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1 Introduction

In many real-world applications, we have to deal with complex probability distributions on
complicated high-dimensional spaces. On rare occasions, it is possible to sample exactly
from the distribution of interest, but typically exact sampling is difficult. Further, high-
dimensional spaces are very large, and distributions on these spaces are hard to visualize,
making it difficult to even guess where the regions of high probability are located. As a
result, it may be challenging to even design a reasonable proposal distribution to use with
importance sampling.

Markov chain Monte Carlo (MCMC) is a sampling technique that works remarkably well
in many situations like this. Roughly speaking, my intuition for why MCMC often works
well in practice is that

(a) the region of high probability tends to be “connected”, that is, you can get from one
point to another without going through a low-probability region, and
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(b) we tend to be interested in the expectations of functions that are relatively smooth and
have lots of “symmetries”, that is, one only needs to evaluate them at a small number
of representative points in order to get the general picture.

MCMC constructs a sequence of correlated samples X1, X2, . . . that meander through the
region of high probability by making a sequence of incremental movements. Even though
the samples are not independent, it turns out that under very general conditions, sample
averages 1

N

∑N
i=1 h(Xi) can be used to approximate expectations Eh(X) just as in the case

of simple Monte Carlo approximation, and by a powerful result called the ergodic theorem,
these approximations are guaranteed to converge to the true value.

Advantages of MCMC:

• applicable even when we can’t directly draw samples

• works for complicated distributions in high-dimensional spaces, even when we don’t
know where the regions of high probability are

• relatively easy to implement

• fairly reliable

Disadvantages:

• slower than simple Monte Carlo or importance sampling (i.e., requires more samples
for the same level of accuracy)

• can be very difficult to assess accuracy and evaluate convergence, even empirically

Because it is quite easy to implement and works so generally, MCMC is often used out
of convenience, even when there are better methods available. There are two main flavors of
MCMC in use currently:

• Gibbs sampling, and

• the Metropolis–Hastings algorithm.

The simplest to understand is Gibbs sampling (Geman & Geman, 1984), and that’s the
subject of this chapter. First, we’ll see how Gibbs sampling works in settings with only two
variables, and then we’ll generalize to multiple variables. We’ll look at examples chosen to
illustrate some of the most important situations where Gibbs sampling is used:

• semi-conjugate priors

• censored data or missing data

• hyperpriors and hierarchical models

• data augmentation / auxiliary variables.

MCMC opens up a world of possibilities, allowing us to work with far more interesting and
realistic models than we have seen so far.
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2 Gibbs sampling with two variables

Suppose p(x, y) is a p.d.f. or p.m.f. that is difficult to sample from directly. Suppose, though,
that we can easily sample from the conditional distributions p(x|y) and p(y|x). Roughly
speaking, the Gibbs sampler proceeds as follows: set x and y to some initial starting values,
then sample x|y, then sample y|x, then x|y, and so on. More precisely,

0. Set (x0, y0) to some starting value.

1. Sample x1 ∼ p(x|y0), that is, from the conditional distribution X | Y = y0.
Sample y1 ∼ p(y|x1), that is, from the conditional distribution Y | X = x1.

2. Sample x2 ∼ p(x|y1), that is, from the conditional distribution X | Y = y1.
Sample y2 ∼ p(y|x2), that is, from the conditional distribution Y | X = x2.
...

Each iteration (1., 2., 3., . . . ) in the Gibbs sampling algorithm is sometimes referred to as
a sweep or scan. The sampling steps within each iteration are sometimes referred to as
updates or Gibbs updates. Note that when updating one variable, we always use the most
recent value of the other variable (even in the middle of an iteration).

This procedure defines a sequence of pairs of random variables

(X0, Y0), (X1, Y1), (X2, Y2), (X3, Y3), . . .

which has the property of being a Markov chain—that is, the conditional distribution of
(Xi, Yi) given all of the previous pairs depends only on (Xi−1, Yi−1). Under quite general
conditions, for any h(x, y) such that E|h(X, Y )| < ∞, where (X, Y ) ∼ p(x, y), a sequence
constructed in this way has the property that

1

N

N∑
i=1

h(Xi, Yi) −→ Eh(X, Y )

as N →∞, with probability 1. This justifies the use of the sample average 1
N

∑N
i=1 h(Xi, Yi)

as an approximation to Eh(X, Y ), just like in a simple Monte Carlo approximation, even
though the pairs (Xi, Yi) are not i.i.d. Hence, this approach is referred to as Markov chain
Monte Carlo.

Ideally, the initial value / starting point (x0, y0) would be chosen to be in a region of high
probability under p(x, y), but often this is not so easy, and because of this it is preferable to
run the chain for a while before starting to compute sample averages—in other words, discard
the first B samples (X1, Y1), . . . , (XB, YB). This is referred to as the burn-in period. When
using a burn-in period, the choice of starting point it is not particularly important—a poor
choice will simply require a longer burn-in period.

Roughly speaking, the performance of an MCMC algorithm—that is, how quickly the
sample averages 1

N

∑N
i=1 h(Xi, Yi) converge—is referred to as the mixing rate. An algorithm

with good performance is said to “have good mixing”, or “mix well”.
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Figure 1: (Left) Schematic representation of the first 5 Gibbs sampling itera-
tions/sweeps/scans. (Right) Scatterplot of samples from 104 Gibbs sampling iterations.

