
Huffman coding

Information Theory (APMA 1710), Fall 2011

In these exercises, we explore the Huffman coding algorithm for lossless compression.

(1) Implement the Huffman algorithm

The algorithm can be divided into roughly 4 parts:

(a) A function that takes a vector of probabilities p = (p1, . . . , pn) and generates a tree using the
Huffman procedure.

(b) A function that takes the tree from (a) and produces the corresponding codebook (i.e. the map
from source symbols to codewords).

(c) A function that takes a sequence of source symbols (and the codebook from (b)) and encodes
it as a sequence of code symbols.

(d) A function that takes an encoded sequence produced by (c) (and the tree generated by (a))
and decodes it back into a sequence of source symbols.

Implement each of these functions. Use the code alphabet A = {0, 1}.

(2) Verify your implementation

(A) Manually compute the Huffman tree and corresponding codebook for the following values of p:

(1) p = (.5, .25, .125, .125)
(2) p = (.49, .26, .12, .04, .04, .03, .02)
(3) p = (.99, .01)

(B) Run parts (a) and (b) of your implementation on these 3 values of p to make sure everything
is working properly.

(C) Run parts (c) and (d) of your implementation on the following test sequences:

1

(1) abcdaabbaa (using p = (.5, .25, .125, .125) on source alphabet X = (a, b, c, d))
(2) abcdefgbac (using p = (.49, .26, .12, .04, .04, .03, .02) on source alphabet X = (a, b, c, d, e, f, g))
(3) aaaaaaaaba (using p = (.99, .01) on source alphabet X = (a, b))

(3) Compare lengths

(A) Implement a function to take a (finite) source alphabet X and a PMF p on X , and generate a
sequence of n i.i.d. samples X1, . . . , Xn ∈ X from p.

(B) For each of the values of p in part (A) of the previous exercise:

(1) Construct a Huffman code for p,
(2) Generate a sequence of length n = 1000,
(3) Encode the sequence using your Huffman code,
(4) Compare the following quantities:

(a) the encoded length (which is in bits, since |A| = 2),
(b) the “ideal” encoded length: nH2(p) (which is in bits since H2 is the base 2 entropy),
(c) the “original” length, converted to bits: n log2 |X |,
where |X | is the number of elements in X .

(5) Explain why the observed values of the encoded length (compared with original length and
ideal encoded length) make sense.

(C) In part (B), you should occasionally see an encoded length that is slightly less than the “ideal”
encoded length. How can this happen, since we know that the entropy is a lower bound on the
expected codeword length?

(EXTRA CREDIT)

(A) Asymptotically achieve optimal compression using blocks

Implement a function that takes a source alphabet X and a PMF p on X , and produces a new
source alphabet X k and PMF pk for blocks of length k. Here, X k = X ×· · ·×X and pk(x1 · · ·xk) =
p(x1) · · · p(xk). (We are modeling the source as i.i.d..)

Repeat part (B)(2-4) of exercise (3), but this time generate a sequence of n = 2520 source symbols
from X using p, and for each k = 1, 2, . . . , 8 encode it using a Huffman code for X k constructed
using the block PMF pk. (I chose n = 2520 so that it would be divisible by k = 1, . . . , 10.)

How does the computational complexity of constructing the Huffman code increase as k increases?

(B) Compress a real-world data set

Included along with these instructions is a text file calgary.txt, which is a truncated version of the
Calgary corpus, a benchmark data set for lossless compression. (Unimportant note: It is truncated

2

by excluding files containing non-ASCII characters, selectively removing non-printable characters
from the ASCII files, and chopping off the last few characters so that the length is divisible by
k = 1, . . . , 10.)

http://en.wikipedia.org/wiki/Calgary_Corpus

Implement a function that takes a string s and a block size k, and estimates the probability of each
possible block x1 · · ·xk by counting how many times it occurs in the sequence of blocks s1 · · · sk,
sk+1 · · · s2k, . . . , sn−k+1 · · · sn occurring in the string. (Note: You may find it more computationally
efficient to only keep track of blocks occurring one or more times, and implicitly set the remaining
blocks to have probability 0.)

For each value of k = 1, . . . , 4:

(1) Read in the file calgary.txt, and estimate the probability of each possible block. Using your
estimated probabilities as a PMF pk on X k, construct a Huffman code. Encode the file using your
Huffman code.

(2) To decode the file you need to know the code that was used to encode it. This is often done
by prepending the encoded string with a header. Approximate the length of such a header by
computing the sum of the lengths of the codewords that are used in your Huffman code.

(3) Compute the compression ratio: the encoded length (including the header, in bits) divided
by the original length (in bits). Here, for the original length, use 8n = n log2 2

8 (where n is the
number of characters in calgary.txt) since ASCII characters are represented as one byte each.
(This is a bit different from the original length we used above, since there are actually only 128
ASCII characters, and even fewer printable ones.)

(Just for fun, you can check out the Wikipedia page above to see roughly how good of a compression
ratio Huffman achieves compared with state-of-the-art algorithms. This isn’t a perfect comparison,
since we have truncated the data set, and we are approximating the header length.)

3

