Sampling

Introduction to Machine Learning (CSCI 1950-F), Summer 2011

In these exercises, we use Monte Carlo and importance sampling to approximate the area of the
Mandelbrot set. These instructions (this file) can be downloaded from the course website along
with code for use in the exercises below.

The Mandelbrot set M is the set of complex numbers ¢ € C such that the sequence zg, z1, z2, . .. is
bounded when zy = 0 and
Zn4+1 = zi +c.

Due to the highly complicated nature of the Mandelbrot set, the exact value of its area is not
known, however, it has been estimated to be 1.50659177 4+ 0.00000008. (The area of a set in the
complex plane is defined to be the area of the corresponding set in R?, where the 1st coordinate is
the real part and the 2nd coordinate is the imaginary part.)

(See http://en.wikipedia.org/wiki/Mandelbrot_set#Basic_properties)

It has been proven that the Mandelbrot set is contained in the square [—2,2] x [—2,2] (that is, if
c¢c=a+1ib € M with a,b € R, then |a|] <2 and |b| < 2). We will use this fact to estimate the area.

Implementation notes:

(a) Matlab has a built-in capacity for handling complex numbers ¢ € C, using the built-in variable
i for the imaginary unit. For this reason, you should not use the variable i anywhere
in the script, because it will overwrite the built-in value and nothing will work. To
represent a complex number ¢ € C in Matlab, one evaluates the expression c=a-+i*b.

(b) Although in general it is computationally impossible to actually evaluate whether a given
point ¢ € C is in the Mandelbrot set, the function Mandelbrot.m approximates this operation by
computing the sequence for a large-ish number of iterations, and checking a threshold.

(1) Visualize the Mandelbrot set

With part = 1, run the script main.m to visualize the Mandelbrot set M on a regular grid of
points in the square [—2,2] x [—2,2]. (Red points are in the set, and blue points are not.) The
function grid performs this operation by forming a regular grid of points and calling the function
Mandelbrot.m to determine which points are in M.

Further, the script uses the output of grid to compute an approximation of the area of M, by
computing the fraction of points in the grid that were in M, and multiplying this by 16. (We
multiply by 16 since this is the area of the square [—2,2] x [-2,2].) You do not need to submit
anything for this part.

(2) Implement Monte Carlo approximation

It is also possible to perform a Monte Carlo approximation of the area, in the following way. Let
S =[-2,2] x [-2,2] be the square, and let p be the uniform distribution on S. If X ~ p then

1 n
area(M)/area(S) = P(X e M) = E(Im(X)) = - ZIM(Xi)>
i=1
where X1, ..., X,, ~ piid.. Since area(S) = 16, then we have the Monte Carlo approximation:
16
area(M) ~ . Z Iam(X5).
=1
In this problem, you will implement this approximation.
The function MC in main.m is intended to do the same thing as the grid function, except instead of
using a regular grid, it is intended to use a random set of points sampled uniformly from the square
[—2,2] x [—2,2]. However, the function is incomplete. Your task is to fill in the missing lines. (The
function MC takes an argument n, specifying the number n of samples to use in the Monte Carlo
approximation.)
Then, using the output of MC, in part 2 the script is intended to compute the Monte Carlo ap-
proximation of the area of M. However, you need to fill in the missing computation. (Note: The
parameter w controls how many points the grid has on each side, and therefore the grid has a total

of w~2 points. Thus, in order to obtain a fair comparison, for the Monte Carlo approximation we
use n = w~2.) Print out and submit the code you added.

(3) Implement importance sampling approximation

Third, we will also perform a importance sampling approximation of the area. If X ~ p then

area(M)/area(S) = P(X e M) = E(Im(X)) = /IM(m)p(a;)dx

B 5 IR B N 16
= [Gatene = 3t B,

where X1,...,X,, ~ ¢ iid.. (For this approximation, ¢ must be a density such that p(z) = 0

p(Xi)
q(X;)

for any z with ¢(z) = 0. The numbers are called the “importance weights”.) Thus, the

importance sampling approximation is

In the code, the function IS samples X1,..., X, ~ ¢ i.i.d. for a distribution ¢ corresponding to a
mixture of Gaussians designed to fit relatively closely to the Mandelbrot set. It also computes the
importance weights, returned in a vector called weights.

Using the output of IS, in part 2 the script is intended to compute the importance sampling
approximation of the area of M. However, you need to fill in the missing computation. Print out
and submit the code you added.

(4) Compare the different approximations

At long last, we are ready. With part = 2, run the script main.m to compute each of the three
approximations for a range of values of w. Sit back and enjoy your handiwork. Print out and
submit the four figures that are displayed at the termination of the script.

How would you rank the three approximations, from best to worst? (If you want, you can run the
script with reset_random = 0 to see the results with different random samples.)

(5) Importance sampling with an indecent proposal distribution

Oftentimes, it is difficult to design a proposal distribution that is simultaneously a good “fit” and
is also easy to sample from. To see what happens in situations like this, let’s purposely mess
up our proposal distribution. For each of the following scenarios, print out and submit
Figure 3, displaying the points of the square that are used in the importance sampling
approximation. (As usual, also submit your answers to the questions.)

Scenario 1: In the function IS, modify the line that says pi_1 = 0.85 to instead be pi_1 = 1. Run
the script now. How does this change the proposal distribution? By looking at Figure 4, how would
you say that this change affects the bias and variance of the importance sampling approximation?

Scenario 2: Next, change it to pi_1 = 0, and run the script again. Answer the same 2 questions
as in Scenario 1.

Scenario 3: Now, we really make it interesting. Set pi_1 = 0 and mu_2 = [-.75,.75], and run
the script again. Same questions. (Extra credit: With reset_random = 1, at the iteration
when w = 55 (n = 3025), I observe a very large spike in the approximated area. Can
you explain why this happens?)