2.1 Toy example

Suppose we need to sample from the bivariate distribution with p.d.f.

p(x, y) ∝ e−xy1(x, y ∈ (0, c))

where c > 0, and (0, c) denotes the (open) interval between 0 and c. (This example is due to
Casella & George, 1992.) The Gibbs sampling approach is to alternately sample from p(x|y)
and p(y|x). Since p(x, y) is symmetric with respect to x and y, we only need to derive one
of these and then we can get the other one by just swapping x and y. Let’s look at p(x|y):

p(x|y) ∝
x
p(x, y) ∝

x
e−xy1(0 < x < c) ∝

x
Exp(x|y)1(x < c).

So, p(x|y) is a truncated version of the Exp(y) distribution—in other words, it is the same
as taking X ∼ Exp(y) and conditioning on it being less than c, i.e., X | X < c. Let’s refer to
this as the TExp(y, (0, c)) distribution. An easy way to generate a sample from a truncated
distribution like this, say, Z ∼ TExp(θ, (0, c)), is:

1. Sample U ∼ Uniform(0, F (c|θ)) where F (x|θ) = 1− e−θx is the Exp(θ) c.d.f.

2. Set Z = F−1(U |θ) where F−1(u|θ) = −(1/θ) log(1−u) is the inverse c.d.f. for u ∈ (0, 1).

A quick way to see why this works is by an application of the rejection principle (along with
the inverse c.d.f. technique).

So, to use Gibbs sampling, denoting S = (0, c) for brevity,

0. Initialize x0, y0 ∈ S.

1. Sample x1 ∼ TExp(y0, S), then sample y1 ∼ TExp(x1, S).
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2. Sample x2 ∼ TExp(y1, S), then sample y2 ∼ TExp(x2, S).
...

N . Sample xN ∼ TExp(yN−1, S), then sample yN ∼ TExp(xN , S).

Figure 1 demonstrates the algorithm, with c = 2 and initial point (x0, y0) = (1, 1).

2.2 Example: Normal with semi-conjugate prior

In Chapter 4, we considered a conjugate prior for the mean µ and precision λ of a univariate
normal distribution, N (µ, λ−1), in which the variance of µ|λ depended on λ. However, it is
often more realistic to use independent priors on µ and λ, since we often don’t expect the
mean to be informative about the precision, or vice versa. In particular, consider the prior
in which we take

µ ∼ N (µ0, λ
−1
0 )

λ ∼ Gamma(a, b)

independently, and suppose X1, . . . , Xn|µ, λ
iid∼ N (µ, λ−1) as usual. Unfortunately, this is

not a conjugate prior. Nonetheless, it is semi-conjugate in the sense that the prior on µ
is conjugate for each fixed value of λ, and the prior on λ is conjugate for each fixed value of
µ. From our study of the Normal–Normal model, we know that for any fixed value of λ,

µ|λ, x1:n ∼ N (Mλ, L
−1
λ )

i.e., p(µ|λ, x1:n) = N (µ |Mλ, L
−1
λ ), where Lλ = λ0 + nλ and

Mλ =
λ0µ0 + λ

∑n
i=1 xi

λ0 + nλ
.

Meanwhile, for any fixed value of µ, it is straightforward to derive (see Appendix) that

λ|µ, x1:n ∼ Gamma(Aµ, Bµ) (2.1)

where Aµ = a+ n/2 and

Bµ = b+ 1
2

∑
(xi − µ)2 = nσ̂2 + n(x̄− µ)2

where σ̂2 = 1
n

∑
(xi − x̄)2.

So, to implement Gibbs sampling in this example, each iteration would consist of sampling

µ|λ, x1:n ∼ N (Mλ, L
−1
λ )

λ|µ, x1:n ∼ Gamma(Aµ, Bµ).
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2.3 Example: Pareto model

Distributions of sizes and frequencies often tend to follow a “power law” distribution. Here
are a few examples of data which have been claimed to follow this type of distribution:

• wealth of individuals

• size of oil reserves

• size of cities

• word frequency

• returns on stocks

• size of meteorites

The Pareto distribution with shape α > 0 and scale c > 0 has p.d.f.

Pareto(x|α, c) =
αcα

xα+1
1(x > c) ∝ 1

xα+1
1(x > c).

This is referred to as a power law distribution, because the p.d.f. is proportional to x raised
to a power. Notice that c is a lower bound on the observed values. In this example, we’ll see
how Gibbs sampling can be used to perform inference for α and c.

Table 1 shows the populations of the 50 largest cities in the state of North Carolina,
according to the 2010 census.1 The Pareto distribution is often a good model for this type
of data.

2.3.1 Model

Let’s use a Pareto model for this population data:

X1, . . . , Xn|α, c
iid∼ Pareto(α, c)

where Xi is the population of city i.

Reader: Now hold on just one second. You’re going to treat the 50 largest cities as
a random sample? That seems fishy.

Author: Why?

