Lecture 11: Penalized regression
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L east-squares

@ We have seen the least-squares (maximum likelihood)
approach to fitting linear models like

Yi = fizin + - + Bpxip + €0 = 1, B + €.

@ Linear models have a number of advantages:
> Interpretability
» Simple and easy to use
» Low flexibility helps control variance and improve performance

@ But least-squares fitting has several disadvantages:
» Variance can still be high, especially when p is large
» Collinear predictors cause difficulties
» Cannot be used when p > n
» Requires extra steps to do variable selection
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Penalized regression

Penalized regression improves upon least-squares.

Basic idea: Constrain or “shrink” parameter estimates.

Intuition: Keep the parameter estimates from being too wild.

Penalization is also known as regularization.

Regularization reduces variance and increases bias.

Test performance can be improved by regularizing an
appropriate amount (due to bias-variance tradeoff).
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Penalized regression

@ In least-squares, we minimize the objective function

n

RSS(8) = > (yi — 27 58)".

i=1
@ Meanwhile, in penalized regression, we minimize
F(B) = RSS(f) + APenalty(3).

@ )\ > 0, and the penalty function can take various forms.

@ More generally, in penalized maximum likelihood, we minimize

F(B) = —£(8) + A Penalty(5)

where £(f3) is the log-likelihood function.
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Examples of penalty functions

Common choices of penalty:

@ Ridge: Penalty

@ Lasso: Penalty

B)=>_8;.
j=1

(B)=>_ 18l
j=1

p p
@ Naive elastic net: Penalty(5) = 0425]2 +(1—-a) Z 1B -
j=1 j=1

@ Best subset: Penalty(3) = Zl(ﬁj #0).

Jj=1

Some choices of penalty enable variable selection (lasso, elastic
net, best subset), but others do not (e.g., ridge).
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Duality

@ Under some conditions, this is equivalent to minimizing —¢(f3)
subject to the constraint that

Penalty () < s,

for some s that depends on .

@ The details are beyond the scope of this course, but look up
Lagrangian duality if you are curious to learn more.
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Best subset selection

Best subset selection (for subsets of size < k) minimizes
RSS(B) subject to the constraint that

p
> 1B #0) <
7j=1

that is, the # of nonzero coefficients is constrained to be < k.

How to implement? Find least-squares fit 3 on all (V) subsets
of size k, and pick the subset with the smallest RSS(}3).

The choice of k is made using cross-validation or some other
model selection criterion.

By duality, best subset selection is equivalent to minimizing
RSS(B) +A>2%_; I(B; # 0) for some choice of A,
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Best subset selection

Algorithm 6.1 Best subset selection

1. Let Mg denote the null model, which contains no predictors. This
model simply predicts the sample mean for each observation.

2. For k=1,2,...p:
a) Fit all (?) models that contain exactly k predictors.
k

(b) Pick the best among these (}) models, and call it M. Here best
is defined as having the smallest RSS, or equivalently largest R2.

3. Select a single best model from among Moy,..., M, using cross-
validated prediction error, C,, (AIC), BIC, or adjusted R2.
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Best subset selection

Credit example: Predict balance (credit card debt) from income,
credit limit, credit rating, # of cards, student/non-student, etc.

1.0

8e+07
|
0.8
|

4e+07 6e+07
| |
H2
0.6
|

Residual Sum of Squares
0.4

2e+07
|
0.0 0.2
|

Number of Predictors Number of Predictors

FIGURE 6.1. For each possible model containing a subset of the ten predictors
in the Credit data set, the RSS and R are displayed. The red frontier tracks the
best model for a given number of predictors, according to RSS and R?. Though
the data set contains only ten predictors, the x-axis ranges from 1 to 11, since one
of the variables is categorical and takes on three values, leading to the creation of

two dummy variables. 12744



Forward /backward stepwise selection

@ Best subset selection is computationally expensive as p grows.

@ Stepwise selection is a “greedy” approach to speed things up.

