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1 Introduction

Sampling-based methods are extensively used in modern statistics, due to their ease of use
and the generality with which they can be applied. The fundamental problem solved by
these methods is the approximation of expectations such as

Eh(X) =

∫
h(x)p(x)dx

in the case of a continuous random variable X with p.d.f. p, or

Eh(X) =
∑
x

h(x)p(x)

in the case of a discrete random variable X with p.m.f. p. The general principle at work is
that such expectations can be approximated by

Eh(X) ≈ 1

N

N∑
i=1

h(Xi),

where X1, . . . , XN are samples from p. Although, at first, computing expectations may seem
to be of rather limited utility, the vast majority of inferential problems can be put in this
form.
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Some things that can be approximated with samples:

• posterior probabilities

• posterior densities

• posterior expected loss

• posterior predictive distribution

• marginal likelihood

• goodness-of-fit statistics

Samples are also a great way of visualizing where a probability distribution is putting most
of its mass—this is especially useful for distributions on complex and/or high-dimensional
spaces, e.g., the folding of a protein or RNA strand.

Advantages of sampling-based methods:

• easy to implement

• general-purpose / widely applicable

• reliable

• work in complex and high-dimensional spaces

Disadvantages of sampling-based methods:

• slow (may require much more time to achieve the same level of accuracy)

• getting “true” samples may be difficult

• can be difficult to assess accuracy

It seems that the computationally-difficult problems in statistics always take the form of
intractable integrals or sums, and sampling-based approximations are often the only known
approach that works in practice.

2 Monte Carlo approximation

Suppose we want to know the expectation of a random variable X with p.d.f. or p.m.f. p. To
make a simple Monte Carlo approximation (or just Monte Carlo approximation),
we draw i.i.d. samples X1, . . . , XN ∼ p and use

1

N

N∑
i=1

Xi
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as an approximation to EX. Although it might seem to be an oversimplified special case,
this is in fact equivalent to seemingly more general approximations such as:

E
(
h(Y ) | Z = z

)
≈ 1

N

N∑
i=1

h(Yi)

where Y1, . . . , YN are i.i.d. samples from the conditional distribution of Y | Z = z. (It is
equivalent because we can define X to have the distribution of h(Y ) | Z = z.)

2.0.1 Basic properties

• If E|X| <∞, then 1
N

∑
Xi is a consistent estimator of EX, that is,

1

N

N∑
i=1

Xi −→ EX

as N →∞, with probability 1, by the law of large numbers. This guarantees that the
approximation will converge to the true value (if E|X| <∞).

• 1
N

∑
Xi is an unbiased estimator of EX, that is,

E
(

1
N

∑
Xi

)
= EX.

• The variance of 1
N

∑
Xi is

V
(

1
N

∑
Xi

)
= 1

N2V
(∑

Xi

)
= 1

N2

∑N
i=1 V

(
Xi

)
= 1

N
V
(
X
)

since the variance of a sum of independent variables is the sum of the variances.

• Due to unbiasedness, the root-mean-squared-error (RMSE) equals the standard devi-
ation (square root of the variance) of 1

N

∑
Xi,

RMSE =
[
E
(
| 1
N

∑
Xi − EX|2

)]1/2
=
[
V
(

1
N

∑
Xi

)]1/2
=

1√
N
V(X)1/2 = σ(X)/

√
N. (2.1)

The RMSE tells us how far the approximation will be from the true value, on average.
Since the standard deviation σ(X) does not depend on N , this tells us that the rate
of convergence is of order 1/

√
N = N−1/2. It is a minor miracle that this result is so

easily obtained and holds under such general conditions.

As a practical matter, we need to be able to draw the samples Xi in a computationally-
efficient way.
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Figure 1: Monte Carlo approximations for an increasing number of samples, N . The red,
blue, and green lines indicate three repetitions of the procedure, using different sequences of
samples. The dotted lines indicate the true value ± the RMSE of the Monte Carlo estimator.

