Lecture 13: Principal Components Analysis
Statistical Learning (BST 263)
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(Figures from An Introduction to Statistical Learning, James et al., 2013,

and The Elements of Statistical Learning, Hastie et al., 2008)
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Unsupervised Learning

So far, we have focused on supervised learning.

In supervised learning, we are given examples (x;,;), and we
try to predict y for future x's.

In unsupervised learning, we are given only x;'s, with no
outcome y;.

@ Unsupervised learning is less well defined, but basically
consists of finding some structure in the x's.

@ Two most common types of unsupervised learning:

1. Finding lower-dimensional representations.
2. Finding clusters / groups.



Unsupervised Learning

e Data: x1,...,x,.
o Often, xz; € R?, but the z;'s could be anything.

>

e.g., time-series data, documents, images, movies, mixed-type.

@ Unsupervised learning can be used in many different ways:

>
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v

Visualization of high-dimensional data

Exploratory data analysis

Feature construction for supervised learning

Discovery of hidden structure

Removal of unwanted variation (e.g., batch effects, technical
biases, population structure)

Matrix completion or De-noising

> Density estimation
» Compression



Unsupervised Learning

@ In supervised learning, we can use the outcome y to reliably
evaluate performance.
@ This enables us to:

» choose model settings and
» estimate test performance

via cross-validation or similar train/test split approaches.

@ However, we don't have this luxury in unsupervised learning.

@ A challenge is that often there is no standard way to evaluate
the performance of an unsupervised method.
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Principal Components Analysis (PCA)

@ PCA is an unsupervised method for dimension reduction.

@ That is, finding a lower-dimensional representation.

@ PCA is the oldest and most commonly used method in this
class.

» PCA goes back at least to Karl Pearson in 1901.

@ Basic idea: Find a low-dimensional representation that
approximates the data as closely as possible in Euclidean
distance.



PCA example: Ad spending
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FIGURE 6.14. The population size (pop) and ad spending (ad) for 100 different
cities are shown as purple circles. The green solid line indicates the first principal
component, and the blue dashed line indicates the second principal component.
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PCA example: Ad spending
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FIGURE 6.15. A subset of the advertising data. The mean pop and ad budgets
are indicated with a blue circle. Left: The first principal component direction is
shown in green. It is the dimension along which the data vary the most, and it also
defines the line that is closest to all n of the observations. The distances from each
observation to the principal component are represented using the black dashed line
segments. The blue dot represents (pop,ad). Right: The left-hand panel has been
rotated so that the first principal component direction coincides with the z-axis.
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PCA example: Ad spending

PC1 and PC2 scores:
Z, = 0.839 x (pop — pop) + 0.544 x (ad — ad).

In this

Population

example, pop and ad are both highly correlated with PC1:
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Zy = 0.544 x (pop — pop) — 0.839 x (ad — ad).
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FIGURE 6.16. Plots of the first principal component scores zi1 versus pop and

ad. The relationships are strong.
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PC1 and PC2 scores:

PCA example: Ad spending

Z1 = 0.839 x (pop — pop) + 0.544 x (ad — ad).

Zy = 0.544 X (pop — pop) — 0.839 x (ad — ad).

Pop and ad versus PC2:
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FIGURE 6.17. Plots of the second principal component scores ziz versus pop

05

and ad. The relationships are weak.
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Half-sphere simulat
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PCA example

FIGURE 14.15. Simulated data in three classes, near the surface of a half-

sphere.
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PCA example: Half-sphere simulation
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FIGURE 14.21. The best rank-two linear approximation to the half-sphere data.
The right panel shows the projected points with coordinates given by UxDg, the
first two principal components of the data.
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PCA directions, scores, and scales
PC directions

@ The PCI direction is the direction along which the data has
the largest variance.

@ The PCm direction is the direction along which the data has
the largest variance, among all directions orthogonal to the
first m — 1 PC directions.

PC scores

@ The PCm score for point x; is the position of x; along the
mth PC direction.

@ Mathematically, the PCm score is the dot product of x; with
the PCm direction.

