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Least-squares

We have seen the least-squares (maximum likelihood)
approach to fitting linear models like

Yi = β1xi1 + · · ·+ βpxip + εi = xTiβ + εi.

Linear models have a number of advantages:
I Interpretability
I Simple and easy to use
I Low flexibility helps control variance and improve performance

But least-squares fitting has several disadvantages:
I Variance can still be high, especially when p is large
I Collinear predictors cause difficulties
I Cannot be used when p > n
I Requires extra steps to do variable selection
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Penalized regression

Penalized regression improves upon least-squares.

Basic idea: Constrain or “shrink” parameter estimates.

Intuition: Keep the parameter estimates from being too wild.

Penalization is also known as regularization.

Regularization reduces variance and increases bias.

Test performance can be improved by regularizing an
appropriate amount (due to bias-variance tradeoff).
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Penalized regression

In least-squares, we minimize the objective function

RSS(β) =

n∑
i=1

(yi − xTiβ)2.

Meanwhile, in penalized regression, we minimize

F (β) = RSS(β) + λPenalty(β).

λ ≥ 0, and the penalty function can take various forms.

More generally, in penalized maximum likelihood, we minimize

F (β) = −`(β) + λPenalty(β)

where `(β) is the log-likelihood function.
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Examples of penalty functions

Common choices of penalty:

Ridge: Penalty(β) =

p∑
j=1

β2j .

Lasso: Penalty(β) =

p∑
j=1

|βj |.

Naive elastic net: Penalty(β) = α

p∑
j=1

β2j + (1− α)

p∑
j=1

|βj | .

Best subset: Penalty(β) =

p∑
j=1

I(βj 6= 0).

Some choices of penalty enable variable selection (lasso, elastic
net, best subset), but others do not (e.g., ridge).
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Duality

Under some conditions, this is equivalent to minimizing −`(β)
subject to the constraint that

Penalty(β) ≤ s,

for some s that depends on λ.

The details are beyond the scope of this course, but look up
Lagrangian duality if you are curious to learn more.
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Best subset selection

Best subset selection (for subsets of size ≤ k) minimizes
RSS(β) subject to the constraint that

p∑
j=1

I(βj 6= 0) ≤ k,

that is, the # of nonzero coefficients is constrained to be ≤ k.

How to implement? Find least-squares fit β̂ on all
(
p
k

)
subsets

of size k, and pick the subset with the smallest RSS(β̂).

The choice of k is made using cross-validation or some other
model selection criterion.

By duality, best subset selection is equivalent to minimizing
RSS(β) + λ

∑p
j=1 I(βj 6= 0) for some choice of λ.
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Best subset selection
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Best subset selection
Credit example: Predict balance (credit card debt) from income,
credit limit, credit rating, # of cards, student/non-student, etc.
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Forward/backward stepwise selection

Best subset selection is computationally expensive as p grows.

Stepwise selection is a “greedy” approach to speed things up.

Forward stepwise selection: Sequentially add the best
predictor (i.e., greatest decrease in RSS(β̂) if added).

Backward stepwise selection: Sequentially remove the worst
predictor (i.e., least increase in RSS(β̂) if removed).

Forward and backward stepwise require fitting 1 + p(p+ 1)/2
models, compared to 2p for best subset selection over all k.

Advantages of forward stepwise (compared to backward):
I Can speed up by stopping after k predictors have been added.
I Can handle p > n with no problem — just stop early.
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Forward stepwise selection
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Comparison: Best subset vs Forward stepwise

Credit example: Predict balance (credit card debt) from income,
credit limit, credit rating, # of cards, student/non-student, etc.
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Backward stepwise selection
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Model selection

Two general approaches to model selection:

1. Directly estimate test performance (e.g., via cross-validation).
2. Implicitly estimate test performance using an approximation

(e.g., AIC, BIC).

Approach 2 typically involves an adjustment to the training
error (or log-likelihood) to account for model complexity.

Pros/Cons: Approach 1 is more reliable. Approach 2 is faster.

Bayesian inference is a third approach.
I Similar to Approach 2.
I BIC is an approximation to the Bayesian approach.
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Akaike information criterion (AIC)

AIC is applicable to likelihood-based models.

Goal: Choose among models k = 1, . . . ,K.

Suppose model k has dk parameters. Define

AICk = 2dk − 2`k

where `k is the maximum log-likelihood for model k, i.e.,

`k = log p(data | θ̂k)

where θ̂k is the MLE for model k.

The AIC approach: Choose the model with the smallest AICk.

For least-squares regression, AIC is proportional to Mallow’s
Cp, so they are equivalent for least-squares model selection.
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Bayesian information criterion (BIC)

BIC is similar to AIC, but with log(n)dk instead of 2dk.

Suppose model k has dk parameters. Define:

BICk = log(n)dk − 2`k

where `k is the maximum log-likelihood for model k.

The BIC approach: Choose the model with the smallest BICk.

BIC is derived from an asymptotic approximation to the
marginal likelihood p(data|k) under a Bayesian model.
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Comparison: AIC versus BIC

AIC is proportional to Cp for least-squares regression.
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AIC versus BIC

What is the difference between AIC and BIC?

BIC penalizes complexity more strongly than AIC, since
log(n) > 2 whenever n > 7.

AIC tries to pick the model with the best expected test
performance.

BIC tries to pick the true model, assuming one of the models
is true.