Reader: Well, clearly there is selection bias here, because you are only looking at the
largest cities.

Author: Good grief, you’re right! Hmm, let’s see. . .

Reader: Oh, wait—it doesn’t matter!

Author: Huh, why?

1http://en.wikipedia.org/wiki/List_of_municipalities_in_North_Carolina
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Rank City Population

1 Charlotte 731424
2 Raleigh 403892
3 Greensboro 269666
4 Durham 228330
5 Winston-Salem 229618
6 Fayetteville 200564
7 Cary 135234
8 Wilmington 106476
9 High Point 104371
10 Greenville 84554
11 Asheville 85712
12 Concord 79066
13 Gastonia 71741
14 Jacksonville 70145
15 Chapel Hill 57233
16 Rocky Mount 57477
17 Burlington 49963
18 Huntersville 46773
19 Wilson 49167
20 Kannapolis 42625
21 Apex 37476
22 Hickory 40010
23 Goldsboro 36437
24 Indian Trail 33518
25 Mooresville 32711

26 Wake Forest 30117
27 Monroe 32797
28 Salisbury 33622
29 New Bern 29524
30 Sanford 28094
31 Matthews 27198
32 Holly Springs 24661
33 Thomasville 26757
34 Cornelius 24866
35 Garner 25745
36 Asheboro 25012
37 Statesville 24532
38 Mint Hill 22722
39 Kernersville 23123
40 Morrisville 18576
41 Lumberton 21542
42 Kinston 21677
43 Fuquay-Varina 17937
44 Havelock 20735
45 Carrboro 19582
46 Shelby 20323
47 Clemmons 18627
48 Lexington 18931
49 Elizabeth City 18683
50 Boone 17122

Table 1: Populations of the 50 largest cities in the state of North Carolina, USA.
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Reader: Because using only the largest cities is essentially like “rejecting” all the
cities below some cutoff point c, and by the rejection principle, the remaining
samples are distributed according to the conditional distribution given x >
c. And if the original data was Pareto(x|α, c0) for some c0 < c, then the
conditional distribution given x > c is Pareto(x|α, c), because

Pareto(x|α, c0)1(x > c) ∝ Pareto(x|α, c).

Author: Oh, cool! So, our inferences regarding α will be valid, but c is essentially
just determining this cutoff point.

Reader: Right. OK, good.

In this example, the parameters have the following interpretation:

• α tells us the scaling relationship between the size of cities and their probability of
occurring. For instance, if α = 1 then the density looks like 1/xα+1 = 1/x2, so cities
with 10,000–20,000 inhabitants occur roughly 10α+1 = 100 times as frequently as cities
with 100,000–110,000 inhabitants (or 10α+1/10 = 10 times as frequently as cities with
100,000–200,000 inhabitants).

• c represents the cutoff point—any cities smaller than this were not included in the
dataset.

To keep things as simple as possible, let’s use an (improper) flat prior:

p(α, c) ∝ 1(α, c > 0).

An improper prior is a nonnegative function of the parameters which integrates to infinity,
so it can’t really be considered to define a prior distribution. But, we can still plug it into
Bayes’ formula, and often (but not always!) the resulting “posterior” will be proper—in other
words, the likelihood times the prior integrates to a finite value, and so this “posterior” is a
well-defined a probability distribution. It is important that the “posterior” be proper, since
otherwise the whole Bayesian framework breaks down. Improper priors are often used in an
attempt to make a prior as non-informative as possible, in other words, to represent as
little prior knowledge as possible. They are sometimes also mathematically convenient.

2.3.2 Posterior

So, plugging these into Bayes’ theorem, we define the posterior to be proportional to the
likelihood times the prior:

p(α, c|x1:n)
def∝
α,c
p(x1:n|α, c)p(α, c)

∝
α,c

1(α, c > 0)
n∏
i=1

αcα

xα+1
i

1(xi > c)

=
αncnα

(
∏
xi)α+1

1(c < x∗)1(α, c > 0) (2.2)
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where x∗ = min{x1, . . . , xn}. As a joint distribution on (α, c), this does not seem to have a
recognizable form, and it is not clear how we might sample from it directly. Let’s try Gibbs
sampling! To use Gibbs, we need to be able to sample α|c, x1:n and c|α, x1:n. By Equation
2.2, we find that

p(α|c, x1:n) ∝
α
p(α, c|x1:n) ∝

α

αncnα

(
∏
xi)α

1(α > 0)

= αn exp
(
− α(

∑
log xi − n log c)

)
1(α > 0)

∝
α

Gamma
(
α
∣∣n+ 1,

∑
log xi − n log c

)
,

and

p(c|α, x1:n) ∝
c
p(α, c|x1:n) ∝

c
cnα1(0 < c < x∗).

Reader: I don’t recognize the form of this distribution on c.

Author: Me neither, but it looks nice and simple!

Reader: Totally. It should be a piece of cake to compute the normalizing constant.

Author: Yep, and I bet the c.d.f. will be simple enough that we can use the inverse
c.d.f. method to sample from it.

Reader: Let’s try it.

2.3.3 Sampling c using the inverse c.d.f. technique

For a > 0 and b > 0, define the distribution Mono(a, b) (for monomial) with p.d.f.