PC scales

@ The PCm scale is the standard deviation of the data along
the PCm direction.
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Other interpretations of PCA

@ Best approximation interpretation:

» PC1 score x PC1 direction = the best 1-dimensional
approximation to the data in terms of MSE.

> Zn]\le PCm score x PCm direction = the best
M-dimensional approximation to the data in terms of MSE.

o Eigenvector interpretation:
» The PCm direction is the mth eigenvector (normalized to unit
length) of the covariance matrix, sorting the eigenvectors by
the size of their eigenvalues.

16
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Computing the PCA directions and scores

@ Covariance method

» Simplest way of doing PCA.
» Based on the eigenvector interpretation.
» Slow when p is large.

@ Singular value decomposition (SVD) method

» Faster for large p.

» Truncated SVD allows us to compute only the top PCs, which
is much faster than computing all PCs when p is large.

» More numerically stable.

@ The SVD method is usually preferred.
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Covariance method of computing PCA

e Data: x1,...,x, where z; € RP.

@ For simplicity, assume the data has been centered so that
LS @y = 0 for each j.

@ Usually, it is a good idea to also scale the data to have unit
variance along each dimension j.

@ However, if the data are already in common units then it may
be better to not standardize the scales.
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Covariance method of computing PCA

@ Put the data into an n X p matrix: X =

@ Estimate the covariance matrix:

1 n
1 3T T
C=.5X X_n—l E Til,; .
i=1

Compute the eigendecomposition: C' = VAVT.
» A =diag(A1,...,Ap) where Ay > --- > X\, > 0 are the
eigenvalues of C.
» V is orthogonal and the mth column of V is the mth
eigenvector of C.

@ PCm direction is mth column of V.
o PCm scale is v A,
e PC score vector (i.e., PC1-PCp scores) for z; is V'x;.

» So XV gives us all the scores for all the z;'s.
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Notes on the covariance method

A matrix V € RP*? is orthogonal if VVT = VTV = 1.

Since V is an orthogonal matrix,
» the PC directions are orthogonal to one another,
» the PC directions have unit length (Euclidean norm of 1), and
» the PC scores XV are a rotated version of the data.

Most languages have tools for computing the
eigendecomposition, e.g., the eigen function in R.

N O - 0

0 A 0

o Notation: diag(Ai,...,A\p) = | . . _

0 0 - X

@ This follows from “block matrix multiplication”:
] n

X'X = [xl mn] : = szxf
i=1
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PCA example: Hand-written digits
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FIGURE 14.23. (Left panel:) the first two principal components of the hand-
written threes. The circled points are the closest projected images to the vertices
of a grid, defined by the marginal quantiles of the principal components. (Right
panel:) The images corresponding to the circled points. These show the nature of
the first two principal components.
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PCA example: Hand-written digits

@ PCA can be used to make a low-dimensional approximation to
each image.

@ The PCA approximation is the sum of scores times directions,
plus the sample mean since data is centered at O:

PC approx = sample mean + scorel x dirl + score2 x dir2

= 3 + scorel x H + score2 x 3

@ In this example, each PC direction is, itself, an image.
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PCA example: Gene expression

PCA scores for gene expression of leukemia samples
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Fig. 4 Comparison of gene expression between ALL, MLL and AML. a, Principal component analysis (PCA) plot of ALL (red), MLL (blue) and AML (yellow) carried

out using 8,700 genes that passed iteing. b, PCA plot comparing ALL (red). MLL (blue) and AML (yellow) using the 500 genes that best distinguished ALL from
AML. Three-dimensional virtual reality modeling language (VRML) plots can be viewed at our web site

p h.dfci-harvard

(figure from Armstrong et al., 2002, Nature Genetics)
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SVD method of computing PCA

The covariance method is simple, but slow when p is large.

SVD = Singular Value Decomposition.
The SVD method is faster for large p.

Truncated SVD allows us to compute only the top PCs, which
is much faster than computing all PCs when p is large.

@ The SVD of X e R™*P is X = USVT where
» U € R" ™ is orthogonal,
» V € RP*P s orthogonal, and
» S € R™"*P is zero everywhere except s17 > S99 > -+ > 0,
which are called the singular values.