2.1 Examples

2.1.1 The Pygmalion effect

In Chapter 4, we saw an example involving the mean change in IQ score µS and µC of two
groups of students (spurters and controls). To compute the posterior probability that the
spurters had a larger mean change in IQ score, we drew N = 106 samples from each posterior:

(µ
(1)
S ,λ

(1)
S ), . . . , (µ

(N)
S ,λ

(N)
S ) ∼ NormalGamma(24.0, 8, 4, 855.0)

(µ
(1)
C ,λ

(1)
C ), . . . , (µ

(N)
C ,λ

(N)
C ) ∼ NormalGamma(11.8, 49, 24.5, 6344.0)

and used the Monte Carlo approximation

P(µS > µC | data) ≈ 1

N

N∑
i=1

1
(
µ

(i)
S > µ

(i)
C

)
.

To visualize this, consider the sequence of approximations 1
N

∑N
i=1 1

(
µ

(i)
S > µ

(i)
C

)
for

N = 1, 2, . . . . Figure 1 shows this sequence of approximations for three different sets
of random samples from the posterior. We can see that as the number of samples used
in the approximation grows, it appears to be converging to around 0.97. To visualize
the theoretical rate of convergence, the figure also shows bands indicating the true value
α = P(µS > µC | data) = 0.97 plus or minus the RMSE of the Monte Carlo estimator, that
is, from Equation 2.1:

α± σ(X)/
√
N = α±

√
α(1− α)/N
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= 0.97±
√

0.97(1− 0.97)/N

where X has the posterior distribution of 1(µS > µC) given the data, in other words, X is
a Bernoulli(α) random variable. Recall that the variance of a Bernoulli(α) random variable
is α(1− α).

Using the same approach, we could easily approximate any number of other posterior
quantities as well, for example,

P
(
λS > λC

∣∣ data
)
≈ 1

N

N∑
i=1

1
(
λ

(i)
S > λ

(i)
C

)
E
(
|µS − µC |

∣∣ data
)
≈ 1

N

N∑
i=1

|µ(i)
S − µ

(i)
C |

E
(
µS/µC

∣∣ data
)
≈ 1

N

N∑
i=1

µ
(i)
S /µ

(i)
C .

2.1.2 Posterior expected loss for resource allocation

In Chapter 1, we looked at a decision theory example involving allocation of resources for
prevention and treatment of a disease. Rather than computing the posterior expected loss
using numerical integration, as we did in that example, we could use a Monte Carlo approx-
imation:

ρ(c, x) = E(`(θ, c)|x) =

∫
`(θ, c)p(θ|x)dθ ≈ 1

N

N∑
i=1

`(θi, c)

where θ1, . . . ,θN are i.i.d. samples from the posterior, p(θ|x).

2.1.3 Distributions of various posterior quantities

Posterior samples can also be used to approximate the posterior p.d.f. or p.m.f. of a compli-
cated quantity, when it might otherwise be difficult to derive. Here’s an example.

In the 1998 General Social Survey, respondents were asked about their religious preference
and (among other questions) whether they agreed with a Supreme Court ruling prohibiting
state and local governments from requiring that certain religious material be read in schools.
Out of the 1011 Protestants in the survey, 353 agreed with the ruling, while out of 860
non-Protestants, 441 agreed. Suppose that across the entire U.S. population, θp and θn are
the proportions of Protestants and non-Protestants, respectively, that would agree with the
ruling.

How many times as likely to agree are non-Protestants than Protestants? In other words,
what is θn/θp? Placing independent uniform priors (that is, Beta(1, 1) priors) on θp and θn,
and using a binomial model, we find that the posteriors are θp|data ∼ Beta(354, 659) and
θn|data ∼ Beta(442, 420). From this, we can easily construct an approximation to the
posterior p.d.f. of θn/θp by drawing independent samples

θ(1)
p , . . . ,θ(N)

p ∼ Beta(354, 659)

5



Figure 2: Estimated posterior density of θn/θp for the Protestant / non-Protestant example.