@ Forward stepwise selection: Sequentially add the best

predictor (i.e., greatest decrease in RSS(/5) if added).

@ Backward stepwise selection: Sequentially remove the worst

A~

predictor (i.e., least increase in RSS(3) if removed).

e Forward and backward stepwise require fitting 1 + p(p + 1)/2
models, compared to 2P for best subset selection over all k.

@ Advantages of forward stepwise (compared to backward):

» Can speed up by stopping after k predictors have been added.
» Can handle p > n with no problem — just stop early.
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Forward stepwise selection

Algorithm 6.2 Forward stepwise selection

1. Let My denote the null model, which contains no predictors.
2. Fork=0,...,p—1:

(a) Consider all p — k models that augment the predictors in M,
with one additional predictor.

(b) Choose the best among these p — k models, and call it My41.
Here best is defined as having smallest RSS or highest R2.

3. Select a single best model from among My, ..., M, using cross-
validated prediction error, C, (AIC), BIC, or adjusted R2.
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Comparison: Best subset vs Forward stepwise

Credit example: Predict balance (credit card debt) from income,
credit limit, credit rating, # of cards, student/non-student, etc.

# Variables | Best subset Forward stepwise

One rating rating

Two rating, income rating, income

Three rating, income, student rating, income, student

Four cards, income, rating, income,
student, limit student, limit

TABLE 6.1. The first four selected models for best subset selection and forward
stepwise selection on the Credit data set. The first three models are identical but
the fourth models differ.
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Backward stepwise selection

Algorithm 6.3 Backward stepwise selection

1. Let M, denote the full model, which contains all p predictors.
2. Fork=p,p—1,...,1:

(a) Consider all k£ models that contain all but one of the predictors
in My, for a total of k£ — 1 predictors.

(b) Choose the best among these k models, and call it Mj,_q. Here
best is defined as having smallest RSS or highest R2.

3. Select a single best model from among My,..., M, using cross-
validated prediction error, C, (AIC), BIC, or adjusted RZ2.

16
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Model selection

@ Two general approaches to model selection:

1. Directly estimate test performance (e.g., via cross-validation).

2. Implicitly estimate test performance using an approximation
(e.g., AIC, BIC).

@ Approach 2 typically involves an adjustment to the training
error (or log-likelihood) to account for model complexity.

@ Pros/Cons: Approach 1 is more reliable. Approach 2 is faster.

@ Bayesian inference is a third approach.

» Similar to Approach 2.
» BIC is an approximation to the Bayesian approach.
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Akaike information criterion (AIC)

@ AIC is applicable to likelihood-based models.
@ Goal: Choose among models k =1, ..., K.
@ Suppose model k has d; parameters. Define
AICy = 2dj, — 20,
where £, is the maximum log-likelihood for model k, i.e.,
0}, = log p(data | 0},)

where ék is the MLE for model k.

@ The AIC approach: Choose the model with the smallest AICy.

o For least-squares regression, AlC is proportional to Mallow's
C)p, so they are equivalent for least-squares model selection.
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Bayesian information criterion (BIC)

@ BIC is similar to AIC, but with log(n)dy, instead of 2dj.

@ Suppose model k has dj parameters. Define:
BICk = log(n)dk — 2€k

where /i, is the maximum log-likelihood for model k.
@ The BIC approach: Choose the model with the smallest BICy.

@ BIC is derived from an asymptotic approximation to the
marginal likelihood p(datalk) under a Bayesian model.
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Comparison: AIC versus BIC
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FIGURE 6.2. C,, BIC, and adjusted R* are shown for the best models of each
size for the Credit data set (the lower frontier in Figure 6.1). Cp, and BIC are
estimates of test MSE. In the middle plot we see that the BIC estimate of test
error shows an increase after four variables are selected. The other two plots are
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AIC is proportional to C), for least-squares regression.
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AIC versus BIC

What is the difference between AIC and BIC?

@ BIC penalizes complexity more strongly than AIC, since
log(n) > 2 whenever n > 7.

@ AIC tries to pick the model with the best expected test
performance.

