Lecture 2: Probability and linear algebra basics
Statistical Learning (BST 263)
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Linear algebra in this course

@ A little bit of linear algebra is essential for understanding
many machine learning methods.

» E.g., linear regression, logistic regression, LDA, QDA, PCA,
GAMs, kernel ridge, SVMs, K-means.

@ Linear algebra is not a prerequisite for this course, so | made
the following slides to give you the basic concepts needed.

@ You will need to study this material carefully if you are not
already familiar with it.
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Matrices and transposes

@ Ais an m x n real matrix, written A € R™*" if

ar a12 T A1n

azy a22 te a2n
A=

aml Am2 **° Omnp

where a;; € R. The (4, j)th entry of A is A;; = a;;.

@ The transpose of A € R™*™ is defined as

All A21 Aml
gro | A2 Al
Aln A2n Amn

In other words, (A");; = Aj;.

@ Note: z € R" is considered to be a column vector in R™*1,
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Sums and products of matrices

@ The sum of matrices A € R™*" and B € R™*" is the matrix
A+ B € R™*" such that

(A+ B)ij = Aij + Bij.

@ The product of matrices A € R™*™ and B € R"*¢ is the
matrix AB € R™*¢ such that

(AB);j = Z Ay By;.
k=1

6
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Basic matrix properties

In the following properties, it is assumed that the matrix
dimensions are compatible. (For example, if we write A + B then
it is assumed that A and B are the same size.)

o (AB)C = A(BC)
» Consequently, we can write ABC' without specifying the order
in which the multiplications are performed.

e A(B+C)=AB+ AC

e (B+C)A=BA+CA

@ Except in special circumstances, AB is not equal to BA.
e (AB)T = BTAT

o (A+B)T=A"+ B*
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|dentity, inverse, and trace

@ The n x n identity matrix, denoted I,,«,, or I for short, is

10 - 0
I'=TIxn=]. | e R™*™
00 1

o [A=A=AI

o If it exists, the inverse of A, denoted A~1, is a matrix such
that A7'A =1 and AA™' = 1.

o If A~! exists, we say that A is invertible.

° (A—l)T — (AT)—I

o (AB)"'=pB"1A"!

@ The trace of a square matrix A € R™*", denoted tr(A), is
defined as tr(A) = > | Aj.

e tr(AB) = tr(BA) if AB is a square matrix.
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Symmetric and definite matrices

e A is symmetric if A = AT

e A is symmetric positive semi-definite (SPSD) if and only if
A = B™B for some B € R™*"™ and some m.

e A is symmetric positive definite (SPD) if and only if A is
SPSD and A~ exists.

@ There are many equivalent definitions of SPSD and SPD
(which is why | wrote “if and only if"). | believe the
definitions above are the easiest to understand and use.
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Discrete random variables

@ Informally, a random variable (r.v.) is a quantity that
probabilistically takes any one of a range of values.
Notation: Uppercase for r.v.s, lowercase for values taken.

A random variable X is discrete if it takes values in a
countable set X = {x1,x9,...}.
Examples: Bernoulli, Binomial, Poisson, Geometric.

@ The density of a discrete r.v. is the function
p(z) = P(X = ) = probability that X equals z.
» Sometimes, p(zx) is called the probability mass function in the
discrete case, but “density” is technically correct also.

Properties (discrete case):

0<p@) <1, > pla)=1 PXed)=> p()

TEX TEA
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Continuous random variables

@ A random variable X € R is continuous if there is a function
p()>OsuchthatIF’X€A J4p(x)dz for all A C R.

» (We will ignore measure-theoretic technicalities in this course.)

Examples: Normal, Uniform, Beta, Gamma, Exponential.

p(x) is called the density of X.
Careful! p(x) is not the probability that X equals x.
Note that [ p(z)dz = 1, but p(x) can be > 1.

@ The same definitions apply to random vectors X € R™, with
R™ in place of R.

e The cumulative distribution function (c.d.f.) of X € R is

T

Flz)=P(X <z)= / p(x')dz'.

—00
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Joint distributions of multiple random variables/vectors

@ p(z,y) denotes the joint density of X € X and Y € ).
» P(X =2,Y =y) =p(x,y) if X and Y are discrete.