θ(1)
n , . . . ,θ(N)

n ∼ Beta(442, 420)

and making a histogram (or other density estimate) from the ratios of the samples,

θ(1)
n /θ(1)

p , . . . , θ(N)
n /θ(N)

p .

See Figure 2. Note that each bin of the histogram corresponds to a Monte Carlo approxi-
mation of the probability of a sample landing in that bin.

2.1.4 Approximating the posterior predictive density

A Monte Carlo approximation to the posterior predictive p.d.f. or p.m.f. can be made using
samples from the posterior:

p(xn+1|x1:n) =

∫
p(xn+1|θ)p(θ|x1:n)dθ

= E
(
p(xn+1|θ) | x1:n

)
≈ 1

N

N∑
i=1

p(xn+1|θi)

where θ1, . . . ,θN
iid∼ p(θ|x1:n). This is useful when it is difficult or impossible to evaluate the

integral analytically.

3 Importance sampling approximation

Importance sampling (IS) is a more powerful type of Monte Carlo approximation. The name
“importance sampling” is somewhat misleading, since it is not really a method for drawing
samples, but rather, a method for approximating expectations—a better name might be
importance-weighted approximation.
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Advantages of importance sampling over simple Monte Carlo

• Can significantly improve performance, by reducing the variance

• Can use samples from a different distribution, say q, to compute expectations with
respect to p

• Can compute the normalization constant of p, as well as Bayes factors

Disadvantages

• Need to be able to evaluate the p.d.f.s/p.m.f.s p(x) and q(x), at least up to propor-
tionality constants

• It might not be obvious how to choose a good q

3.1 The basic idea

Suppose X ∼ p is continuous (the same thing works in the discrete case), and let q be
the p.d.f. of a distribution we can easily sample from. Assume q(x) > 0 for all x (or more
generally, assume q(x) > 0 whenever p(x) > 0; see Section 3.3). Then

Eh(X) =

∫
h(x)p(x)dx

=

∫
h(x)

p(x)

q(x)
q(x)dx

≈ 1

N

N∑
i=1

h(Yi)
p(Yi)

q(Yi)

where Y1, . . . , YN
iid∼ q, is called an importance sampling approximation. The approxi-

mation step here is just a simple Monte Carlo approximation, as in Section 2. The distribu-
tion q is sometimes called the proposal distribution. The ratios w(Yi) = p(Yi)/q(Yi) are
referred to as the importance weights. The intuitive interpretation is that the importance
weights correct for the fact that we are sampling from q rather than p, since y’s that occur
less frequently under q than p have large importance weight w(y) (and y’s that occur more
frequently under q then p have small importance weight).

For the basic IS approximation described above, it is necessary to be able to evaluate
p(x) and q(x) in order to compute the importance weights. There is a more general version
for which p(x) and q(x) only need to be computable up to constants of proportionality; see
Section 3.3.

3.1.1 Basic properties

Since this is essentially just a Monte Carlo approximation, it has all the properties described
in Section 2:

• consistent, as long as E|h(Y )p(Y )/q(Y )| <∞, where Y ∼ q
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• unbiased

• the variance of the estimator is 1
N
V
(
h(Y )p(Y )/q(Y )

)
• the RMSE is σ

(
h(Y )p(Y )/q(Y )

)
/
√
N .

So, the rate of convergence is still of order 1/
√
N , however, the constant σ

(
h(Y )p(Y )/q(Y )

)
may be smaller or larger than the constant σ

(
h(X)

)
of the more direct estimator 1

N

∑
h(Xi).

3.1.2 Choosing the proposal distribution

To minimize the RMSE, we want q(x) to look as much like h(x)p(x) as possible, up to a
constant of proportionality. In fact, if we could choose q(x) to be exactly proportional to
h(x)p(x), then we would have h(x)p(x)/q(x) = c for some c, and this would mean that
σ
(
h(Y )p(Y )/q(Y )

)
= 0, in other words, the error would be zero after only one sample! In

this situation, however, there would be no need to resort to sampling at all, since in this
case, Eh(X) = h(x)p(x)/q(x) for any x, so if we can compute h(x)p(x)/q(x) then we already
know Eh(X).

