
MCMC

Introduction to Machine Learning (CSCI 1950-F), Summer 2011

In these exercises, we use Markov chain Monte Carlo (MCMC) to study the solid-liquid phase tran-
sition in an idealized model of physical particles. These instructions (this file) can be downloaded
from the course website along with code for use in the exercises below.

Phase transitions have been a subject of intense interest among physicists for, perhaps, as long as
there have been physicists. In order to understand the essence of what causes these phenomena, it is
desirable to find models that exhibit phase transitions, while operating under the simplest possible
principles. One such model is the “hard disks in a box” model, proposed by J. G. Kirkwood in
1935.

In the “hard disks in a box” model, there are N particles (i.e. molecules), each represented as a
disk of radius r > 0. These disks reside in a “box” of width w and height w, which we represent
mathematically by specifying the center of disk i by its position xi ∈ [0, w)× [0, w).

To avoid the asymmetries caused by having a boundary, the model uses periodic boundary condi-
tions. In other words, the boundaries of the box are made to “wrap around” (so in fact, the “box”
is a torus). Mathematically, this is done by representing the coordinates of the position xi by the
equivalence classes, xi(1) mod w and xi(2) mod w. We define the distance between two points in
the torus as follows:

d(xi, xj) = min{||xi − xj + s|| : p, q ∈ Z, s = (pw, qw)},

in other words, the distance from xi to xj is the smallest Euclidean distance between any translations
of xi and xj by integer multiples of w in the vertical or horizontal directions.

We say that two discs intersect if the distance between their centers is less than the diameter 2r.
A configuration x = (x1, . . . , xN) of positions is called valid if no two discs intersect.

(1) Visualize the periodic boundary conditions

To get a feeling for the mathematical description above, and especially the periodic boundary
conditions, run the script main.m with part = 1. This initializes the positions of a set of N = 10
non-intersecting discs of radius r = 1, in a box of width w = 15. Then it proceeds to smoothly
translate them, altogether, in a linear fashion. Observe how each disk reappears on the opposite
side as it moves over the boundary.

1

(Note: For this part, to aid the visualization, we draw all the parts of each disk as it wraps around
the boundaries. However, this is computationally somewhat inefficient, so later on we will only
draw the main part of each disk.)

(2) Implement the Metropolis algorithm

The “hard disks in a box” model uses the uniform probability distribution on the set of all valid
configurations. Let T = [0, w) × [0, w) be the torus (the box), and let V ⊂ TN be the set of all
valid configurations x = (x1, . . . , xN) (where xi ∈ T is the position of disk i). Let π : T → R be
the uniform density on V , so that

π(x) =
1

Z
I(x ∈ V),

where Z > 0 is some unknown constant. (Of course, mathematically speaking, we know that
Z =

∫
T I(x ∈ V)dx =

∫
V dx, but computationally, this quantity is unmanageable to compute.) So,

π(x) = π̃(x)/Z, where π̃(x) = I(x ∈ V). This completes the specification of the model.

Now, in order to understand this model, we would like to be able to compute expectations with
respect to π. That is, given a function f : T → R, we would like to be able to compute Ef(X)
with X ∼ π. We will use the Metropolis algorithm for MCMC to approximate such expectations.
(In fact, the “hard disks in a box” model was the very first application of MCMC, when it was
introduced in 1953 by Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller.)

Before we start computing expectations, though, let’s first get the central part of the Metropolis
algorithm working. Part 2 of the script is intended to run the Metropolis algorithm for n = 500
iterations, starting from the same N = 10 discs that we started with in part 1. This will result in
a “simulation” in which the disks randomly wander about in the box.

To apply the Metropolis algorithm, we need to select a proposal distribution. Our proposal distri-
bution involves a parameter a > 0. Here is how to sample from the proposal distribution that we
want, given that x is our current state (i.e. the positions of the discs):

(a) Randomly choose a disk j from the (discrete) uniform distribution on {1, . . . , N}.

(b) Randomly choose a point s from the (continuous) uniform distribution on [−a, a]× [−a, a].

(c) The proposed sample is then x′ = (x′1, . . . , x
′
N) where x′j = xj + s mod w, and x′i = xi for all

i ̸= j.

In Matlab, compute x′j = xj + s mod w by using a=mod(b+s,w), where a,b,s are (1-by-2) vectors
representing x′j , xj , s respectively. Each iteration of the Metropolis algorithm involves the following
three steps:

(1) Given the current state x, sample a proposal x′ from the proposal distribution.

(2) Sample u uniformly from [0, 1].

2

(3) If u < π̃(x′)/π̃(x) then we accept the proposal x′ and our new current state becomes x′.
Otherwise, we reject the proposal and our current state remains unchanged for this iteration.

Your task is to implement these three steps. (Note: for the distribution π we are using, these steps
simplify.) When you’re done, run the script with part = 2. Print out and submit the code
you added.

Some technical notes:

(1) We could write down the proposal “matrix”, Q : TN × TN → R for this procedure, but we
don’t really need it, so let’s not worry about that.

(2) It’s easy to check that this proposal distribution is symmetric and defines an aperiodic Markov
chain, but it’s not always clear whether this Markov chain is irreducible. In fact, as we will see in
the simulations, it’s obvious that sometimes it’s not irreducible... But we’re going to use it anyway
because this is (essentially) how they did it in the original 1953 paper. For this problem, this lack
of irreducibility is probably not a big deal.

(3) Use the Metropolis algorithm to study the phase transition

The remarkable thing about the “hard disks in a box” model is that it exhibits a solid-liquid phase
transition. In order to study this phase transition, we are going to hold the number of discs constant
at N = 56 and gradually increase the area, by gradually increasing the width w of the box. For
each value of w in this sequence, we will first run the Metropolis algorithm for a while to let things
settle down and reach a “steady-state” (this is called the “burn-in” period), and then we will begin
collecting samples at regular intervals. After running the Metropolis algorithm for a while longer
and getting several samples, we will move on to the next value of w in the sequence.

In order to quantify the solid-ness of a given configuration x, we define the function f(x) to be the
number of hexagonal crystalline structures, that is, the number of disks having 6 other disks within
a distance of 3r from it. (Disclaimer: I don’t know if this f is physically meaningful — I just made
it up to try to capture the regularity exhibited in the solid state.) We will approximate Ef(X) for
each value of w by using

Ef(X) ≈ 1

n

n∑
m=1

f(XmT),

where T = 200 is the length of the intervals between the samples we will use, and X1, . . . , XS is the
sequence of states occurring during the steady-state period for w. (Using only the values of f(Xi)
at regular intervals reduces the computation time.)

The code is missing the Metropolis iteration that you implemented in part 2. Copy and paste your
code from part 2. Also missing is the expression for the approximation above. Fill in the appropriate
computation. Finally, run the script with part = 3, to perform this MCMC approximation for each
value of w, and plot the results. Print out and submit the code you added, along with the
resulting plot of approximated values of Ef(X).

3

