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Linear algebra in this course

A little bit of linear algebra is essential for understanding
many machine learning methods.

I E.g., linear regression, logistic regression, LDA, QDA, PCA,
GAMs, kernel ridge, SVMs, K-means.

Linear algebra is not a prerequisite for this course, so I made
the following slides to give you the basic concepts needed.

You will need to study this material carefully if you are not
already familiar with it.
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Matrices and transposes

A is an m× n real matrix, written A ∈ Rm×n, if

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

am1 am2 · · · amn


where aij ∈ R. The (i, j)th entry of A is Aij = aij .

The transpose of A ∈ Rm×n is defined as

AT =


A11 A21 · · · Am1

A12 A22 · · · Am2
...

...
A1n A2n · · · Amn

 ∈ Rn×m.

In other words, (AT)ij = Aji.

Note: x ∈ Rn is considered to be a column vector in Rn×1.
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Sums and products of matrices

The sum of matrices A ∈ Rm×n and B ∈ Rm×n is the matrix
A+B ∈ Rm×n such that

(A+B)ij = Aij +Bij .

The product of matrices A ∈ Rm×n and B ∈ Rn×` is the
matrix AB ∈ Rm×` such that

(AB)ij =

n∑
k=1

AikBkj .
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Basic matrix properties

In the following properties, it is assumed that the matrix
dimensions are compatible. (For example, if we write A+B then
it is assumed that A and B are the same size.)

(AB)C = A(BC)
I Consequently, we can write ABC without specifying the order

in which the multiplications are performed.

A(B + C) = AB +AC

(B + C)A = BA+ CA

Except in special circumstances, AB is not equal to BA.

(AB)T = BTAT

(A+B)T = AT +BT
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Identity, inverse, and trace

The n× n identity matrix, denoted In×n or I for short, is

I = In×n =


1 0 · · · 0
0 1 · · · 0
...

...
0 0 · · · 1

 ∈ Rn×n.

IA = A = AI

If it exists, the inverse of A, denoted A−1, is a matrix such
that A−1A = I and AA−1 = I.

If A−1 exists, we say that A is invertible.

(A−1)T = (AT)−1

(AB)−1 = B−1A−1

The trace of a square matrix A ∈ Rn×n, denoted tr(A), is
defined as tr(A) =

∑n
i=1Aii.

tr(AB) = tr(BA) if AB is a square matrix.
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Symmetric and definite matrices

A is symmetric if A = AT.

A is symmetric positive semi-definite (SPSD) if and only if
A = BTB for some B ∈ Rm×n and some m.

A is symmetric positive definite (SPD) if and only if A is
SPSD and A−1 exists.

There are many equivalent definitions of SPSD and SPD
(which is why I wrote “if and only if”). I believe the
definitions above are the easiest to understand and use.
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Discrete random variables

Informally, a random variable (r.v.) is a quantity that
probabilistically takes any one of a range of values.

Notation: Uppercase for r.v.s, lowercase for values taken.

A random variable X is discrete if it takes values in a
countable set X = {x1, x2, . . .}.
Examples: Bernoulli, Binomial, Poisson, Geometric.

The density of a discrete r.v. is the function
p(x) = P(X = x) = probability that X equals x.

I Sometimes, p(x) is called the probability mass function in the
discrete case, but “density” is technically correct also.

Properties (discrete case):

0 ≤ p(x) ≤ 1,
∑
x∈X

p(x) = 1, P(X ∈ A) =
∑
x∈A

p(x).
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Continuous random variables
A random variable X ∈ R is continuous if there is a function
p(x) ≥ 0 such that P(X ∈ A) =

∫
A p(x)dx for all A ⊆ R.

I (We will ignore measure-theoretic technicalities in this course.)

Examples: Normal, Uniform, Beta, Gamma, Exponential.

p(x) is called the density of X.

Careful! p(x) is not the probability that X equals x.

Note that
∫
R p(x)dx = 1, but p(x) can be > 1.

The same definitions apply to random vectors X ∈ Rn, with
Rn in place of R.

The cumulative distribution function (c.d.f.) of X ∈ R is

F (x) = P(X ≤ x) =
∫ x

−∞
p(x′)dx′.
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Joint distributions of multiple random variables/vectors

p(x, y) denotes the joint density of X ∈ X and Y ∈ Y.
I P(X = x, Y = y) = p(x, y) if X and Y are discrete.

I P(X ∈ A, Y ∈ B) =
∫
A×B p(x, y)dx dy if X and Y are

continuous.

