Homework 3

Do exercises 2, 3, 5, and 7 at the end of Chapter 3 (Exponential Families and Conjugate Priors), and also the exercise below.

Exercise: Normal-Normal model

The normal (a.k.a. Gaussian) distribution $\mathcal{N}\left(\theta, \lambda^{-1}\right)$ with mean θ and precision (inverse variance) $\lambda=1 / \sigma^{2}$ has p.d.f.

$$
\mathcal{N}\left(x \mid \theta, \lambda^{-1}\right)=\sqrt{\frac{\lambda}{2 \pi}} \exp \left(-\frac{\lambda}{2}(x-\theta)^{2}\right) .
$$

Suppose we have data x_{1}, \ldots, x_{n} which we model as

$$
X_{1}, \ldots, X_{n} \stackrel{\mathrm{iid}}{\sim} \mathcal{N}\left(\theta, \lambda^{-1}\right) .
$$

Assume λ is fixed and known. Consider a normal prior on θ with mean μ_{0} and precision λ_{0}, that is,

$$
p(\theta)=\mathcal{N}\left(\theta \mid \mu_{0}, \lambda_{0}^{-1}\right)=\sqrt{\frac{\lambda_{0}}{2 \pi}} \exp \left(-\frac{\lambda_{0}}{2}\left(\theta-\mu_{0}\right)^{2}\right)
$$

Show that the posterior distribution is

$$
p\left(\theta \mid x_{1: n}\right)=\mathcal{N}\left(\theta \mid M, L^{-1}\right)
$$

where $L=\lambda_{0}+n \lambda$ and

$$
M=\frac{\lambda_{0} \mu_{0}+\lambda \sum_{i=1}^{n} x_{i}}{\lambda_{0}+n \lambda}
$$

(Optional) For an extra challenge, can you find the marginal likelihood $p\left(x_{1: n}\right)$?