Nonetheless, this indicates that to minimize the approximation error, we want q(x) to
be as close as possible to being proportional to h(x)p(x), and it shows that there can be a
substantial reduction in the error if a good choice of q(x) is made. When choosing q, it is
usually better to err on the side of having it a little more “spread out”, to make sure that
it sufficiently covers the area where h(x)p(x) is large, rather than not covering some of this
area (because that would result in occasionally having very large importance weights, which
would increase the RMSE of the estimator).

That said, in practice, we often want to estimate Eh(X) for a variety of different func-
tions h. Because of this, a common practice is to choose q(x) to be as close as possible to
p(x) (rather than h(x)p(x)), so that we can reuse the same samples and the same impor-
tance weights, and still obtain reasonably good estimators for all of these h’s, rather than
specializing for each individual h.

3.2 Example: Marginal likelihood under a non-conjugate prior

In wildlife management and conservation, animals are tagged with GPS devices in order to
track their movements and study their behavior. The latitude/longitude measurements made
by GPS devices are usually fairly accurate, but it is not uncommon to get extreme outliers.
For instance, Figure 3 (Urbano et al., 2014) shows GPS measurements in northern Italy, with
three extreme outliers visible—one of which is way down toward central Italy, and another
of which is clear across Switzerland and well into France! The Normal (Gaussian) model
is not robust to outliers, and if used naively in a situation like this, would give completely
bogus results.

One approach to dealing with outliers is to identify and remove them, but this can
be somewhat subjective, and can be difficult in high-dimensional settings where the data
cannot easily be visualized. Another approach is to use a heavy-tailed distribution instead
of the Normal, such as the Laplace distribution, Cauchy distribution, or t-distribution. A
difficulty that arises, however, is that these distributions do not have nice conjugate priors,
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Figure 3: Animal-tracking GPS measurements, with extreme outliers. (Urbano et al., 2014)

so we cannot do inference analytically. One way to do inference in such a situation is using
importance sampling.

To illustrate, consider the following 8 latitude/longitude points, one of which is an outlier:

Latitude Longitude
36.077916 N 79.009266 W
36.078032 N 79.009180 W
36.078129 N 79.009094 W
36.078048 N 79.008891 W
36.077942 N 79.008962 W
36.089612 N 79.035760 W
36.077789 N 79.008917 W
36.077563 N 79.009281 W

To keep things simple, let’s just consider the latitudes, and let’s assume these points are
collected in a short enough amount of time that the animal has not moved very far. See the
histogram of the latitudes in Figure 4. Let’s model the latitudes as

X1, . . . , Xn
iid∼ Cauchy(θ, s).

Recall that the Cauchy distribution with location θ and scale s has p.d.f.

Cauchy(x | θ, s) =
1

πs
(

1 +
(
x−θ
s

)2) .
9



Figure 4: Histogram of latitude measurements.

Figure 5: Prior, posterior, and proposal densities. (NOTE: To make them all visible on the
same plot, each curve is scaled so that the maximum is 1.)

Unfortunately, there is not a nice conjugate prior for θ. Let’s put a Cauchy prior on θ:

θ ∼ Cauchy(θ0, s0).

Parameter settings

• scale of measurement errors: s = 0.0002 degrees (known, say, from calibration testing
or instrument specifications)

• center of prior on location: θ0 = 36.07 degrees (estimated, say, from many previous
measurements for this animal)

• scale of prior on location: s0 = 0.02 degrees (estimated, say, from many previous
measurements for this animal)
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Figure 6: Sequence of approximations for N = 1, . . . , 106, for Monte Carlo and importance
sampling. Nota bene: The x-axis is on the log scale.