AIC is asymptotically equivalent to LOO-CV in some cases.
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AIC/BIC versus cross-validation

AIC and BIC are faster. Cross-validation is more reliable.

Defining the “number of parameters” dk appropriately can be
nontrivial.

Also, when dk is large, the assumptions underlying AIC and
BIC typically break down.

My recommendation: AIC and BIC are often fine for a quick
assessment, especially for low-dimensional models. But if you
want something you can really trust, go with cross-validation.
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BIC versus cross-validation
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Ridge regression

Ridge regression minimizes

F (β) =

n∑
i=1

(yi − xTiβ)2 + λ

p∑
j=1

β2j .

λ ≥ 0 is a tuning parameter that acts as a “flexibility knob”.

When λ = 0, ridge regression is the same as least-squares.

As λ increases, the coefficient estimates are pulled toward 0.
This is called shrinkage.

λ can be chosen using cross-validation.

The name “ridge” comes from the original usage of the
method, but it’s not really semantically meaningful anymore.
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Ridge regression path

The “path” is a plot of the coefficient estimates versus λ.
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Standardization

In least-squares, it is not necessary to standardize the
predictors or the outcomes before fitting the model.

However, standardizing is important in penalized regression.
I The reason is that the same penalty factor λ is applied to all

coefficients βj equally.

Recommended to standardize to zero mean, unit variance:

x̃ij =
xij − x̄j√

1
n

∑n
i′=1(xi′j − x̄j)2

and ỹi =
yi − ȳ√

1
n

∑n
i′=1(yi′ − ȳ)2

where x̄j = 1
n

∑n
i=1 xij and ȳ = 1

n

∑n
i=1 yi.

Usually, the intercept β0 is not penalized, so the estimated
intercept is β̂0 = 1

n

∑n
i=1 yi when using standardization.

The interpretation of βj in the original units can be obtained
by inverting these standardizations after estimation.
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Ridge versus least-squares

Advantages of ridge versus least-squares:
I Can improve test performance by reducing variance.
I Collinearity handled more gracefully.
I Can use when p > n.

Disadvantages of ridge versus least-squares:
I Need to choose λ, but that is not so bad.
I Bias is increased, so λ needs to be chosen well.

Bias-variance tradeoff:
I As λ increases, bias increases and variance decreases.
I Pay a little bit in increased bias for a big reduction in variance.
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Comparison: Ridge versus least-squares

Simulation example with p = 45 and n = 50. If p is relatively
large, ridge can help a lot.
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More on ridge regression

Ridge regression can be solved in closed form:

β̂ridge = (ATA+ λI)−1ATy

where A =
[
x1 · · · xn

]T
is the design matrix and

y = (y1, . . . , yn)T, just as before in least-squares.

Ridge regression is also called `2 regularization, since the
penalty function is the square of the `2 norm of β,

`2 norm = ‖β‖2 =
( p∑

j=1

|βj |2
)1/2

.

Ridge is also roughly equivalent to randomly perturbing the
predictors by multiplying times i.i.d. N (1, s2) random vars.
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The lasso (Tibshirani, 1996)

lasso = least absolute shrinkage and selection operator

The lasso minimizes

F (β) =

n∑
i=1

(yi − xTiβ)2 + λ

p∑
j=1

|βj |.

λ ≥ 0 plays a similar role as in ridge regression.

Convex optimization problem — fast solvers exist (glmnet).

Lasso can be viewed as a “convex relaxation” of best subset
selection.

Lasso is also called `1 regularization, since the penalty
function is the `1 norm of β,

`1 norm = ‖β‖1 =

p∑
j=1

|βj |.
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Lasso example
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Lasso versus ridge

Lasso yields a “sparse” β̂ (i.e., many zeros).

Ridge yields a “dense” β̂ (i.e., no zeros).

Advantages of lasso versus ridge:
I Lasso performs variable selection, which improves:

interpretability
computational efficiency of predictions
test performance, sometimes!

Disadvantages of lasso versus ridge:
I More complicated to solve (but can use packages like glmnet)

Test performance can be better or worse, depending on the
problem.

Lasso does well if only a small number of predictors are
needed.
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Why does lasso yield sparsity?
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Test performance: Lasso versus ridge

If the true β is dense, then ridge tends to be better:
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Test performance: Lasso versus ridge

If the true β is sparse, then lasso tends to be better:
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Intuition: Least-squares vs ridge vs lasso
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The elastic net (Zou and Hastie, 2005)

The elastic net interpolates between ridge and lasso.

Naive elastic net uses a penalty of the form

Penalty(β) = α

p∑
j=1

β2j + (1− α)

p∑
j=1

|βj |.

Elastic net is a slight modification of this.

0 ≤ α ≤ 1 controls the mix of ridge and lasso.

λ ≥ 0 plays a similar role as in ridge and lasso.

Convex optimization problem — fast solvers exist (glmnet).

Elastic net captures nice aspects of both ridge and lasso.
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Tuning parameter selection

Basic idea: Use cross-validation for each λ in a grid.

Choose the λ with the smallest CV-estimated test error.

Some packages (e.g., glmnet) will do this for you in a
computationally efficient way.
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Tuning parameter selection

Example: Ridge regression on Credit data
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Tuning parameter selection

Example: Lasso on simulated data with p = 45 and n = 50, where
the true β is sparse (2 nonzero coefficients)
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