Hamming codes

Information Theory (APMA 1710), Fall 2011

In this assignment, you will implement and test the (n, k) Hamming codes. (Suggestion: For this assignment, Matlab is probably the easiest language to use.)

(I) Implement (n, k) Hamming

Given any desired number of parity check bits $m \geq 3$, there is a (n, k) Hamming code with codeword length $n=2^{m}-1$ and block length $k=n-m$. (Suggestion: you may want to start by implementing the (7,4) code, and then generalize to (n, k) once you have everything working.) In what follows, m, K, and α are input arguments.
(1) Write code that takes m and constructs:
(a) the parity check matrix $H=\left[\begin{array}{ll}F & I_{m}\end{array}\right]$, and
(b) the generator matrix $G=\left[\begin{array}{ll}I_{k} & F^{T}\end{array}\right]$.

You may use any permutation of the columns of the F matrix that you find convenient (i.e. in the case of the $(7,4)$ code, you don't have to use the particular one we discussed in class.) (Suggestion: In Matlab, an easy way to produce the binary vector of length m corresponding to the number j is by using ($\operatorname{dec} 2 \operatorname{bin}(j, m)==1 \prime$). For example, ($\left.\operatorname{dec} 2 \operatorname{bin}(5,6)==1^{\prime}\right)$ returns $[0,0,0,1,0,1]$.)
(2) Randomly sample a binary sequence $s=s_{1} s_{2} \cdots s_{K}$, where each s_{i} is drawn from a Bernoulli(1/2) distribution. This s will be our source message. (For convenience, we will assume that K is a multiple of the block length k.)
(3) Encode the source sequence s using the generator matrix G, producing a "transmitted" sequence $t=t_{1} t_{2} \cdots t_{N}$ where $N=n K / k$. (Suggestion: By arranging s in a $k \times(K / k)$ matrix, the encoding can be done with a single matrix multiplication. In fact, I would encourage you to represent all of the sequences s, t, u, r, and \hat{s} (defined below) in matrix form.)
(4) Randomly sample a binary sequence $u=u_{1} u_{2} \cdots u_{N}$, where each u_{i} is drawn from a Bernoulli (α) distribution. This u will represent the noise in the channel.
(5) Compute the binary sequence $r=r_{1} r_{2} \cdots r_{N}$ such that $r_{i} \equiv t_{i}+u_{i}$ (where \equiv denotes congruence $\bmod 2$). This r represents the "received" sequence.
(6) Using the H matrix, perform error correction on the received sequence r, producing the decoded sequence $\hat{s}=\hat{s}_{1} \hat{s}_{2} \cdots \hat{s}_{K}$.

(II) Verify your implementation

Empirically demonstrate that your implementation is correct in the case of $(n, k)=(7,4)$, by printing the following:
(1) the parity check matrix H and the generator matrix G
(2) the s, t, u, r, and \hat{s} resulting from a run of your code from part (I), using $K=32$ and $\alpha=0.1$. (It is visually helpful here to display these in the matrix form described in (I)(3) above.)
(III) Evaluate (n, k) Hamming
(1) Write code to estimate the probability of bit error p_{b}, using the estimate

$$
\hat{p}_{b}=\frac{1}{K} \sum_{i=1}^{K} I\left(\hat{s}_{i} \neq s_{i}\right) .
$$

In other words, \hat{p}_{b} is the fraction of bits in which \hat{s} and s disagree.
(2) Set $\alpha=0.01$ and $K=326040$. For each $m=3, \ldots, 8$, run your code and print the following quantities:

$$
\begin{array}{ccccc}
m & n & k & R & \hat{p}_{b}
\end{array}
$$

where $R=k / n$ is the rate.
(3) Repeat (2) using $\alpha=0.001$.
(4) Describe the trends you see in R and \hat{p}_{b}.
(5) Consider the code resulting from choosing $m=8$. Compare the values of α and \hat{p}_{b} in the case of $\alpha=0.01$. Does this look like a code you would want to use for this value of α ? Is it any better when $\alpha=0.001$? Try some other values of α and describe the trend you observe.
(Note: I chose the K above to be divisible by all the k 's corresponding to $m=3, \ldots, 8$.)

(Extra Credit) Analytically compute the probability of bit error p_{b}

(1) Recall that the definition of p_{b} is:

$$
p_{b}=\frac{1}{K} \sum_{i=1}^{K} \mathbb{P}\left(\hat{s}_{i} \neq s_{i}\right) .
$$

Prove that for the $(7,4)$ Hamming code, $p_{b} \approx 9 \alpha^{2}$ when α is small. (More precisely, $p_{b}=$ $9 \alpha^{2}+g(\alpha)$, where g is some function such that $g(\alpha) / \alpha^{2} \rightarrow 0$ as $\alpha \rightarrow 0$.)
(2) Can you derive a similar approximation for the general case of a (n, k) Hamming code?