Approximating the marginal likelihood

Suppose we need to know the marginal likelihood p(x1:n). (This is needed, for example,
when doing inference over multiple models, as we will see later.) Since we can’t compute
it analytically (as far as I know), an approximation is needed. One approach would be a
simple Monte Carlo approximation:

p(x1:n) =

∫
p(x1:n|θ)p(θ)dθ ≈

1

N

N∑
i=1

p(x1:n|θi) (3.1)

where θ1, . . . ,θN
iid∼ p(θ) (i.i.d. from the prior). Although this works asymptotically, it is

a very poor approximation (the RMSE is large). We can do much better with importance
sampling, for a good choice of q:

p(x1:n) =

∫
p(x1:n|θ)

p(θ)

q(θ)
q(θ)dθ ≈ 1

N

N∑
i=1

p(x1:n|θi)
p(θi)

q(θi)
(3.2)

where θ1, . . . ,θN
iid∼ q(θ) (i.i.d. from q). As discussed in Section 3.1.2, we want q(θ) to look

as much like p(x1:n|θ)p(θ) as possible, and if necessary, to err on the side of being a little
more spread out. By cheating (a little bit) and looking at a plot of the posterior, let’s choose

q(θ) = Cauchy(θ | median(x1:n), 10−4).

(A more principled choice could be made based on the rate of convergence of the posterior,
but that would be more involved.) See Figure 5 for plots of the prior, posterior, and proposal
distribution q.

Results

To visualize the rate of convergence, Figure 6 shows a sequence of Monte Carlo ap-
proximations (Equation 3.1) and importance sampling approximations (Equation 3.2) for
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N = 1, . . . , 106. The IS approximations appear to converge much more quickly, by several
orders of magnitude.

Why does this happen? From Figure 5 we can see that the prior is so spread out,
compared to the posterior (and thus, the likelihood), that samples from the prior very rarely
land in the small region where the likelihood is large. So most of the terms in the Monte
Carlo approximation are essentially zero, and a small number of them are enormous (making
the variance, and thus the RMSE, large). This situation is typical when approximating the
marginal likelihood, since the posterior becomes more and more concentrated as the size of
the dataset grows. (In fact, typically the situation is much worse—here, n is only eight!)

A general word of caution: Approximating the marginal likelihood can be a tricky busi-
ness, and one needs to be careful when going about it.

3.3 Handling unknown normalization constants

As described so far, in order to implement an importance sampling approximation, it looks
like we need to be able to compute the p.d.f./p.m.f. values p(Yi) and q(Yi). In many cases,
it is not possible to compute p and q themselves, but often, we will be able to compute
functions p̃ and q̃ proportional to p and q. Fortunately, there is a neat little trick that still
allows us to make an IS approximation. Suppose

p(x) = p̃(x)/Zp

q(x) = q̃(x)/Zq

where p̃(x) and q̃(x) are easy to compute (but Zp and Zq may be intractable). Also, rather
than assuming q(x) > 0 for all x, let us assume only that q̃(x) > 0 whenever p̃(x) > 0.
Define

w̃(x) =

{
p̃(x)/q̃(x) if q̃(x) > 0
0 if q̃(x) = 0.

The general form of an importance sampling approximation is then

Eh(X) =

∫
h(x)p(x)dx ≈

1
N

∑N
i=1 h(Yi)w̃(Yi)

1
N

∑N
i=1 w̃(Yi)

=
N∑
i=1

h(Yi)

(
w̃(Yi)∑N
j=1 w̃(Yj)

)
(3.3)

where Y1, . . . , YN
iid∼ q. (See derivation in Section 3.3.2). This can be interpreted as a weighted

average of the h(Yi)’s, with weights w̃(Yi)/
∑

j w̃(Yj).