Mono(x|a, b) ∝ xa−11(0 < x < b).

Since
∫ b
0
xa−1dx = ba/a, we have

Mono(x|a, b) =
a

ba
xa−11(0 < x < b),

and for 0 < x < b, the c.d.f. is

F (x|a, b) =

∫ x

0

Mono(y|a, b)dy =
a

ba
xa

a
=
xa

ba
.

To use the inverse c.d.f. technique, we solve for the inverse of F on 0 < x < b:

u =
xa

ba

bau = xa

bu1/a = x

and thus, we can sample from Mono(a, b) by drawing U ∼ Uniform(0, 1) and setting X =
bU1/a. (By the way, it turns out that this is an inverse of the Pareto distribution, in the sense
that if X ∼ Pareto(α, c) then 1/X ∼ Mono(α, 1/c), and vice versa, but for the purposes of
this example, I assumed that this was not known.)
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2.3.4 Results

So, in order to use the Gibbs sampling algorithm to sample from the posterior p(α, c|x1:n),
we initialize α and c, and then alternately update them by sampling:

α|c, x1:n ∼ Gamma
(
n+ 1,

∑
log xi − n log c

)
c|α, x1:n ∼ Mono(nα + 1, x∗).

Initializing at α = 1 and c = 100, we run the Gibbs sampler for N = 103 iterations on
the 50 data points from Table 1, giving us a sequence of samples

(α1, c1), . . . , (αN , cN).

Figure 2 shows various ways of viewing the results.

(a) Traceplots. A traceplot simply shows the sequence of samples, for instance
α1, . . . , αN , or c1, . . . , cN . Traceplots are a simple but very useful way to visualize
how the sampler is behaving. The traceplots in Figure 2(a) look very healthy—the
sampler doesn’t appear to be getting stuck anywhere.

(b) Scatterplot. The scatterplot in panel (b) shows us what the posterior distribution
p(α, c|x1:n) looks like. The smallest city in our data set is Boone, with a population of
17,122, and the posterior on c is quite concentrated just under this value, which makes
sense since c represents the cutoff point in the sampling process.

(c) Estimated density. We are primarily interested in the posterior on α, since it tells us
the scaling relationship between the size of cities and their probability of occurring. By
making a histogram of the samples α1, . . . , αN , we can estimate the posterior density
p(α|x1:n). The two vertical lines indicate the lower ` and upper u boundaries of an
(approximate) 90% credible interval [`, u]—that is, an interval that contains 90% of
the posterior probability:

P
(
α ∈ [`, u]

∣∣x1:n) = 0.9.

The interval shown here is approximate since it’s based on the samples. This can be
computed from the samples by sorting them α(1) ≤ · · · ≤ α(N) and setting

` = α(b0.05Nc) u = α(d0.95Ne)

where bxc and dxe are the floor and ceiling functions, respectively.

(d) Running averages. Panel (d) shows the running average 1
k

∑k
i=1 αi for k = 1, . . . , N .

In addition to traceplots, running averages such as this are a useful heuristic for visually
assessing the convergence of the Markov chain. The running average shown in this
example still seems to be meandering about a bit, suggesting that the sampler needs
to be run longer (but this would depend on the level of accuracy desired).

(e) Panel (e) is particular to this example. Power law distributions are often displayed by
plotting their survival function S(x)—that is, one minus the c.d.f., S(x) = P(X > x) =
1− P(X ≤ x)—on a log-log plot, since S(x) = (c/x)α for the Pareto(α, c) distribution
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(a) Traceplots of α (top) and c (bottom).

(b) Scatterplot of samples. (c) Estimated density of α|x1:n.

(d) 1
k

∑k
i=1 αi for k = 1, . . . , N . (e) Empirical vs posterior survival function.

Figure 2: Results from the power law example.
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and on a log-log plot this appears as a line with slope −α. The posterior survival
function (or more precisely, the posterior predictive survival function), is S(x|x1:n) =
P(Xn+1 > x | x1:n). Figure 2(e) shows an empirical estimate of the survival function
(based on the empirical c.d.f., F̂ (x) = 1

n

∑n
i=1 1(x ≥ xi)) along with the posterior

survival function, approximated by

S(x|x1:n) = P(Xn+1 > x | x1:n) =

∫
P(Xn+1 > x | α, c)p(α, c|x1:n)dαdc

≈ 1

N

N∑
i=1

P(Xn+1 > x | αi, ci) =
1

N

N∑
i=1

(ci/x)αi .

This is computed for each x in a grid of values.

It is important to note that even when heuristics like traceplots and running averages appear
to indicate that all is well, it is possible that things are going horribly wrong. For instance,
it is not uncommon for there to be multiple modes, and for the sampler to get stuck in one
of them for many iterations.

3 Gibbs sampling with more than two variables

In Section 2, we saw how to use Gibbs sampling for distributions with two variables, e.g.,
p(x, y). The generalization to more than two variables is completely straightforward—
roughly speaking, we cycle through the variables, sampling each from its conditional dis-
tributional given all the rest.