@ BIC tries to pick the true model, assuming one of the models
is true.

e AIC is asymptotically equivalent to LOO-CV in some cases.



AIC/BIC versus cross-validation

@ AIC and BIC are faster. Cross-validation is more reliable.

@ Defining the “number of parameters” dj, appropriately can be
nontrivial.

@ Also, when dy, is large, the assumptions underlying AlIC and
BIC typically break down.

@ My recommendation: AIC and BIC are often fine for a quick
assessment, especially for low-dimensional models. But if you
want something you can really trust, go with cross-validation.
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BIC versus cross-validation
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FIGURE 6.3. For the Credit data set, three quantities are displayed for the
best model containing d predictors, for d ranging from 1 to 11. The overall best
model, based on each of these quantities, is shown as a blue cross. Left: Square
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Ridge regression

@ Ridge regression minimizes

n

FB) =Y (yi—aiB)>+ A1) 5.
j=1

i=1

A > 0 is a tuning parameter that acts as a “flexibility knob".

When A = 0, ridge regression is the same as least-squares.

As X increases, the coefficient estimates are pulled toward 0.
This is called shrinkage.

@ )\ can be chosen using cross-validation.

@ The name “ridge” comes from the original usage of the
method, but it's not really semantically meaningful anymore.
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Ridge regression path

The “path” is a plot of the coefficient
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FIGURE 6.4. The standardized ridge regression cqejﬁcients are displayed for
the Credit data set, as a function of A and ||6Z]2/]182.
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Standardization

@ In least-squares, it is not necessary to standardize the
predictors or the outcomes before fitting the model.
@ However, standardizing is important in penalized regression.
» The reason is that the same penalty factor \ is applied to all
coefficients 3; equally.

@ Recommended to standardize to zero mean, unit variance:

and y; =

_\/%23:1(%'1—@ \/ 2/1 '—_)

where Z; = 2 5™ ziiand g =230 v
o Usually, the mtercept Bo is not penalized, so the estimated

intercept is Bg =z lel 1; when using standardization.

@ The interpretation of 3; in the original units can be obtained
by inverting these standardizations after estimation.
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Ridge versus least-squares

@ Advantages of ridge versus least-squares:

» Can improve test performance by reducing variance.
» Collinearity handled more gracefully.
» Can use when p > n.

@ Disadvantages of ridge versus least-squares:

» Need to choose A, but that is not so bad.
» Bias is increased, so )\ needs to be chosen well.

@ Bias-variance tradeoff:

» As )\ increases, bias increases and variance decreases.
» Pay a little bit in increased bias for a big reduction in variance.
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Comparison: Ridge versus least-squares

Simulation example with p = 45 and n = 50. If p is relatively
large, ridge can help a lot.
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FIGURE 6.5. Squared bias (black), variance (green), and test mean squared
error (purple) for the ridge regression predictions on a simulated data set, as a
function of X and ||B%||2/||8|l2. The horizontal dashed lines indicate the minimum
possible MSE. The purple crosses indicate the ridge regression models for which
the MSE is smallest.
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More on ridge regression

@ Ridge regression can be solved in closed form:
Bridge — (ATA—I- /\I)_lATy

T
where A = [wl e a:n] is the design matrix and

y=(y1,...,yn)T, just as before in least-squares.

@ Ridge regression is also called ¢o regularization, since the
penalty function is the square of the 5 norm of 3,

» 1/2
2 norm = (182 = (D18,7) .
j=1

@ Ridge is also roughly equivalent to randomly perturbing the
predictors by multiplying times i.i.d. A'(1,s?) random vars.
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The lasso (Tibshirani, 1996)

lasso = least absolute shrinkage and selection operator
The lasso minimizes

n

p
F(B) = (yi—2 B>+ 2> IBjl-

i=1 j=1

A > 0 plays a similar role as in ridge regression.

Convex optimization problem — fast solvers exist (glmnet).
Lasso can be viewed as a “convex relaxation” of best subset
selection.