3.3.1 Example: Approximating posterior expectations

Consider the animal-tracking GPS example from Section 3.2, and now suppose we would
like to estimate the posterior mean. Define

π(θ) = p(θ|x1:n)

π̃(θ) = p(x1:n|θ)p(θ)

Zπ = p(x1:n) =

∫
p(x1:n|θ)p(θ)dθ =

∫
π̃(θ)dθ.
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Then π(θ) = π̃(θ)/Zπ, and using Equation 3.3,

E(θ|x1:n) =

∫
θp(θ|x1:n)dθ =

∫
θπ(θ)dθ ≈

1
N

∑N
i=1 θiw̃(θi)

1
N

∑N
i=1 w̃(θi)

where θ1, . . . ,θN
iid∼ q and w̃(θ) = π̃(θ)/q(θ). For the data from Section 3.2, with N = 106,

this yields an approximate value of E(θ|x1:n) ≈ 36.0780. Note that, in this example, since Zq
is effectively 1, the denominator in this approximation is identical to the IS approximation
of Zπ that we used in Section 3.2. More generally, however, the denominator will be an
approximation of the ratio of normalization constants (see Section 3.3.2).

3.3.2 Derivation of Equation 3.3

Letting S = {x : p̃(x) > 0}, we have

Eh(X) =

∫
h(x)p(x)dx

=

∫
S

h(x)
p̃(x)

Zp
dx

(a)
=

∫
S

h(x)
p̃(x)

Zp

Zq
q̃(x)

q(x)dx

=
Zq
Zp

∫
S

h(x)w̃(x)q(x)dx

(b)
=
Zq
Zp

∫
h(x)w̃(x)q(x)dx

(c)
≈ Zq
Zp

1

N

N∑
i=1

h(Yi)w̃(Yi)

where in step (a), we use the assumption that q̃(x) > 0 whenever p̃(x) > 0, in step (b), we use
the fact that w̃(x) = 0 for any x 6∈ S, and step (c) is a simple Monte Carlo approximation.
Similarly, for the ratio of normalizing constants Zp/Zq,

Zp
Zq

=
1

Zq

∫
p̃(x)dx

=
1

Zq

∫
S

p̃(x)dx

=
1

Zq

∫
S

p̃(x)

q̃(x)
q̃(x)dx

=

∫
S

p̃(x)

q̃(x)
q(x)dx

=

∫
w̃(x)q(x)dx

≈ 1

N

N∑
i=1

w̃(Yi).
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4 Basic techniques for generating samples

4.1 Inverse c.d.f. method / Smirnov transform

The inverse c.d.f. method or Smirnov transform is a common way of generating
random samples from univariate probability distributions when the inverse of the c.d.f. can
be easily computed. The basic idea is that if U ∼ Uniform(0, 1) and G is the inverse (in a
generalized sense) of the c.d.f. F , then G(U) is a random variable with c.d.f. F .

4.1.1 Example: Sampling from Exp(θ)

The Exp(θ) c.d.f. is F (x) = (1 − e−θx)1(x > 0). This is invertible on (0,∞), with inverse
G(u) = −(1/θ) log(1−u) for u ∈ (0, 1). Therefore, if U ∼ Uniform(0, 1) thenG(U) ∼ Exp(θ).

4.1.2 A precise statement of the method

Proposition 4.1. Let F be a c.d.f. on R, and define G(u) = inf{x ∈ R : F (x) ≥ u} for
u ∈ (0, 1). If U ∼ Uniform(0, 1), then G(U) ∼ F .

See Appendix for proof.

Remarks

• If F is invertible, then G = F−1. The definition of G above is a generalized inverse
that allows for the possibility that F has discontinuities and/or is constant on certain
intervals.

• G(u) ∈ R for any u ∈ (0, 1) since F (x)→ 1 as x→∞, and F (x)→ 0 as x→ −∞.

• By convention, F is assumed to be continuous from the right, rather than the left.

4.2 Rejection sampling

Rejection sampling is a method for drawing random samples from a distribution whose
p.d.f. can be evaluated up to a constant of proportionality. Compared with the inverse
c.d.f. method, rejection sampling has the advantage of working on complicated multivariate
distributions, however, one has to design a good proposal distribution (which can be difficult,
especially in high-dimensional settings).

The method relies on two principles:

1. The rejection principle: Rejecting results in conditional samples. That is, if we
reject any samples falling outside of a given set, the remaining samples are distributed
according to the conditional distribution on that set.