For instance, for a distribution with three random variables, say, p(x, y, z), we set x, y,
and z to some initial values, and then sample x|y, z, then y|x, z, then z|x, y, then x|y, z, and
so on. More precisely,

0. Set (x0, y0, z0) to some starting value.

1. Sample x1 ∼ p(x|y0, z0).
Sample y1 ∼ p(y|x1, z0).
Sample z1 ∼ p(z|x1, y1).

2. Sample x2 ∼ p(x|y1, z1).
Sample y2 ∼ p(y|x2, z1).
Sample z2 ∼ p(z|x2, y2).
...

In general, for distribution with d random variables, say, p(v1, . . . , vd), at each iteration
of the algorithm, we sample from

v1 | v2, v3, . . . , vd

v2 | v1, v3, . . . , vd
...

vd | v1, v2, . . . , vd−1

12



always using the most recent values of all the other variables. The conditional distribution
of a variable given all of the others is sometimes referred to as the full conditional in this
context, and for brevity this is sometimes denoted vi| · · · .

3.1 Example: Censored data

In many real-world data sets, some of the data is either missing altogether or is partially
obscured. Gibbs sampling provides a method for dealing with these situations in a completely
coherent Bayesian way, by sampling these missing variables along with the parameters. This
also provides information about the values of the missing/obscured data.

One way in which data can be partially obscured is by censoring, which means that we
know a data point lies in some particular interval, but we don’t get to observe it exactly.
Censored data occurs very frequently in medical research such as clinical trials (since for
instance, the researchers may lose contact with some of the patients), and also in engineering
(since some measurements may exceed the lower or upper limits of the instrument being
used).

To illustrate, suppose researchers are studying the length of life (lifetime) following a
particular medical intervention, such as a new surgical treatment for heart disease, and in a
study of 12 patients, the number of years before death for each is

3.4, 2.9, 1.2+, 1.4, 3.2, 1.8, 4.6, 1.7+, 2.0+, 1.4+, 2.8, 0.6+

where x+ indicates that the patient was alive after x years, but the researchers lost contact
with the patient at that point. (Of course, there will always also be a control group, but
let’s focus on one group to keep things simple.) Consider the following model:

θ ∼ Gamma(a, b)

Z1, . . . , Zn|θ
iid∼ Gamma(r, θ)

Xi =

{
Zi if Zi ≤ ci
∗ if Zi > ci.

where a, b, and r are known, and ∗ is a special value to indicate that censoring has occurred.
The interpretation is:

• θ is the parameter of interest—the rate parameter for the lifetime distribution.

• Zi is the lifetime for patient i, however, this is not directly observed.

• ci is the censoring time for patient i, which is fixed, but known only if censoring occurs.

• Xi is the observation—if the lifetime is less than ci then we get to observe it (Xi = Zi),
otherwise all we know is the lifetime is greater than ci (Xi = ∗).

3.1.1 The posterior is complicated

Unfortunately, the posterior p(θ|x1:n) ∝ p(x1:n|θ)p(θ) does not reduce to a simple form that
we can easily work with. The reason is that the likelihood p(x1:n|θ) involves the distribution
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of the observations xi given θ, integrating out the zi’s, and in the case of censored observations
xi = ∗, this is

p(xi|θ) = P(Xi = ∗ | θ) = P(Zi > c | θ),

which is one minus the Gamma(r, θ) c.d.f., a rather complicated function of θ.
Also, p(z1:n|x1:n) (the posterior on the zi’s, with θ integrated out) looks a bit nasty as

well, and it’s not immediately clear to me how one would sample from it.

3.1.2 Gibbs sampling approach

Meanwhile, the Gibbs sampling approach is a cinch. To sample from p(θ, z1:n|x1:n), we cycle
through each of the full conditional distributions,

θ | z1:n, x1:n
z1 | θ, z2:n, x1:n
z2 | θ, z1, z3:n, x1:n

...

zn | θ, z1:n−1, x1:n

sampling from each in turn, always conditioning on the most recent values of the other
variables. The full conditionals are easy to calculate:

• (θ| · · · ) Since θ ⊥ x1:n | z1:n (i.e., θ is conditionally independent of x1:n given z1:n),

p(θ| · · · ) = p(θ|z1:n, x1:n) = p(θ|z1:n) = Gamma
(
θ
∣∣ a+ nr, b+

∑n
i=1 zi

)
using the fact that the prior on θ is conjugate. (See Exercise 3 of Chapter 3.)

• (zi| · · · ) If xi 6= ∗ then zi is forced to be equal to xi. Otherwise,

p(zi| · · · ) = p(zi|θ, z(1:n)−i, x1:n) = p(zi|θ, xi)
∝
zi
p(xi, zi|θ) = p(xi|zi)p(zi|θ)

= 1(zi > ci) Gamma(zi | r, θ)
∝
zi

TGamma(zi | r, θ, (ci,∞))

where TGamma(zi | r, θ, S) is the truncated Gamma distribution—that is, the distri-
bution of a Gamma(r, θ) random variable conditioned on being in the set S.

