
Additional notes on Metropolis–Hastings

This document contains a few notes on Metropolis–Hastings and Markov chains that are
not in the Hoff book or the mathematicalmonk videos.

Metropolis–Hastings

Metropolis–Hastings is a generalization of both Gibbs sampling and the Metropolis algo-
rithm. It is similar to Metropolis, but allows for an asymmetric proposal distribution. Con-
sequently, it is more flexible, and can obtain better mixing if one uses a well-chosen proposal
distribution, however, it requires that you be able to evaluate the density of the proposal
distribution.

Suppose π(x) is a p.m.f. on a countable set X (this is the “target distribution”). For
each x ∈ X , let qx(x∗) be a p.m.f. on values x∗ ∈ X (this is the “proposal distribution”).
For x, y ∈ X , define the “acceptance ratio” α(x, y) = π(y)qy(x)/(π(x)qx(y)).

Metropolis–Hastings algorithm

• Initialize x1 ∈ X .

• For i = 1, . . . , N − 1,

1. Sample x∗ ∼ qxi
(x∗).

2. Sample u ∼ Uniform(0, 1).

3. Set xi+1 = x∗ if α(xi, x
∗) > u, otherwise set xi+1 = xi.

Note that steps 2 and 3 can equivalently be written: With probability min{1, α(xi, x
∗)},

set xi+1 = x∗, and otherwise, set xi+1 = xi. Thus, the probability of accepting the proposal
is min{1, α(xi, x

∗)}.
Therefore, the Metropolis–Hastings algorithm defines a Markov chain (X1, X2, . . . , XN)

with transition matrix T where Txy = qx(y) min{1, α(x, y)} when x 6= y, and Txx = 1 −∑
y 6=x Txy. Assuming qx(y) > 0 and π(x) > 0 for all x, y ∈ X , it is easy to verify that this

has detailed balance with respect to π:

π(x)Txy = π(x)qx(y) min{1, α(x, y)} = π(x)qx(y) min
{

1,
π(y)qy(x)

π(x)qx(y)

}
= min{π(x)qx(y), π(y)qy(x)} = π(y)qy(x) min

{π(x)qx(y)

π(y)qy(x)
, 1
}

= π(y)qy(x) min{α(y, x), 1} = π(y)Tyx.
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Combining moves in Markov chains

Products of transition matrices (deterministic cycle of moves)

If T (1), T (2), . . . , T (k) have stationary distribution π, then the product T = T (1)T (2) · · ·T (k)

has stationary distribution π, since

πT = πT (1)T (2) · · ·T (k) = πT (2) · · ·T (k) = · · · = πT (k) = π.

This fact is used in “fixed-scan” Gibbs sampling, i.e., updating the variables in a determin-
istically chosen order. This is the version of Gibbs sampling that we have discussed.

Mixtures of transition matrices (random choice of move)

If T (1), T (2), . . . , T (k) have stationary distribution π, and w1, w2, . . . , wk ≥ 0 with
∑
wi = 1,

then the mixture T =
∑k

i=1wiT
(i) has stationary distribution π, since

πT =
k∑

i=1

wiπT
(i) =

k∑
i=1

wiπ = π
k∑

i=1

wi = π.

This fact is used in “random-scan” Gibbs sampling, i.e., randomly choosing which variable
to update at each step (here, wi is the probability of updating variable i at a given step).

State-dependent moves are typically invalid

Careful! The choice of move (transition matrix) to use at a given iteration should not depend
on the current state of the Markov chain, xi. Using such a state-dependent move can result
in a failure to converge to the correct stationary distribution.
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