@ lLasso is also called ¢; regularization, since the penalty
function is the #1 norm of (3,

p
01 norm = [|Blly = > [B;]-

j=1
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Lasso example
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FIGURE 6.6. The standardized lasso coefficients on the Credit data set are
shown as a function of X and ||BE |1 /|81
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Lasso versus ridge

o Lasso yields a “sparse” {3 (i.e., many zeros).
b

e Ridge yields a “dense” (3 (i.e., no zeros).

@ Advantages of lasso versus ridge:
» Lasso performs variable selection, which improves:

m interpretability
m computational efficiency of predictions
B test performance, sometimes!

e Disadvantages of lasso versus ridge:
» More complicated to solve (but can use packages like glmnet)

@ Test performance can be better or worse, depending on the
problem.

@ Lasso does well if only a small number of predictors are
needed.
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Why does lasso yield sparsity?

FIGURE 6.7. Contours of the error and constraint functions for the lasso
(left) and ridge regression (right). The solid blue areas are the constraint re-
gions, |B1] + |B2| < s and B + B3 < s, while the red ellipses are the contours of
the RSS.
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Test performance: Lasso versus ridge

If the true [ is dense, then ridge tends to be better:
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FIGURE 6.8. Left: Plots of squared bias (black), variance (green), and test MSE
(purple) for the lasso on a simulated data set. Right: Comparison of squared bias,
variance and test MSE between lasso (solid) and ridge (dotted). Both are plotted
against their R on the training data, as a common form of indexing. The crosses
in both plots indicate the lasso model for which the MSE is smallest.
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Test performance: Lasso versus ridge

If the true (3 is sparse, then lasso tends to be better:
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FIGURE 6.9. Left: Plots of squared bias (black), variance (green), and test MSE
(purple) for the lasso. The simulated data is similar to that in Figure 6.8, except
that now only two predictors are related to the response. Right: Comparison of
squared bias, variance and test MSE between lasso (solid) and ridge (dotted). Both
are plotted against their R® on the training data, as a common form of indexing.
The crosses in both plots indicate the lasso model for which the MSE is smallest.
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Intuition: Least-squares vs ridge vs lasso
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FIGURE 6.10. The ridge regression and lasso coefficient estimates for a simple
setting with n = p and X a diagonal matriz with 1’s on the diagonal. Left: The
ridge regression coefficient estimates are shrunken proportionally towards zero,
relative to the least squares estimates. Right: The lasso coefficient estimates are
soft-thresholded towards zero.
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The elastic net (Zou and Hastie, 2005)

@ The elastic net interpolates between ridge and lasso.

Naive elastic net uses a penalty of the form
P P
Penalty(8) = aZB? +(1-a) Z 1B;]-
j=1 J=1

@ Elastic net is a slight modification of this.

0 < a < 1 controls the mix of ridge and lasso.

A > 0 plays a similar role as in ridge and lasso.

Convex optimization problem — fast solvers exist (glmnet).

(]

Elastic net captures nice aspects of both ridge and lasso.
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Tuning parameter selection

@ Basic idea: Use cross-validation for each A in a grid.
@ Choose the A with the smallest CV-estimated test error.

e Some packages (e.g., glmnet) will do this for you in a
computationally efficient way.
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Tuning parameter selection

Example: Ridge regression on Credit data
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FIGURE 6.12. Left: Cross-validation errors that result from applying ridge
regression to the Credit data set with various value of A. Right: The coefficient
estimates as a function of A\. The vertical dashed lines indicate the value of A
selected by cross-validation.
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Tuning parameter selection

Example: Lasso on simulated data with p = 45 and n = 50, where
the true [ is sparse (2 nonzero coefficients)

Cross-Validation Error
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FIGURE 6.13. Left: Ten-fold cross-validation MSE for the lasso, applied to
the sparse simulated data set from Figure 6.9. Right: The corresponding lasso
coefficient estimates are displayed. The vertical dashed lines indicate the lasso fit
for which the cross-validation error is smallest.
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