
= 11.8

C = 1 + 48 = 49

A = 1/2 + 48/2 = 24.5

B = 100/2 + 1
2
· 48 · 16.102 + 1

2

1 · 48

1 + 48
(12.04− 0)2 = 6344.0

and so the posteriors are

µS,λS | x1:nS
∼ NormalGamma(24.0, 8, 4, 855.0)

µC ,λC | y1:nC
∼ NormalGamma(11.8, 49, 24.5, 6344.0).

Figure 7 shows a scatterplot of samples from the posteriors. Now, we can answer our original
question: “What is the posterior probability that µS > µC?” The easiest way to do this is
to take a bunch of samples from each of the posteriors, and see what fraction of times we
have µS > µC . This is an example of a Monte Carlo approximation (much more to come on
this in the future). To do this, we draw N = 106 samples from each posterior:

(µ
(1)
S , λ

(1)
S ), . . . , (µ

(N)
S , λ

(N)
S ) ∼ NormalGamma(24.0, 8, 4, 855.0)

(µ
(1)
C , λ

(1)
C ), . . . , (µ

(N)
C , λ

(N)
C ) ∼ NormalGamma(11.8, 49, 24.5, 6344.0)

and obtain the approximation

P(µS > µC | x1:nS
, y1:nC

) ≈ 1

N

N∑
i=1

1
(
µ
(i)
S > µ

(i)
C

)
= 0.97.

This is consistent with a visual inspection of the scatterplots of posteriors in Figure 7.
Interpretation: The posterior probability that the spurter group had a higher mean

change in IQ score is about 0.97. Thus, this data seems to support the hypothesis that the
teachers’ expectations did in fact play a role. (Note: The results of this study have been
contested, since it has been difficult to replicate.)
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Carl Friedrich Gauss James Clerk Maxwell Adolphe Quetelet

3.3 Inverse Gamma

If X is Gamma distributed then the distribution of 1/X is called the Inverse Gamma distri-
bution. More precisely, if X ∼ Gamma(a, b) and Y = 1/X then Y ∼ InvGamma(a, b), and
the p.d.f. of Y is

InvGamma(y|a, b) =
ba

Γ(a)
y−a−1 exp(−b/y).

So, putting a Gamma(a, b) prior on the precision λ is equivalent to putting an InvGamma(a, b)
prior on the variance σ2 = 1/λ. The Inverse Gamma can be used to define a NormalIn-
vGamma distribution for use as a prior on (µ, σ2), which is sometimes more convenient than
(but equivalent to) using a NormalGamma prior on (µ, λ).

4 History

In 1809, Carl Friedrich Gauss (1777–1855) proposed the normal distribution as a model for
the errors made in astronomical measurements, as a formal way of justifying the use of the
sample mean, by showing it to be the most likely estimate—that is, the maximum likelihood
estimate—of the true value (and more generally, to justify the method of least squares in
linear regression). With astonishing speed, following Gauss’ proposal, Laplace proved the
central limit theorem in 1810. Laplace also calculated the normalization constant of the
normal distribution, which is not a trivial task. James Clerk Maxwell (1831–1879) showed
that the normal distribution arose naturally in physics, particularly in thermodynamics.
Adolphe Quetelet (1796–1874) pioneered the use of the normal distribution in the social
sciences.
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5 Exercises

Normal–Normal model

1. Derive the posterior predictive density p(xn+1|x1:n) for the Normal–Normal model from
Section 2. (HINT: There is an easy way to do this and a hard way. The easy way uses
Equation 1.1, writing Xn+1 = θ + Z given x1:n, where Z ∼ N (0, λ−1).)

2. Get a cup of hot tea or coffee and take a little break.

NormalGamma–Normal model

Two competitors for the snowiest city in the world are Aomori City in Japan, and Valdez in
the state of Alaska. Here are annual snowfall records, in inches/year, for the two cities:

Aomori, 1954–2014
188.6, 244.9, 255.9, 329.1, 244.5, 167.7, 298.4, 274.0, 241.3, 288.2, 208.3, 311.4,
273.2, 395.3, 353.5, 365.7, 420.5, 303.1, 183.9, 229.9, 359.1, 355.5, 294.5, 423.6,
339.8, 210.2, 318.5, 320.1, 366.5, 305.9, 434.3, 382.3, 497.2, 319.3, 398.0, 183.9,
201.6, 240.6, 209.4, 174.4, 279.5, 278.7, 301.6, 196.9, 224.0, 406.7, 300.4, 404.3,
284.3, 312.6, 203.9, 410.6, 233.1, 131.9, 167.7, 174.8, 205.1, 251.6, 299.6, 274.4,
248.0

Valdez, 1976–2013
351.0, 379.3, 196.1, 312.3, 301.4, 240.6, 257.6, 304.5, 296.0, 338.8, 299.9, 384.7,
353.5, 312.8, 550.7, 327.1, 515.8, 343.4, 341.6, 396.9, 267.3, 230.6, 277.4, 341.0,
377.0, 391.3, 337.0, 250.4, 353.7, 307.7, 237.5, 275.2, 271.4, 266.5, 318.7, 215.5,
438.3, 404.6

Assume that for each city independently, the data is i.i.d. normal.

3. Do you think an i.i.d. normal model is appropriate here? Why or why not?

4. Is the mean annual snowfall for Valdez higher than that of Aomori? To address this
question, perform an analysis like the one for the Pygmalion effect in Section 3.2. In
particular, your analysis should involve computing the posterior probability that the
mean annual snowfall for Valdez higher than that of Aomori. Choose prior parameters
(hyperparameters) according to your personal subjective prior.

5. (Continuation of Exercise 4) Try different values for the hyperparameters, to see what
effect they have on the results. Report your results for three different settings of the
hyperparameters.

Supplementary material

• Hoff (2009), Chapter 5.

• mathematicalmonk videos, Machine Learning (ML) 7.9 and 7.10
https://www.youtube.com/playlist?list=PLD0F06AA0D2E8FFBA
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