SVD method of computing PCA

@ Put the data into an n X p matrix: X =

Compute the SVD: X = USVT™.

PCm direction is the mth column of V.

e 1
PCm scale is =T Smm-

PC score vector (i.e., PC1-PCp scores) for z; is V'x;.

Connection to covariance method:

VAV =C=-LX"X = _LvsTuTusvT”
= VSISV = V(5 5TS)VT
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SVD method of computing PCA

@ The truncated SVD allows us to compute only the top PCs.

e Truncated SVD computes U[,1:n,], S, and V[1:n,,]| for
user-specified choices of n, and n,.

@ This is much faster than computing all PCs when p is large.

@ Usually, we only need the top few PCs anyway.
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Principal Components Regression (PCR)

@ We have seen methods of controlling variance by:

> using a less flexible model, e.g., fewer parameters,
» selecting a subset of predictors,
> regularization / shrinkage.

@ Another approach: transform the predictors to be lower
dimensional.

» Various transformations: PCA, ICA, principal curves.

@ Combining PCA with linear regression leads to principal
components regression (PCR).
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Principal Components Regression (PCR)

@ PCR = PCA + linear regression:

» Choose how many PCs to use, say, M.

» Use PCA to define a feature vector ¢(z;) containing the
PC1,...,PCM scores for x;.

» Use least-squares linear regression with this model:

Y; = p(z:)"8 + &;.

@ PCR works well when the directions in which the original
predictors vary most are the directions that are predictive of
the outcome.

@ PCR versus least-squares:

When M = p, PCR = least-squares.

PCR has higher bias but lower variance.
PCR can handle p > n.

PCR can handle some collinearity. (Why?)

vV vy vy



Example #1: PCR versus Ridge and Lasso

Simulation example with p = 45 and n = 50.
True model is linear regression with all nonzero coefficients.
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Example #2: PCR versus Ridge and Lasso

Simulation example with p = 45 and n = 50.
True model is linear regression with 2 nonzero coefficients.
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Example #3: PCR versus Ridge and Lasso

Simulation example with p = 45.
True model is PCR with 5 nonzero PC coefficients.

PCR Ridge Regression and Lasso
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FIGURE 6.19. PCR, ridge regression, and the lasso were applied to a simulated
data set in which the first five principal components of X contain all the informa-
tion about the response Y. In each panel, the irreducible error Var(e) is shown as
a horizontal dashed line. Left: Results for PCR. Right: Results for lasso (solid)
and ridge regression (dotted). The x-axis displays the shrinkage factor of the co-
efficient estimates, defined as the £2 morm of the shrunken coefficient estimates

divided by the €2 norm of the least squares estimate.
35/42



PCR versus Ridge and Lasso

@ PCR does not select a subset of predictors/features.
@ PCR is more closely related to Ridge than Lasso.

@ Ridge can be thought of as a continuous version of PCR.
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(See ESL Section 3.5 for more info.)
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Cross-validation

Can choose PCR dimensionality M using cross-validation.
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FIGURE 6.20. Left: PCR standardized coefficient estimates on the Credit data
set for different values of M. Right: The ten-fold cross validation MSE obtained

using PCR, as a function of M.
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High-dimensional issues (p > n)

Overfitting:
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FIGURE 6.22. Left: Least squares regression in the low-dimensional setting.
Right: Least squares regression with n = 2 observations and two parameters to be
estimated (an intercept and a coefficient).
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High-dimensional issues (p > n)

R?, RSS, AIC, BIC often don't accurately assess fit (unless you
reduce dimensionality first):
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FIGURE 6.23. On a simulated ezample with n = 20 training observations,
features that are completely unrelated to the outcome are added to the model.
Left: The R? increases to 1 as more features are included. Center: The training
set MSE decreases to 0 as more features are included. Right: The test set MSE
increases as more features are included.
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High-dimensional issues (p > n)

@ Regularization or variable selection is key.
@ Tuning the flexibility knob(s) is important.

@ Adding uninformative features hurts performance.

@ Assess performance using held-out test sets (e.g.,
cross-validation).
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