Homework 11

For reference on the Markov Chain material, see mathematicalmonk ML 18.1-18.9.

1. Make up an exercise on material from the second half of the course. Upload your exercise and the solution to the folder entitled "Student-created exercises (Final)" under Resources.
2. Consider a discrete distribution $p(u, v)$ on two variables u and v. Show that the Gibbs move of sampling u from $p(u \mid v)$ is a special case of a Metropolis-Hastings move with a particular proposal distribution.
3. For the following, consider only time-homogeneous Markov chains (MCs) on discrete spaces:
(a) Give an example of a transition matrix that is not irreducible.
(b) Give an example of a transition matrix that has more than one stationary distribution.
(c) Give an example of a distribution π and a transition matrix T such that π is a stationary distribution for T, but π and T do not satisfy detailed balance.
(d) Show that if a MC is irreducible and there is a state b such that $T_{b b}>0$ (where T is the transition matrix), then the MC is aperiodic.
4. Let $\pi^{(0)}=(1,0,0)$, and compute $\pi^{(t)}=\pi^{(t-1)} T$ for $t=1, \ldots, 8$, where

$$
T=\left(\begin{array}{ccc}
.7 & .2 & .1 \\
.1 & .7 & .2 \\
.2 & .1 & .7
\end{array}\right)
$$

(Report your results.) Find a distribution π such that $\pi T=\pi$. (Hint: It's easier to guess and verify than solve the equations.)
5. Consider the following model:

$$
\begin{aligned}
& a \sim \operatorname{Gamma}(r, s) \\
& b \sim \operatorname{Gamma}(u, v) \\
& Y_{1}, \ldots, Y_{n} \mid a, b \stackrel{\mathrm{iid}}{\sim} \operatorname{Gamma}(a, b) .
\end{aligned}
$$

Derive a MH-within-Gibbs sampler for the posterior $p\left(a, b \mid y_{1: n}\right)$, using a Gibbs move for b and a Metropolis-Hastings move for a. For the MH move for a, generate proposals as
follows: at iteration i, sample $X_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ and propose $a^{*}=a_{i} e^{X_{i}}$. To compute the acceptance ratio, you will need the density of this proposal distribution. To find it, use the formula for transformation of continuous random variables, namely, if $Y=g(X)$ then

$$
p_{Y}(y)=p_{X}\left(g^{-1}(y)\right)\left|\frac{\partial}{\partial y} g^{-1}(y)\right|
$$

(under regularity conditions on g) where p_{X} and p_{Y} are the densities of X and Y respectively. You will find that the proposal distribution is a log-normal with parameters that depend on a_{i} and σ.

