In-class exercise

Instructions

- Don't look at the solution yet! This is for your benefit.
- This exercise must be submitted within 48 hours of the lecture in which it was given.
- As long as you do the exercise on time, you get full credit-your performance does not matter.
- Without looking at the solution, take 5 minutes to try to solve the exercise.
- Pre-assessment: Write down how correct you think your answer is, from 0 to 100%.
- Post-assessment: Now, study the solution and give yourself a "grade" from 0 to 100%.
- Submit your work on the course website, including the pre- and post- assessments.

Exercise

You need to sample from the distribution with p.d.f.

$$
p(x) \propto x^{a-1} \mathbb{1}(0<x<b)
$$

where $a, b>0$. Assume you can generate $\operatorname{Uniform}(0,1)$ random variables. How would you draw samples from $p(x)$?

$$
\begin{array}{r}
x={ }_{v / \mathrm{\tau}} n q \\
q / x={ }_{v / \mathrm{\tau}} n \\
{ }_{v}(q / x)=n
\end{array}
$$

$$
\begin{aligned}
& { }_{v}(q / 0)=\frac{p}{{ }^{\jmath}} \frac{v q}{p}= \\
& x p_{\mathrm{L}-v^{\prime}} x \int_{\rho}^{0} \frac{{ }^{0} q}{p}= \\
& x p(q>x>0) \mathbb{I}_{\mathrm{L}-v} x \frac{p q}{p}{ }_{\partial}^{0}= \\
& x p(x) d{ }_{\partial}^{0}=(0)_{H}
\end{aligned}
$$

$$
\begin{aligned}
& \cdot(q>x>0) \mathbb{I}_{\mathrm{I}-p} x \frac{p q}{p}=(x) d
\end{aligned}
$$

($\mathrm{I} \cdot 0$)

$$
\cdot \frac{p}{v^{\partial}}=\left.{ }_{\partial}^{0}\right|_{p^{x}} ^{p}=x p_{\mathrm{I}-v^{2}} x \int_{\partial}^{0}
$$

