
Learning Objectives for STA 360/601

(What you should know for the final.)

1 General concepts

(References: Chapter 1 (Foundations), Hoff chapter 1 and 2.2–2.6, mathematicalmonk PP
2.1–5.5, ML 7.1–7.6)

• Know the difference between probability and statistics.

• Bayes’ theorem: Know the formula for Bayes’ theorem, understand what it means, and
know how to apply it.

• Be able to explain the Bayesian approach to statistics.

• Proportionality: Know the definition, know how to use it to derive conditional distri-
butions such as the posterior, and understand why it works (if two distributions are
proportional, they are equal).

• Cast of characters: Know the definitions (mathematical formulas) of, and understand
the purpose of:

– likelihood / generating distribution

– prior

– posterior

– marginal likelihood

– posterior predictive

– loss function

– posterior expected loss

– risk / frequent risk

– integrated risk

2 Probability distributions

(References: Hoff page 253) Note: You are not expected to memorize the form of each
distribution (e.g., the p.d.f./p.m.f. and c.d.f.). A sheet with common distributions will be
provided on the exam.

• Understand when a given probability distribution would be appropriate for modeling
a given type of data set (e.g., discrete versus continuous, appropriate range of values)
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• Distributions to be familiar with:

– Discrete: Geometric, Bernoulli, Binomial, Poisson, Uniform

– Continuous (univariate): Exponential, Uniform, Gamma, Beta, Pareto, Normal,
Inverse Gamma, Cauchy, t-distribution

– Continuous (multivariate): Multivariate Normal/Gaussian, Wishart, Inverse
Wishart

• Be able to give examples of when a distribution would be appropriate/inappropriate.

3 Analytical derivations

(References: Chapters 1, 3, 4, 6, Hoff chapters 3, 5, 6, 7)

• Be able to derive:

– the posterior,

– the marginal likelihood, and

– the posterior predictive,

for simple models with conjugate priors, such as:

– Bernoulli(θ) with Beta(θ|a, b) prior

– Binomial(n, θ) with Beta(θ|a, b) prior

– Geometric(θ) with Beta(θ|a, b) prior

– Uniform(0, θ) with Pareto(θ|α, c) prior

– Exp(θ) with Gamma(θ|a, b) prior

– Gamma(α, θ) with Gamma(θ|a, b) prior

– Poisson(θ) with Gamma(θ|a, b) prior

– N (µ, λ−1) with N (µ|µ0, λ
−1
0 ) prior

– N (µ, λ−1) with Gamma(λ|a, b) prior

– N (µ,Λ−1) (multivariate) with N (µ|µ0,Λ
−1
0 ) prior

– N (µ,Λ−1) (multivariate) with Wishart(Λ|S, ν0) prior

4 Decision theory

(References: Chapter 1 (Foundations), mathematicalmonk ML 3.1–3.4 and 11.1–11.8)

• Understand the decision theoretic setup: state, observation, action, loss.

• Know the Bayesian approach to decision theory (minimize posterior expected loss).

• Know the definition of a Bayes procedure.
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• Be able to compute the Bayes procedure (in closed-form when possible) for:

– 0–1 loss

– square loss

– other simple loss functions, such as quadratic functions of the state and action

• Be able to give examples of real-world decision problems that could be addressed using
decision theory.

• Know the definition of admissibility.

5 Exponential families

(References: Chapter 3 (Exp Fams and Conj Priors), Hoff section 3.3, mathematicalmonk
ML 5.1–5.4)

• Know the definition of a one-parameter exponential family.

• Know the definition of a (multi-parameter) exponential family.

• Be able to show that a given collection of distributions is an exponential family (one-
parameter or multi-parameter).

• Be able to identify the sufficient statistics function for a given exponential family (one-
parameter or multi-parameter).

• Know the definition of natural form / canonical form, and be able to put a given
exponential family into natural form.

• Be able to give examples of exponential families.

6 Conjugate priors

(References: Chapter 3 (Exp Fams and Conj Priors), Hoff section 3.3, mathematicalmonk
ML 7.4)

• Know the definition of a conjugate prior family.

• Be able to show that a given collection of distributions is a conjugate prior for a given
generator/likelihood family.

• Be able to show that mixtures of conjugate priors are conjugate priors.

• Know how to construct a conjugate prior for an exponential family.

• Understand that conjugate priors are not unique.

• Be able to give examples of conjugate priors.
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7 Univariate Normal model

(References: Chapter 4 (Univariate Normal model), Hoff chapter 5, mathematicalmonk ML
7.9–7.10)

• Understand when the Normal model is appropriate.

• Know the basic properties of the normal distribution: mean, median, mode; symmetric;
95% probability inside ±1.96 sigma.

