In-class exercise

Instructions

- Don't look at the solution yet! This is for your benefit.
- This exercise must be submitted within 48 hours of the lecture in which it was given.
- As long as you do the exercise on time, you get full credit-your performance does not matter.
- Without looking at the solution, take 5 minutes to try to solve the exercise.
- Pre-assessment: Write down how correct you think your answer is, from 0 to 100%.
- Post-assessment: Now, study the solution and give yourself a "grade" from 0 to 100%.
- Submit your work on the course website, including the pre- and post- assessments.

Exercise

Suppose X_{1}, \ldots, X_{n} are i.i.d. outcomes (heads or tails) from flipping a coin n times. You want to know whether the coin is fair (i.e., probability of heads is $1 / 2$) or not. How would you approach this from a Bayesian hypothesis testing perspective? Give an explicit formula for the posterior on hypotheses.

$$
{ }_{u}(ъ / \mathrm{\Sigma})=\left(\mathrm{\zeta} /\left.\mathrm{L}\right|^{2} x\right)!I_{\text {nourəg }} \coprod_{u}^{\mathrm{L}=\imath}=\left({ }^{0} \mathrm{H} \mid x\right) d
$$

$$
\text { әхәчм }{ }^{\prime}\left(\left.x\right|^{0} \mathrm{H}\right) d-\mathrm{I}=\left(\left.x\right|^{\mathrm{I}} \mathrm{H}\right) d \text { рие }
$$

$$
\frac{\left({ }^{ } \mathrm{H}\right) d\left({ }^{ } \mathrm{H} \mid x\right) d+\left({ }^{0} \mathrm{H}\right) d\left({ }^{0} \mathrm{H} \mid x\right) d}{\left({ }^{0} \mathrm{H}\right) d\left({ }^{0} \mathrm{H} \mid x\right) d}=\left(x \mid{ }^{0} \mathrm{H}\right) d
$$

$$
\left(q^{`} p\right) \text { еұәә } \sim \theta
$$

	${ }^{〔} \mathrm{H}$ чәл! ${ }^{\text {¢ }}$
	${ }^{6} \mathrm{H}$ บәл! ${ }^{\text {¢ }}$.

pue

$$
\begin{aligned}
& \mathrm{Z} / \mathrm{L} \neq \theta:{ }^{\mathrm{T}} \mathrm{H} \\
& \mathrm{z} / \mathrm{L}=\theta:{ }^{0} \mathrm{H}
\end{aligned}
$$

$$
\begin{aligned}
& \theta p\left({ }^{\mathrm{I}} \mathrm{H} \mid \theta\right) d\left({ }^{\mathrm{I}} \mathrm{H}^{‘} \theta \mid x\right) d \int=\left({ }^{\mathrm{I}} \mathrm{H} \mid x\right) d
\end{aligned}
$$

