In-class exercise

Instructions

- Don't look at the solution yet! This is for your benefit.
- This exercise must be submitted within 48 hours of the lecture in which it was given.
- As long as you do the exercise on time, you get full credit—your performance does not matter.
- Without looking at the solution, take 5 minutes to try to solve the exercise.
- Pre-assessment: Write down how correct you think your answer is, from 0 to 100%.
- Post-assessment: Now, study the solution and give yourself a "grade" from 0 to 100%.
- Submit your work on the course website, including the pre- and post- assessments.

Exercise

You need to sample from the distribution with p.d.f.

$$p(x) \propto x^{a-1} \, \mathbb{1}(0 < x < b)$$

where a, b > 0. Assume you can generate Uniform(0, 1) random variables. How would you draw samples from p(x)?

noitulo2

If we can get the c.d.f. and invert it, we can use the inverse c.d.f. method. First, let's find the normalizing constant of the p.d.f. For any c > 0,

(1.0)
$$\int_0^c x^{a-1} dx = \frac{x^a}{a} \Big|_0^c = \frac{x^a}{a} \cdot \frac{x^a}{a} + \frac{x^a}{a$$

os ,
 a > 0. In particular, $\int_0^b x^{a-1} dx = b^a / a$, so

$$p(x) = \frac{a}{b^{\alpha}} x^{\alpha-1} \mathbb{1}(0 < x < b).$$

Thus, for $c \in (0, b)$, the c.d.f. is

$$E_{\alpha}(c) = \frac{p_{\alpha}}{c} \frac{\sigma}{c_{\alpha}} = (c/p)_{\alpha}$$
$$= \frac{p_{\alpha}}{c} \int_{c}^{c} \frac{q}{p} x_{\alpha-1} \mathbb{I}(0 < x < p) dx$$
$$E_{\alpha}(c) = \int_{c}^{0} p(x) dx$$

using Equation 0.1 again. To solve for F^{-1} , we set u = F(x) for $u \in (0, 1)$ and solve for x:

$$\begin{aligned} {}^{o}(d/x) &= u \end{aligned}$$

.(x)q ~ $^{n/1}Ua$ nəht (1,0)
mrotinU ~ U îi ,
zurt .