2. The projection principle: A distribution equals the projection of the uniform dis-
tribution under its p.d.f. That is, if we sample uniformly from the region under the
p.d.f. (or a function proportional to it) of a distribution, and discard the “height”, we
obtain a sample from that distribution.
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Figure 7: (Left) How to draw uniform samples from region A? (Right) Draw uniform samples
from B and keep only those that are in A.

4.2.1 The rejection principle

Consider the oddly-shaped two-dimensional region A in Figure 7. How would you gen-
erate samples uniformly over A? In other words, how would you generate samples from
Uniform(A), the uniform distribution on A? The rejection sampling approach is to choose
a simpler region B containing A, generate samples from Uniform(B), and keep only the
samples that land inside A. The name “rejection sampling” comes from the fact that we
discard, or “reject”, any samples landing outside A. It turns out that this is guaranteed to
generate samples from Uniform(A). In fact, more generally, rejecting results in samples from
the conditional distribution on A; see Proposition .1.

In order to be as efficient as possible, we want the bounding region B to be as small as
possible (while still containing A), so that the number of rejections is kept to a minimum.

4.2.2 The projection principle

Suppose we want to sample from a distribution on Rd with p.d.f. π(x) = π̃(x)/Zπ. Consider
the region of Rd+1 under π̃:

A =
{

(x, y) : x ∈ Rd, 0 < y < π̃(x)
}
.

It turns out that if (X, Y ) ∼ Uniform(A) (that is, (X, Y ) is uniformly distributed over A),
then X ∼ π.

To see why, first note that the volume of A is

Vol(A) =

∫
π̃(x)dx =

∫
Zππ(x)dx = Zπ,

and since the p.d.f. of the uniform distribution on A is constant, we have

p(x, y) = Uniform(x, y | A) =
1
(
(x, y) ∈ A

)
Vol(A)

=
1
(
0 < y < π̃(x)

)
Zπ

.
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Therefore,

p(x) =

∫ ∞
−∞

p(x, y)dy =

∫ ∞
−∞

1
(
0 < y < π̃(x)

)
Zπ

dy

=
1

Zπ

∫ π̃(x)

0

dy =
π̃(x)

Zπ
= π(x).

4.2.3 The rejection sampling procedure

Combining these two principles leads to the following procedure. Suppose we want to draw
samples from a distribution on Rd with p.d.f. p(x) ∝ p̃(x).

• Choose a proposal distribution q that is easy to sample from, and is as close as possible
to being proportional to p̃.

• Choose c > 0 such that cq(x) ≥ p̃(x) for all x.

To draw a sample from p:

1. Sample X ∼ q.

2. Sample Y ∼ Uniform(0, cq(X)).

3. If Y ≥ p̃(X), then go back to step 1.

4. Otherwise, output X as a sample.

Then the accepted X’s are distributed according to p. To see why, let

A =
{

(x, y) : x ∈ Rd, 0 < y < p̃(x)
}

B =
{

(x, y) : x ∈ Rd, 0 < y < cq(x)
}

and note that

• steps 1 and 2 generate a sample (X, Y ) uniformly from B, since their joint density is

q(x) Uniform
(
y | (0, cq(x))

)
= q(x)

1
(
0 < y < cq(x)

)
cq(x)

=
1
(
(x, y) ∈ B

)
c

,

• step 3 rejects any pairs (X, Y ) that are outside of A, so that the distribution of accepted
pairs is uniform on A (by the rejection principle), and

• step 4 keeps only X, resulting in a sample from p (by the projection principle).
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5 Exercises

1. The Gumbel distribution with location c ∈ R and scale β > 0 has c.d.f.

F (x | c, β) = exp
(
− e−(x−c)/β

)
.

This distribution has certain special properties that make it well-suited for modeling
extreme values, and it is often used in hydrology as a model for measurements such as
the maximum annual water level of a river, or maximum monthly rainfall in a region.
Use the inverse c.d.f. method to derive a procedure for generating Gumbel(c, β) random
variables from Uniform(0, 1) random variables.