We can sample from TGamma(r, θ, (c,∞)) with the same approach we used for the truncated
exponential in Section 2.1: if F (x|r, θ) denotes the Gamma(r, θ) c.d.f., then to draw a sample
Z ∼ TGamma(r, θ, (c,∞)),

1. sample U ∼ Uniform(F (c|r, θ), 1), and

2. set Z = F−1(U |r, θ).
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(a) Traceplots of θ (top) and z9 (bottom).

(b) Running averages 1
k

∑k
i=1 θi for k = 1, . . . , N .

(c) Estimated density of θ|x1:n. (d) Estimated density of z9|x1:n.

Figure 3: Results from the censoring example.
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3.1.3 Results

Let’s suppose a = b = 1 and r = 2.0, and run the Gibbs sampler for N = 103 iterations,
using initial values θ = 1 and zi = ci + 1 for those i’s that were censored. See Figure 3 for
various traceplots, running averages, and estimated densities.

3.2 Example: Hyperpriors and hierarchical models

Gibbs sampling is spectacularly useful for models involving multiple levels, particularly when
each piece of the model involves a conjugate (or at least semi-conjugate) prior. For instance,
we may want to put a prior not only on the parameters, but also on the hyperparameters—
that is, the parameters of the prior—this is called a hyperprior. This comes up particularly
often when constructing hierarchical models, that is, models in which there is a hierar-
chical structure to the relationships between the data, latent variables, and parameters.

As a simple example, consider the Normal model with semi-conjugate prior from Section
2.2. Let’s put a Gamma(r, s) hyperprior on λ0, so that the model is now:

λ0 ∼ Gamma(r, s)

µ|λ0 ∼ N (µ0, λ
−1
0 )

λ ∼ Gamma(a, b)

X1, . . . , Xn|λ0, µ, λ ∼ N (µ, λ−1).

You might recognize that this is equivalent to putting a t-distribution prior on µ. Since
the t-distribution is not a conjugate prior for the mean of Normally-distributed data, we
would not be able to sample directly from µ|λ, x1:n. However, we can easily sample from
µ|λ0, λ, x1:n, and this is what we need for Gibbs sampling.

3.2.1 Gibbs sampler

• (λ0| · · · ) Since λ0 is conditionally independent of everything else given µ, this is exactly
the same as the posterior on the precision in a semi-conjugate Normal model with one
datapoint (namely, µ). Thus,

λ0|µ, λ, x1:n ∼ Gamma
(
r + 1/2, s+ 1

2
(µ− µ0)

2
)
.

• (µ| · · · ) Since we are conditioning on λ0, we are just in the usual situation for the
semi-conjugate Normal model without a hyperprior, and thus, just like in Section 2.2,

µ|λ0, λ, x1:n ∼ N (M,L−1)

where L = λ0 + nλ and M = (λ0µ0 + λ
∑
xi)/(λ0 + nλ).

• (λ| · · · ) We are again just in the usual situation for the semi-conjugate Normal, and
thus

λ|λ0, µ, x1:n ∼ Gamma(A,B)

where A = a+ n/2 and B = nσ̂2 + n(x̄− µ)2.
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Figure 4: Heights of Dutch women and men, combined.

Each iteration of Gibbs sampling proceeds by sampling from each of these, in turn.
We could just as easily put (semi-)conjugate priors on µ0 and b as well (specifically,

a Normal prior on µ0 and a Gamma prior on b), and include them as well in the Gibbs
sampling algorithm. In this simple example, these hyperpriors essentially just make the
prior less informative, however, when constructing hierarchical models involving multiple
groups of datapoints, this approach can enable the “sharing of statistical strength” across
groups—roughly, using information learned from one group to help make inferences about
the others.

3.3 Example: Data augmentation / Auxiliary variables

A commonly-used technique for designing MCMC samplers is to use data augmentation,
also known as auxiliary variables. The idea is to introduce a new variable (or variables)
Z that depends on the distribution of the existing variables in such a way that the resulting
conditional distributions, with Z included, are easier to sample from and/or result in better
mixing (faster convergence). So, the Z’s are essentially latent/hidden variables that are
introduced for the purpose of simplifying/improving the sampler. For instance, suppose we
want to sample from p(x, y), but p(x|y) and/or p(y|x) are complicated. If we can choose
some p(z|x, y) such that p(x|y, z), p(y|x, z), and p(z|x, y) are easy to sample from, then we
can construct a Gibbs sampler to sample all three variables (X, Y, Z) from p(x, y, z) and
then just throw away the Z’s and we will have samples (X, Y ) from p(x, y).

To illustrate, consider the data set from Chapter 4 consisting of the heights of 695 Dutch
women and 562 Dutch men. Suppose we have the list of heights, but we don’t know which
datapoints are from women and which are from men. See Figure 4. Can we still infer
the distribution of female heights and male heights, e.g., the mean for males and the mean
for females? Perhaps surprisingly, the answer is yes. The reason is that this is a two-
component mixture of Normals, and there is an (essentially) unique set of mixture parameters
corresponding to any such distribution.

To construct a Gibbs sampler for a mixture model such as this, it is common to introduce
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an auxiliary variable Zi for each datapoint, indicating which mixture component it is drawn
from. For instance, in this example, Zi would indicate whether subject i is female or male.
This results in a Gibbs sampler that is quite easy to derive and implement.

