
Arithmetic coding

Information Theory (APMA 1710), Fall 2011

(1) Implement the arithmetic coding algorithm

Implement the finite-precision version of the algorithm, using code alphabet A = {0, 1}. Your
implementation should include:

(a) (Encoder) A function that takes a (finite) source alphabet X = {EOF, x1, . . . , xn}, a vector of
probabilities p = (p0, . . . , pn), and a string to be encoded, and outputs the encoded sequence.

(b) (Decoder) A function that takes an encoded sequence produced by (a) (along with X and p)
and decodes it back into the original sequence of source symbols.

Notes: For the rest of the homework assignment, you will only need the Encoder. So, if you have
difficulty implementing the Decoder you may want to come back to this after finishing the rest of
the exercises.

Use whatever level of precision you find convenient. This determines the range of integers you will
use. (A typical choice is 16-bit precision, but you will need more than this for the Extra Credit
part below. I’m using 32-bit precision.)

Although you are free to implement the algorithm any way you like, you may find it useful to
first implement the “infinite-precision” version using floating-point arithmetic (without rescaling)
and test it on short input strings, and only then modify your implementation to use integers and
rescaling to be able to handle arbitrary length strings. Remember: The key to making the Decoder
work is to do the rescaling at exactly the same steps during decoding as during encoding.

(2) Verify your implementation

Run your implementation on the following short test cases to make sure everything is working. For
each test case, you are given X , p, the input string x, and the correct encoded string β. The EOF
symbol is 0.

(1) X = (0, 1, 2), p = (.2, .4, .4), x = 210, β = 1011
(2) X = (0, 1, 2), p = (.2, .4, .4), x = 1221120, β = 100011111
(3) X = (0, 1, 2, 3), p = (.05, .05, .5, .4), x = 2320, β = 011011
(4) X = (0, 1, 2, 3), p = (.05, .05, .5, .4), x = 3231220, β = 1100001111

1



(3) Compare lengths

In this exercise, we compare arithmetic coding with Huffman coding and with the entropy. In
the previous homework assignment, you implemented a function to take a (finite) source alphabet
{1, . . . , d} and a PMF q = (q1, . . . , qd), and generate a sequence of n i.i.d. samples X1, . . . , Xn from
q. To do arithmetic coding, we need to have an EOF symbol, so we (A) augment the original source
alphabet to contain 0, so that X = {0, 1, . . . , d}, and (B) modify q to obtain p by choosing some
value of p0 (the probability of EOF) and setting

pi = (1− p0)qi

for i = 1, . . . , d. Consider the following values of q:

(1) q = (.5, .25, .125, .125)
(2) q = (.99, .01)
(3) q = (.001, .002, .003, .004, .99)

For each of these values of q:

(1) Generate a sequence of length n = 1000,
(2) Encode the sequence using arithmetic coding with p obtained from q as above, choosing

p0 = 1/n,
(3) Compare the following quantities:

(a) the encoded length using arithmetic coding,
(b) the encoded length using Huffman coding,
(c) the “ideal” encoded length: nH2(q),
(d) the “original” length, converted to bits: n log2 d,
where d is the number of elements in the original source alphabet {1, . . . , d}, before including
the EOF symbol 0.

(EXTRA CREDIT)

Get within a few bits of the entropy on a real-world data set

Included along with these instructions is the same text file calgary.txt that was included in the
Huffman assignment.

Estimate the probability of each symbol that appears in the file, by counting how many times it
occurs. Since the character 0 may occur in the file, we can’t use it as the EOF symbol. Instead, you
can use a non-printable character that doesn’t occur in the file, such as the ASCII character with
code 00, sometimes denoted NUL. Using your estimated probabilities q, compute the corresponding
p as in exercise (3), using pEOF = 1/n where n is the number of characters in the file.

2



Encode the file using your arithmetic coding implementation. How does your encoded length
compare with the “ideal” length, nH2(q)? How does this compare with the encoded length using
Huffman coding?

(CHALLENGE)

If you’re really up for a challenge, you could take this to the next level by implementing a non-i.i.d.
statistical model such as a kth order Markov model, and coupling this with arithmetic coding. If
you come up with a good model, maybe you can beat the current world records!

3