• Know the relationship between the standard deviation, variance, and precision.

• Know the formula for the distribution of linear combinations of independent normals.

• Know how to construct a conjugate prior for the mean (Normal–Normal model).

• Know how to construct a conjugate prior for the mean and precision (NormalGamma–
Normal model)

• Be able to derive the posterior for the Normal–Normal model. (You are not expected
to memorize it.)

• Be able to derive the posterior for the NormalGamma–Normal model. (You are not
expected to memorize it.)

• Be able to choose appropriate values for the prior parameters (hyperparameters).

• Understand the relationship between the Gamma distribution and Inverse Gamma
distribution, and understand how they are used for constructing priors on the precision
and variance, respectively.

• Know that the Normal model is sensitive to outliers.

8 Monte Carlo

(References: Chapter 5 (Monte Carlo approx), Hoff chapter 4, mathematicalmonk ML 17.1–
17.4)

• Know what a (simple) Monte Carlo approximation is.

• Know what kinds of things can be approximated using Monte Carlo.

• Understand the advantages and disadvantages of sampling-based methods.

• Know the standard deviation (i.e., the RMSE) of a Monte Carlo approximation, and
know that it represents the rate of convergence.

• Be able to derive the basic properties of simple Monte Carlo approximations: consis-
tency, unbiasedness, variance, standard deviation, RMSE.

• Be able to identify the limit of a given Monte Carlo approximation.

• Know how to construct a Monte Carlo approximation for: posterior probabilities,
posterior densities, posterior expected loss, posterior predictive distribution, marginal
likelihood.
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• Know the condition under which a simple Monte Carlo approximation is consistent.

• Be able to give an example for which a simple Monte Carlo approximation is not
consistent.

• Know that the harmonic mean approximation is consistent, but performs poorly.

9 Importance sampling

(References: Chapter 5 (Monte Carlo approx), mathematicalmonk ML 17.5–17.7)

• Be able to derive the basic importance sampling approximation.

• Know how to construct a basic importance sampling approximation for a given expec-
tation and a given proposal distribution.

• Be able to identify the limit of a given importance sampling approximation.

• Understand the advantages and disadvantages of importance sampling compared to
simple Monte Carlo.

• Be able to derive the basic properties: consistency, unbiasedness, variance, standard
deviation, RMSE.

• Understand the properties that the proposal distribution must have in order to obtain
a consistent importance sampling approximation.

• Understand how to choose the proposal distribution, in order to minimize the approx-
imation error.

• Know that it is possible to handle unknown normalization constants.

10 Basic techniques for generating samples

(References: Chapter 5 (Monte Carlo approx), mathematicalmonk ML 17.8–17.14)

• Be able to apply the inverse c.d.f. method (derive a formula for transforming
Uniform(0, 1) samples into samples from the desired distribution), given the p.d.f.
of the desired distribution, possibly with an unknown normalization constant.

• Know that the c.d.f. of a continuous distribution transforms samples from that distri-
bution into Uniform(0, 1) samples.

• Know the precise statement of the inverse c.d.f. method, and understand why it is
necessary to use the generalized inverse.

• Understand the rejection principle, and be able to show that it is true.

• Understand the projection principle, and be able to show that it is true.

• Understand the rejection sampling procedure, and be able to show that it is true.
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11 Gibbs sampling

(References: Chapter 6 (Gibbs sampling), Hoff chapter 6)

• Know the basic Gibbs sampling algorithm for a distribution p(θ1, . . . , θk).

• Be able to derive a Gibbs sampler for a given distribution.

• Know the following terminology: full conditional distribution, sweep/scan, Gibbs up-
dates, burn-in period, good mixing.

• Understand the advantages and disadvantages of MCMC.

• Know the definition of a Markov chain.

• Know how to use the output of an MCMC algorithm to approximating the following
quantities:

– posterior expectations

– posterior probability of a given event

– posterior densities and c.d.f.s

– posterior predictive density and c.d.f.

• Understand why a burn-in period is often needed.

• Understand the utility of semi-conjugate (a.k.a. conditionally-conjugate) priors in the
context of Gibbs sampling.

• Know how to choose semi-conjugate priors for commonly-used models (e.g., mean and
variance for normal distribution).

• Understand why Gibbs sampling is so useful when using hyperpriors and/or hierarchical
models.

• Understand the concept of data augmentation / auxiliary variables.

12 Priors

(References: Chapters 3 & 6, Hoff chapter 9)

• Understand the following terms:

– conjugate prior

– semi-conjugate prior

– weakly-informative prior

– unit-information prior

– g-prior

– data-dependent prior

– improper prior

– non-informative prior
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• Understand how the “posterior” is defined when using an improper prior (see Chapter
6).