3.3.1 Two-component mixture model

To keep things as simple as possible, let’s assume that both mixture components (female
and male) have the same precision (inverse variance), say λ, and that λ is fixed and known.
Then the usual two-component Normal mixture model is:

µ0, µ1
iid∼ N (m, `−1)

π ∼ Beta(a, b)

X1, . . . , Xn|µ, π
iid∼ F (µ, π)

where F (µ, π) is the distribution with p.d.f.

f(x|µ, π) = (1− π)N (x | µ0, λ
−1) + πN (x | µ1, λ

−1)

and µ = (µ0, µ1).
The likelihood is

p(x1:n|µ, π) =
n∏
i=1

f(xi|µ, π)

=
n∏
i=1

[
(1− π)N (xi | µ0, λ

−1) + πN (xi | µ1, λ
−1)
]

which is a complicated function of µ and π, making the posterior difficult to sample from
directly.

3.3.2 Allocation variables to the rescue

We can define an equivalent model that includes latent “allocation” variables Z1, . . . , Zn to
indicate which mixture component each datapoint comes from—that is, Zi indicates whether
subject i is female or male.

µ0, µ1
iid∼ N (m, `−1)

π ∼ Beta(a, b)

Z1, . . . , Zn|µ, π
iid∼ Bernoulli(π)

Xi ∼ N (µZi
, λ−1) independently for i = 1, . . . , n.

This is equivalent to the model above, since

p(xi|µ, π) = p(x|Zi = 0, µ, π)P(Zi = 0|µ, π) + p(x|Zi = 1, µ, π)P(Zi = 1|µ, π)

= (1− π)N (xi|µ0, λ
−1) + πN (xi|µ1, λ

−1)

= f(xi|µ, π),

and thus it induces the same distribution on (x1:n, µ, π). However, it is considerably easier
to work with, particularly for Gibbs sampling.
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3.3.3 Gibbs sampling

We derive the full conditionals. For brevity, denote x = x1:n and z = z1:n.

• (π| · · · ) Given z, π is independent of everything else, so this reduces to a Beta–Bernoulli
model, and we have

p(π|µ, z, x) = p(π|z) = Beta(π | a+ n1, b+ n0)

where nk =
∑n

i=1 1(zi = k) for k ∈ {0, 1}.

• (µ| · · · ) Given z, we know which component each datapoint comes from , so the model
(conditionally on z) is just two independent Normal–Normal models, and thus (like in
Section 2.2):

µ0|µ1, x, z, π ∼ N (M0, L
−1
0 )

µ1|µ0, x, z, π ∼ N (M1, L
−1
1 )

where for k ∈ {0, 1},

nk =
n∑
i=1

1(zi = k)

Lk = `+ nkλ

Mk =
`m+ λ

∑
i:zi=k

xi

`+ nkλ
.

• (z| · · · )

p(z|µ, π, x) ∝
z
p(x, z, π, µ) ∝

z
p(x|z, µ)p(z|π)

=
n∏
i=1

N (xi|µzi , λ−1) Bernoulli(zi|π)

=
n∏
i=1

(
πN (xi|µ1, λ

−1)
)zi(

(1− π)N (xi|µ0, λ
−1)
)1−zi

=
n∏
i=1

αzii,1α
1−zi
i,0

∝
z

n∏
i=1

Bernoulli(zi | αi,1/(αi,0 + αi,1))

where

αi,0 = (1− π)N (xi|µ0, λ
−1)

αi,1 = πN (xi|µ1, λ
−1).

As usual, each iteration of Gibbs sampling proceeds by sampling from each of these condi-
tional distributions, in turn.
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(a) Traceplots of the component means, µ0 and µ1.

(b) Traceplot of the mixture weight, π (prior probability that a subject comes from component 1).

(c) Histograms of the heights of subjects assigned to each component, according to z1, . . . , zn, in a
typical sample.

Figure 5: Results from one run of the mixture example.
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3.3.4 Results

We implement this Gibbs sampler with the following parameter settings:

• λ = 1/σ2 where σ = 8 cm (≈ 3.1 inches) (σ = standard deviation of the subject heights
within each component)

• a = 1, b = 1 (Beta parameters, equivalent to prior “sample size” of 1 for each compo-
nent)

• m = 175 cm (≈ 68.9 inches) (mean of the prior on the component means)

• ` = 1/s2 where s = 15 cm (≈ 6 inches) (s = standard deviation of the prior on the
component means)

We initialize the sampler at:

• π = 1/2 (equal probability for each component)

• z1, . . . , zn sampled i.i.d. from Bernoulli(1/2) (initial assignment to components chosen
uniformly at random)

• µ0 = µ1 = m (component means initialized to the mean of their prior)

Figure 5 shows a few plots of the results for N = 103 iterations. (Note: This should probably
be run for longer—this short run is simply for illustration purposes.) From the traceplots of
µ0 and µ1, we see that one component quickly settles to have a mean of around 168–170 cm
and the other to a mean of around 182–186 cm. Recalling that we are not using the true
assignments of subjects to components (that is, we don’t know whether they are male or
female), it is interesting to note that this is fairly close to the sample averages: 168.0 cm (5
feet 6.1 inches) for females, and 181.4 cm (5 feet 11.4 inches) for males.

