
Gallager codes

Information Theory (APMA 1710), Fall 2011

In this assignment, you will implement and test the Gallager codes. (Suggestion: For this assign-
ment, Matlab is probably the easiest language to use.)

(I) Visualize parity check and generator matrices

Included with this assignment is a Matlab function called construct gallager.m that takes ar-
guments c, d,m (where c = number of ones per column, d = number of ones per row, and m =
number of rows in the parity check matrix) and returns a Gallager code parity check matrix H and
a corresponding generator matrix G. (Note: m must be a multiple of c.) There is also an optional
4th argument, visualize, that displays the matrices H and G when set to 1.

Using c = 3 and d = 7, and choosing visualize = 1, call construct gallager.m with the following
values of m: m = 75, m = 300, m = 600, and m = 900. (You do not need to submit anything for
this part.)

(II) Implement the decoding algorithm

Also included with the assignment is pseudocode for the decoding algorithm, in the file
pseudocode.pdf. Implement the decoding algorithm.

(III) Implement code to evaluate performance

We will evaluate the Gallager codes’ performance in essentially the same way as we did for Hamming
codes. You can reuse your code from Hamming for steps (1), (2), (3), and (4) below. Implement
code for (5).

(1) Randomly sample a binary sequence s = s1s2 · · · sK , where each si is drawn from a
Bernoulli(1/2) distribution. This s will be our source message. (For convenience, we will
assume that K is a multiple of the block length k.)

(2) Encode the source sequence s using the generator matrix G, producing a “transmitted”
sequence t = t1t2 · · · tN where N = nK/k. (Suggestion: By arranging s in a k×(K/k) matrix,
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the encoding can be done with a single matrix multiplication. In fact, I would encourage you
to represent all of the sequences s, t, u, r, and ŝ (defined below) in matrix form.)

(3) Randomly sample a binary sequence u = u1u2 · · ·uN , where each ui is drawn from a
Bernoulli(α) distribution. This u will represent the noise in the channel.

(4) Compute the binary sequence r = r1r2 · · · rN such that ri ≡ ti+ui (where ≡ denotes congru-
ence mod 2). This r represents the “received” sequence.

(5) For each block of n symbols in the received sequence r, compute the parity check vector z by
multiplying by H mod 2. (As above, this can be done with a single matrix multiplication.)
Using your implementation of the decoding algorithm from part (II), perform error correction
on each such parity check vector z, and use the results to produce the decoded sequence
ŝ = ŝ1ŝ2 · · · ŝK .

(IV) Evaluate the performance of Gallager codes

(1) Choose the following parameter values: c = 3, d = 7, α = 0.05, and K = 24000. For each
of m = 75, m = 300, m = 600, and m = 900, run your code from part (III) and print the
following quantities:

m n k R p̂b

where R = k/n is the rate, and as in the Hamming codes assignment, we estimate the
probability of bit error pb using

p̂b =
1

K

K∑
i=1

I(ŝi ̸= si).

(2) Repeat (1) using α = 0.025.

(3) Describe the trends you see in p̂b.

(4) What is the capacity C of this channel, for each of these values of α?

(5) The values of c and d above were chosen so that the rate of these codes is the same as the
rate of the (7, 4) Hamming code. Recall that for the (7, 4) Hamming code, pb ≈ 9α2. For
the values of α above (0.05 and 0.025), how does the performance (in terms of pb) of the
Gallager codes above compare with the performance of the (7, 4) Hamming code (using the
approximation pb ≈ 9α2 for the (7, 4) Hamming code)?

(Extra Credit) Sampling a Gallager code parity check matrix using MCMC

Learn about the Metropolis algorithm for MCMC (Markov chain Monte Carlo), and explain why the
function binary matrix MCMC.m produces a sample approximately from the uniform distribution
on m× n binary matrices with all column sums c and all row sums d.
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