• Be able to choose prior parameter values that appropriately represent your prior beliefs.

13 MCMC diagnostics

(References: Chapter 6 (Gibbs sampling), Hoff section 6.6)

• Know how to construct and interpret the following MCMC diagnostics:

– traceplots

– running averages

– autocorrelation function (ACF)

– scatterplots

– estimated posterior densities

• Understand the limitations of MCMC diagnostics (we can only tell when things are
going wrong, not when things are going right).

• Be able to give a specific example in which mixing will appear to be fine according to
standard diagnostics, but mixing will actually be very poor.

• Understand why a change of variables can sometimes significantly improve MCMC
mixing.

• Understand why MCMC algorithms sometimes mix poorly on distributions with mul-
tiple modes.

14 Multivariate normal/Gaussian distribution

(References: Hoff chapter 7, mathematicalmonk PP 6.1–6.10)

• Know the density (p.d.f.) of the multivariate normal distribution.

• Know the definitions of:

– the covariance and (Pearson’s) correlation coefficient between two univariate ran-
dom variables.

– the covariance matrix and the precision matrix.

– symmetric positive definite matrix (know at least two definitions).

– matrix determinant (know at least two definitions).

– matrix inverse.

• Know how to parameterize the covariance matrix of a bivariate normal in terms of the
standard deviations σ1, σ2 and the correlation coefficient ρ.

• Know the relationship between independence and zero correlation among entries of a
multivariate normal vector.
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• Know the affine transformation property.

• Know how to construct a multivariate normal random vector from i.i.d. univariate
standard normals.

• Know how to transform a multivariate random normal vector into i.i.d. univariate
standard normals (“sphering”).

• Know how to put a semi-conjugate prior on the mean and covariance matrix.

• Know how to put a semi-conjugate prior on the mean and precision matrix.

• Be able to derive the full conditionals for the mean and covariance (or precision) when
using a semi-conjugate prior.

• Recognize the multivariate normal density as exp(quadratic).

15 Conditional independence relationships and graph-

ical models

(References: Bishop chapter, mathematicalmonk ML 13.1–13.9)

• Understand that a graphical model does not actually specify a model, but rather a set
of conditional independence properties.

• Understand why graphical models are useful.

• Know how to write down a directed graphical model (DGM) for a given probabilistic
model.

• Know how to write down the factorization of the joint distribution specified by a DGM.

• Know what it means for a distribution to respect a given DGM.

• Understand that one cannot determine dependence from a graphical model, only inde-
pendence.

• Be able to write down a DGM that is respected by any distribution on 5 variables.

• Be able to determine the moral graph associated with a given DGM.

• Know what it means for a distribution to respect a given undirected graphical model
(UGM).

• Know how to determine conditional independence relationships from a UGM.

16 Group comparisons and hierarchical models

(References: Hoff chapter 8)

• Understand how to define a hierarchical model for data from several groups.

• Be able to write down an appropriate hierarchical model, given only a verbal description
of the data.
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• Be able to give examples in which a hierarchical model would be useful.

• Understand the concept of “sharing statistical strength” (when using a hierarchical
model, data from one group helps to infer the parameters of another group).

• Be able to derive a Gibbs sampler for a hierarchical model with semi-conjugate priors
(including, but not limited to, the hierarchical normal models described in Hoff 8.3
and 8.5).

• Understand how deFinetti’s theorem can be used to justify modeling the observations
with each group, as well as the group parameters, as conditionally i.i.d.

• Understand the concept of shrinkage, and why it can improve performance.

17 Linear regression

(References: Hoff chapter 9, mathematicalmonk ML 9.1–10.7)

• Be able to write down the normal linear regression model.

• Be able to identify when it makes sense to use linear regression in a given problem.

• Understand how basis functions can be used to model non-linear relationships between
the predictor variables xi and outcomes y.

• Understand what is “linear” about linear regression (the mean E(Y |x) is a linear
function of the parameters β, but not necessarily of the predictor variables xi).

• Be able to derive the ordinary least squares (OLS) estimator of the coefficients (i.e.,
the maximum likelihood estimator).

• Know how to define semi-conjugate priors for the coefficients β and the variance σ2

(or precision λ).

• Know how to define a g-prior for the coefficients.

• Know how to define a unit-information prior for the coefficients.

• Be able to derive the resulting full conditionals, for each of these types of priors (note
that the g-prior and unit-information are essentially special cases of the semi-conjugate
prior).

