In-class exercise

Instructions

- Don't look at the solution yet! This is for your benefit.
- This exercise must be submitted within 48 hours of the lecture in which it was given.
- As long as you do the exercise on time, you get full credit-your performance does not matter.
- Without looking at the solution, take 5 minutes to try to solve the exercise.
- Pre-assessment: Write down how correct you think your answer is, from 0 to 100%.
- Post-assessment: Now, study the solution and give yourself a "grade" from 0 to 100%.
- Submit your work on the course website, including the pre- and post- assessments.

Exercise

Suppose $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \mathcal{N}\left(\theta, \sigma^{2}\right)$, and θ is given a $\mathcal{N}\left(\mu_{0}, \sigma_{0}^{2}\right)$ prior.
(a) When $n=1$, what is the marginal likelihood, $p\left(x_{1}\right)$?
(b) When $n>1$, is it true that the marginal likelihood factors as $p\left(x_{1: n}\right)=p\left(x_{1}\right) \cdots p\left(x_{n}\right)$?

(q) $7 .{ }^{18} \mathrm{P}_{\mathrm{d}}$

(e) $7 . \pi e_{d}$
uo!łn[OS