2. When X ∼ Cauchy(0, 1), we have E|X| = ∞, and thus the Monte Carlo approxi-

mations 1
N

∑N
i=1Xi are not guaranteed to converge as N → ∞, when X1, X2, . . .

iid∼
Cauchy(0, 1) (indeed, the mean EX does not even exist for the Cauchy distribu-

tion). Explore what happens empirically by sampling X1, . . . , XM
iid∼ Cauchy(0, 1) for

M = 106 and plotting the sequence of Monte Carlo approximations for N = 1, . . . ,M .
Do this for several sets of samples X1, . . . , XM , and pick four representative examples
to display in separate plots. Discuss what you see.

3. The “harmonic mean approximation” of the marginal likelihood is

p(x1:n) ≈ 1
1
N

∑N
i=1 1/p(x1:n|θi)

where θ1, . . . ,θN
iid∼ p(θ|x1:n) (that is, they are i.i.d. from the posterior).

(a) Show that, in principle, this converges to the marginal likelihood p(x1:n). Assume
that p(x1:n|θ) > 0 for all θ.

(b) Consider the following simple example with n = 1: X1 ∼ N (θ, λ−1) with λ = 1,
and θ ∼ N (0, λ−10 ) with λ0 = 1/102. Compute the harmonic mean approximation
for p(x1) when x1 = 2, using N = 106. Report the result for 5 independent sets
of samples θ1, . . . ,θN from the posterior. Compare these with the true value of
the marginal likelihood, N (2 | 0, λ−1 + λ−10 ). Describe what you observe. (This
example is due to Neal, 2008).

(c) Repeat part (b) using λ0 = 1/1002.

The harmonic mean approximation was fairly popular for a while, since it is so easy to
compute from posterior samples (which we will often have from running MCMC, stay
tuned), however, it can have extremely poor performance. Importance sampling, and
related methods such as path sampling, are far better.

4. Implement both the Monte Carlo and importance sampling approximations to the
marginal likelihood for the GPS example in Section 3.2. Create a plot like Figure 6,
to visualize the convergence of the approximations.
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5. Suppose A ⊂ Rd and X,X1, X2, . . . ∈ Rd are i.i.d. with P(X ∈ A) > 0. Show that if

Z = XK where K = min{k : Xk ∈ A}, then Z
D
= (X | X ∈ A), that is, Z has the same

distribution as X | X ∈ A. Do this by showing that P(Z ∈ S) = P(X ∈ S | X ∈ A)
for any S ⊂ A. (Hint:

∑∞
k=0 a

k = 1/(1− a) for a ∈ [0, 1).)

Supplementary material

• Hoff (2009), 4.1 and 4.2.

• mathematicalmonk videos, Machine Learning (ML) 17.1–17.14
https://www.youtube.com/playlist?list=PLD0F06AA0D2E8FFBA
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Proofs

Proof of Proposition 4.1. First, we show that for any u ∈ (0, 1), x ∈ R, we have

u ≤ F (x) if and only if G(u) ≤ x. (.1)

If u ≤ F (x) then
G(u) = inf{y ∈ R : u ≤ F (y)} ≤ x

because x ∈ {y ∈ R : u ≤ F (y)}. On the other hand, suppose G(u) ≤ x. Then there exist
x1 ≥ x2 ≥ · · · such that xn → G(u) and u ≤ F (xn) for all n. Thus,

u ≤ lim inf F (xn)
(a)
= F (G(u))

(b)

≤ F (x)

where (a) is because F is continuous from the right, and (b) is because F is monotone
increasing. This proves Equation .1.

Therefore, for any x ∈ R,

P(G(U) ≤ x) = P(U ≤ F (x)) = F (x).

Hence, G(U) has c.d.f. F .

Proposition .1. Suppose A ⊂ Rd and X,X1, X2, . . . ∈ Rd are i.i.d. with P(X ∈ A) > 0.

If Z = XK where K = min{k : Xk ∈ A}, then Z
D
= (X | X ∈ A), that is, Z has the same

distribution as X | X ∈ A.

Proof. (Proof omitted temporarily since it is an exercise.)
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