18 Bayesian hypothesis testing and model selection/inference

(References: Lecture notes on course website, Hoff section 9.3, mathematicalmonk ML 12.1–
12.4)

• Understand the concept of Bayesian hypothesis testing, and how it differs from fre-
quentist hypothesis testing.

• Know that Bayesian hypothesis testing, Bayesian model selection, and Bayesian model
averaging are all the same thing, mathematically.
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• Be able to give examples of problems in which Bayesian hypothesis testing would make
sense.

• Given a verbal description of a problem, be able to identify when Bayesian hypothesis
testing would make sense, and write down an appropriate model.

• In simple cases, be able to compute the posterior on hypotheses analytically.

• Understand how decision theory can be used, if one hypothesis must be selected.

• Know the definition of Bayes factors, and how to interpret them.

• Know that “posterior odds = Bayes factor times prior odds”.

• Be able to compute Bayes factors in simple cases.

• Understand how Bayes factors (and the posterior on hypotheses) can be strongly af-
fected by the prior on parameters. Understand Lindley’s “paradox”.

• Understand why improper priors cannot be used when doing Bayesian hypothesis test-
ing. (An improper prior is only defined up to a multiplicative constant.)

• Know that Bayes factors can be non-monotone in the sample size, and understand why
this is the case.

19 Bayesian variable selection

(References: Hoff section 9.3)

• Understand why it can be advantageous to use a subset of variables, instead of all of
them.

• Understand the basic idea of the backwards elimination procedure (but not necessarily
the details).

• Understand how variable selection can be viewed as a hypothesis testing problem.

• Be able to write down a model for Bayesian variable selection.

• Be able to derive a sampler for the posterior, including a Gibbs sampler for the indicator
variables (indicating which coefficients are included).

20 Metropolis–Hastings MCMC

(References: Hoff chapter 10, mathematicalmonk ML 18.1–18.9)

• Be able to write down the Metropolis algorithm and the Metropolis–Hastings (MH)
algorithm.

• Be able to explain some of the advantages/disadvantages of MH versus Gibbs sampling.

• Be able to show that both the Metropolis algorithm and Gibbs sampling are special
cases of MH.

• Understand the intuition behind the acceptance ratio in the Metropolis algorithm.
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• Understand the rough idea behind the acceptance ratio in the MH algorithm.

• Understand why the choice of proposal distribution affects how well the resulting
Markov chain mixes.

• In simple cases, be able to choose a reasonable proposal distribution.

• In simple cases, be able to derive the density of the proposal distribution (in order to
compute the acceptance ratio).

21 Markov chains and combining MCMC moves

(References: Hoff chapter 10, mathematicalmonk ML 14.1–14.3, 18.1–18.9)

• Know the mathematical definition of a Markov chain (MC). “The Markov property”

• Know the mathematical definition of the following terms, for a time-homogeneous MC
taking values in a discrete (countable) space:

1. transition matrix

2. irreducible MC

3. aperiodic MC

4. stationary distribution (a.k.a. invariant distribution)

5. detailed balance

• Be able to give examples of MCs that have each of the following properties, and ex-
amples that do not: is irreducible, is aperiodic, has a stationary distribution.

• In simple cases, be able to identify whether an MC is irreducible and/or aperiodic, and
be able to identify a stationary distribution (if one exists).

• Know what the ergodic theorem is, and how it is used in MCMC.

• Be able to show that having detailed balance implies that the target distribution is a
stationary distribution.

• Understand the intuition behind the definition of stationary distribution, and detailed
balance (e.g., the water flow analogy).

• Be able to show that the MH algorithm induces an MC having detailed balance (for
the target distribution).

• Know how moves (transition matrices) can be combined, using

1. a product of transition matrices, i.e., a repeating cycle of moves (e.g., as in “fixed-
scan” Gibbs sampling),

2. a mixture of transition matrices, i.e., a random choice of move (e.g., as in “random-
scan” Gibbs).

• Understand why the choice of move (generally-speaking) cannot depend on the state
of the MC.
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• Understand how MH can be used within Gibbs sampling (MH-within-Gibbs).

• Be able to derive an MH-within-Gibbs sampler for a given model.

22 Advanced Monte Carlo methods

• In *very* general terms, know the basic idea of the following:

1. quasi-Monte carlo

2. slice sampling

3. Hamiltonian MC, a.k.a. hybrid MC

4. approximate Bayesian computation (ABC)

23 Mixture models

(References: mathematicalmonk ML 16.6)

• Know the definition of a mixture.

• Be able to write down a mixture model for a given problem.

• Know that mixture models can be used for density estimation, clustering, and latent
structure modeling.

• Know how to derive a Gibbs sampler for a two-component finite mixture model (this
was covered in Chapter 6).
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