
Hamming codes

Information Theory (APMA 1710), Fall 2011

In this assignment, you will implement and test the (n, k) Hamming codes. (Suggestion: For this
assignment, Matlab is probably the easiest language to use.)

(I) Implement (n, k) Hamming

Given any desired number of parity check bitsm ≥ 3, there is a (n, k) Hamming code with codeword
length n = 2m−1 and block length k = n−m. (Suggestion: you may want to start by implementing
the (7, 4) code, and then generalize to (n, k) once you have everything working.) In what follows,
m,K, and α are input arguments.

(1) Write code that takes m and constructs:
(a) the parity check matrix H = [F Im], and
(b) the generator matrix G = [Ik F T ].
You may use any permutation of the columns of the F matrix that you find convenient (i.e.
in the case of the (7, 4) code, you don’t have to use the particular one we discussed in class.)
(Suggestion: In Matlab, an easy way to produce the binary vector of length m corresponding
to the number j is by using (dec2bin(j,m)==’1’). For example, (dec2bin(5,6)==’1’)
returns [0,0,0,1,0,1].)

(2) Randomly sample a binary sequence s = s1s2 · · · sK , where each si is drawn from a
Bernoulli(1/2) distribution. This s will be our source message. (For convenience, we will
assume that K is a multiple of the block length k.)

(3) Encode the source sequence s using the generator matrix G, producing a “transmitted”
sequence t = t1t2 · · · tN where N = nK/k. (Suggestion: By arranging s in a k×(K/k) matrix,
the encoding can be done with a single matrix multiplication. In fact, I would encourage you
to represent all of the sequences s, t, u, r, and ŝ (defined below) in matrix form.)

(4) Randomly sample a binary sequence u = u1u2 · · ·uN , where each ui is drawn from a
Bernoulli(α) distribution. This u will represent the noise in the channel.

(5) Compute the binary sequence r = r1r2 · · · rN such that ri ≡ ti+ui (where ≡ denotes congru-
ence mod 2). This r represents the “received” sequence.

(6) Using the H matrix, perform error correction on the received sequence r, producing the
decoded sequence ŝ = ŝ1ŝ2 · · · ŝK .
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(II) Verify your implementation

Empirically demonstrate that your implementation is correct in the case of (n, k) = (7, 4), by
printing the following:

(1) the parity check matrix H and the generator matrix G
(2) the s, t, u, r, and ŝ resulting from a run of your code from part (I), using K = 32 and α = 0.1.

(It is visually helpful here to display these in the matrix form described in (I)(3) above.)

(III) Evaluate (n, k) Hamming

(1) Write code to estimate the probability of bit error pb, using the estimate

p̂b =
1

K

K∑
i=1

I(ŝi ̸= si).

In other words, p̂b is the fraction of bits in which ŝ and s disagree.

(2) Set α = 0.01 and K = 326040. For each m = 3, . . . , 8, run your code and print the following
quantities:

m n k R p̂b

where R = k/n is the rate.

(3) Repeat (2) using α = 0.001.

(4) Describe the trends you see in R and p̂b.

(5) Consider the code resulting from choosing m = 8. Compare the values of α and p̂b in the case
of α = 0.01. Does this look like a code you would want to use for this value of α? Is it any
better when α = 0.001? Try some other values of α and describe the trend you observe.

(Note: I chose the K above to be divisible by all the k’s corresponding to m = 3, . . . , 8.)

(Extra Credit) Analytically compute the probability of bit error pb

(1) Recall that the definition of pb is:

pb =
1

K

K∑
i=1

P(ŝi ̸= si).

Prove that for the (7, 4) Hamming code, pb ≈ 9α2 when α is small. (More precisely, pb =
9α2 + g(α), where g is some function such that g(α)/α2 → 0 as α → 0.)

(2) Can you derive a similar approximation for the general case of a (n, k) Hamming code?
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