» P(XeA YeB)=[, gp(xy)dedyif X and Y are
continuous.

» P(X =x,Y € B) = [5p(x,y)dy if X is discrete and Y is
continuous.

@ The density of X can be recovered from the joint density by
marginalizing over Y:
> p(z) =, cyp(x,y) if Y is discrete,
> p(z) = [y, p(z,y)dy if Y is continuous.

@ Note: It is common to use “p" to denote all densities and
follow the convention that X is taking the value z, Y is
taking the value y, etc.
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Conditional densities and Independence

e If p(y) > 0 then the conditional density of X given Y =y is

_ p(z,y)
plely) = py)

e X and Y are independent if p(x,y) = p(x)p(y) for all x,y.

e X4,...,X, are independent if

p(xla s awﬂ) = p(xl) o p(l’n)

for all z1,...,zy.

e Xi,...,X,, are conditionally independent given Y if

(@1, w0 | y) = p(1ly) - p(Taly)

forall z1,...,zn,y.
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Expectations (a.k.a. expected values)

Suppose h(zx) is a real-valued function of x.

The expectation of h(X), denoted E(h(X)), is
> E(h(X)) = Ewex (x)p(x) if X is discrete,
» E(h = [ h(z)p(z)dz if X is continuous.

The conditional expectation of h(X) given Y =y is

» E(h(X) Y = y) erx (x)p(zxly) if X is discrete,
» B(h(X)|Y =y) = [, h(z)p(z|y)dz if X is continuous.

E(h(X)|Y) is defined as g(Y) where g(y) = E(h(X)|Y = y).
Law of iterated expectations: E(E(h(X)|Y)) = E(h(X)).
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Random vectors

o If Z1,...,Z, € R are random variables, then
A
Z=|:|=(21,...,7Z,)"
Zn

is a random vector in R™.

@ The expectation of a random vector Z € R" is

E(Z1)
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Random vectors

@ The covariance matrix of a random vector Z € R" is the
matrix Cov(Z) € R™ ™ with (i, j)th entry

Cov(Z)ij = Cov(Zi, Z;)
where
Cov(Z;, Z;) = E((Zz - E(Z))(Z; - E(ZJ))>
=E(ZiZ;) — E(Zi)E(Z;).
e Equivalently,
Cov(Z) = E((Z ~E(2))(Z - E(Z))T)
— B(22") - E(Z2)E(2)".

@ Recall that Z € R"™ is considered to be a column vector in
R™*1 so ZZT is a matrix in R™"*"™.
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Random vectors

e Cov(Z) is always SPSD.

o If Z € R" is a random vector, then
E(AZ +b)=AE(Z)+b

and
Cov(AZ +b) = ACov(Z)AT

for any fixed (i.e., nonrandom) A € R™*™ and b € R™.

o If Y, Z € R™ are independent random vectors, then
Cov(Y + Z) = Cov(Y) + Cov(Z).
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Multivariate normal distribution

o If w € R™ and C' € R™*" is SPSD, then Z ~ N (u, C) denotes
that Z is multivariate normal with E(Z) = p and
Cov(Z) =C.

e Standard multivariate normal: If Zy,...,Z, ~ N(0,1)
independently and Z = (Z1, ..., Z,)%, then Z ~ N(0,1).

e Affine transformation property: If Z ~ N (u,C) then
AZ 4+ b~ N(Au+b, ACAT) for any fixed A € R™*™,
beR™, ueR™ and SPSD C € R™*™,

@ Any multivariate normal distribution can be obtained via an
affine transformation (AZ + b) of Z ~ N(0, I,,x,) for an
appropriate choice of n, A, and b.
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Multivariate normal distribution

e Sum property: If Y ~ N (u1,C1) and Z ~ N (pg, Ca)
independently, then Y + Z ~ N (1 + pg, C1 + C3).

o Density: If Z = (Z1,...,Z,)" ~ N(u,C) and C~! exists,
then Z has density

1
27)"/2| det

p(z) = ( i exp(— 1z — w)'C (2 — p))

for all z € R™.
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