I P(X = x, Y ∈ B) =
∫
B
p(x, y)dy if X is discrete and Y is

continuous.

The density of X can be recovered from the joint density by
marginalizing over Y :

I p(x) =
∑

y∈Y p(x, y) if Y is discrete,
I p(x) =

∫
Y p(x, y)dy if Y is continuous.

Note: It is common to use “p” to denote all densities and
follow the convention that X is taking the value x, Y is
taking the value y, etc.
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Conditional densities and Independence

If p(y) > 0 then the conditional density of X given Y = y is

p(x|y) = p(x, y)

p(y)
.

X and Y are independent if p(x, y) = p(x)p(y) for all x, y.

X1, . . . , Xn are independent if

p(x1, . . . , xn) = p(x1) · · · p(xn)

for all x1, . . . , xn.

X1, . . . , Xn are conditionally independent given Y if

p(x1, . . . , xn | y) = p(x1|y) · · · p(xn|y)

for all x1, . . . , xn, y.
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Expectations (a.k.a. expected values)

Suppose h(x) is a real-valued function of x.

The expectation of h(X), denoted E(h(X)), is
I E(h(X)) =

∑
x∈X h(x)p(x) if X is discrete,

I E(h(X)) =
∫
X h(x)p(x)dx if X is continuous.

The conditional expectation of h(X) given Y = y is
I E(h(X) | Y = y) =

∑
x∈X h(x)p(x|y) if X is discrete,

I E(h(X) | Y = y) =
∫
X h(x)p(x|y)dx if X is continuous.

E(h(X)|Y ) is defined as g(Y ) where g(y) = E(h(X)|Y = y).

Law of iterated expectations: E(E(h(X)|Y )) = E(h(X)).
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Random vectors

If Z1, . . . , Zn ∈ R are random variables, then

Z =

Z1
...
Zn

 = (Z1, . . . , Zn)
T

is a random vector in Rn.

The expectation of a random vector Z ∈ Rn is

E(Z) =

E(Z1)
...

E(Zn)

 .
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Random vectors

The covariance matrix of a random vector Z ∈ Rn is the
matrix Cov(Z) ∈ Rn×n with (i, j)th entry

Cov(Z)ij = Cov(Zi, Zj)

where

Cov(Zi, Zj) = E
(
(Zi − E(Zi))(Zj − E(Zj))

)
= E(ZiZj)− E(Zi)E(Zj).

Equivalently,

Cov(Z) = E
(
(Z − E(Z))(Z − E(Z))T

)
= E(ZZT)− E(Z)E(Z)T.

Recall that Z ∈ Rn is considered to be a column vector in
Rn×1, so ZZT is a matrix in Rn×n.
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Random vectors

Cov(Z) is always SPSD.

If Z ∈ Rn is a random vector, then

E(AZ + b) = AE(Z) + b

and
Cov(AZ + b) = ACov(Z)AT

for any fixed (i.e., nonrandom) A ∈ Rm×n and b ∈ Rm.

If Y, Z ∈ Rn are independent random vectors, then
Cov(Y + Z) = Cov(Y ) + Cov(Z).
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Multivariate normal distribution

If µ ∈ Rn and C ∈ Rn×n is SPSD, then Z ∼ N (µ,C) denotes
that Z is multivariate normal with E(Z) = µ and
Cov(Z) = C.

Standard multivariate normal : If Z1, . . . , Zn ∼ N (0, 1)
independently and Z = (Z1, . . . , Zn)

T, then Z ∼ N (0, I).

Affine transformation property : If Z ∼ N (µ,C) then
AZ + b ∼ N (Aµ+ b, ACAT) for any fixed A ∈ Rm×n,
b ∈ Rm, µ ∈ Rn, and SPSD C ∈ Rn×n.

Any multivariate normal distribution can be obtained via an
affine transformation (AZ + b) of Z ∼ N (0, In×n) for an
appropriate choice of n, A, and b.
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Multivariate normal distribution

Sum property : If Y ∼ N (µ1, C1) and Z ∼ N (µ2, C2)
independently, then Y + Z ∼ N (µ1 + µ2, C1 + C2).

Density : If Z = (Z1, . . . , Zn)
T ∼ N (µ,C) and C−1 exists,

then Z has density

p(z) =
1

(2π)n/2|det(C)|1/2
exp
(
− 1

2(z − µ)
TC−1(z − µ)

)
for all z ∈ Rn.
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