The traceplot of π indicates that the sampler is exploring values of around 0.2 to 0.4—that
is, the proportion of people coming from group 1 is around 0.2 to 0.4. Meanwhile, looking at
the actual labels (female and male), the empirical proportion of males is 562/(695 + 562) ≈
0.45. So this is slightly off. This could be due to not having enough data, and/or due to the
fact that we are assuming a fixed value of λ. It would be much better, and nearly as easy,
to allow components 0 and 1 to have different precisions, λ0 and λ1, and put Gamma priors
on them.

As shown in the bottom plot (panel (c)), one way of visualizing the allocation/assignment
variables z1, . . . , zn is to make histograms of the heights of the subjects assigned to each
component. At a glance, this shows us where the two clusters of datapoints are, how large
each cluster is, and what shape they have.

3.3.5 A potentially serious issue: It’s not mixing!

This example illustrates one of the big things that can go wrong with MCMC (although
fortunately, in this case, the results are still valid if interpreted correctly). Why are females
assigned to component 0 and males assigned to component 1? Why not the other way
around? In fact, the model is symmetric with respect to the two components, and thus the
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(a) Traceplots of the component means, µ0 and µ1.

(b) Traceplot of the mixture weight, π (prior probability that a subject comes from component 1).

(c) Histograms of the heights of subjects assigned to each component, according to z1, . . . , zn, in a
typical sample.

Figure 6: Results from another run of the mixture example.
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posterior is also symmetric. If we run the sampler multiple times (starting from the same
initial values), sometimes it will settle on females as 0 and males as 1, and sometimes on
females as 1 and males as 0 — see Figure 6. Roughly speaking, the posterior has two modes.
If the sampler were behaving properly, it would move back and forth between these two
modes, but it doesn’t—it gets stuck in one and stays there.

This is a very common problem with mixture models. Fortunately, however, in the case
of mixture models, the results are still valid if we interpret them correctly. Specifically, our
inferences will be valid as long as we only consider quantities that are invariant with respect
to permutations of the components.
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4 Exercises

1. Consider the bivariate distribution with p.d.f.

p(x, y) ∝ 1(|x− y| < c)1(x, y ∈ (0, 1)))

where (0, 1) denotes the (open) interval from 0 to 1.

(a) Derive the Gibbs sampler for this distribution (in this parametrization).

(b) Implement and run the Gibbs sampler for N = 103 iterations, for each of the
following: c = 0.25, c = 0.05, and c = 0.02.

(c) For each of these values of c, make a traceplot of x and a scatterplot of (x, y).

(d) Explain why the sampler will perform worse and worse as c gets smaller.

2. The issue with the sampler in Exercise 1 can be fixed using the following change of
variables:

U =
X + Y

2
, V =

X − Y
2

.

Using Jacobi’s formula for transformations of random variables, it can be shown (you
are not required to show this for the exercise) that the p.d.f. of (U, V ) is

p(u, v) ∝ 1(|v| < c/2)1(|v| < u < 1− |v|).

Samples of (U, V ) can be transformed back into samples of (X, Y ) by the inverse
transformation:

X = U + V, Y = U − V. (4.1)

Now using p(u, v), repeat parts (a), (b), and (c) from Exercise 1, except that in part
(c), transform your (u, v) samples into (x, y) samples using Equation 4.1 before making
the traceplots and scatterplots. Explain why this sampler does not suffer from the same
issue as the previous one. (Hint: You may find it helpful to draw a picture to figure
out the conditional distributions u|v and v|u.)

3. (More to come. . . )

Supplementary material

• Hoff (2009), 6.

• mathematicalmonk videos, Machine Learning (ML) 18.1–18.9
https://www.youtube.com/playlist?list=PLD0F06AA0D2E8FFBA
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Proofs

Conditional distribution of λ for semi-conjugate prior

We derive the distribution of λ given µ, x1:n, as in Equation 2.1:

p(λ|µ, x1:n) =
p(λ, µ, x1:n)

p(µ, x1:n)

∝
λ
p(λ, µ, x1:n)

= p(x1:n|µ, λ)p(µ)p(λ)

∝
λ
p(λ)

n∏
i=1

p(xi|µ, λ)

=
ba

Γ(a)
λa−1 exp(−bλ)

n∏
i=1

√
λ

2π
exp

(
− 1

2
λ(xi − µ)2

)
∝
λ
λa+

n
2
−1 exp

(
− λ
[
b+ 1

2

∑
(xi − µ)tothepart2

])
∝
λ

Gamma
(
λ
∣∣∣ a+ n/2, b+ 1

2

∑
(xi − µ)2

)
and ∑

(xi − µ)2 =
∑

(xi − x̄+ x̄− µ)2

=
∑[

(xi − x̄)2 + 2(xi − x̄)(x̄− µ) + (x̄− µ)2
]

=
∑

(xi − x̄)2 + 2(x̄− µ)
∑

(xi − x̄) + n(x̄− µ)2

=
∑

(xi − x̄)2 + n(x̄− µ)2

= nσ̂2 + n(x̄− µ)2.
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