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K-nearest neighbors (KNN)

Our first statistical learning method!

We’ll use KNN to illustrate the concepts in this lecture.

KNN regression algorithm

Input: x∗, training set (x1, y1), . . . , (xn, yn), and K.
Output: y∗ (predicted outcome value at x∗)

1. Find the K training points xi that are nearest to x∗.

2. y∗ = average of the training yi values for these K points.

Typically, xi ∈ Rd and yi ∈ R, and Euclidean distance is used
to define how near x∗ is to each xi.

More general spaces and distances are easy to handle as well.
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KNN regression using K = 1, K = 2, and K = 4
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K-nearest neighbors (KNN) regression

(R code example)
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KNN: Considerations for choosing when to use it

Supervised learning method

Can be used for regression or classification.

Useful for pure prediction problems — not very useful for
getting insight/understanding.

Match to data generating process?
I Based on assumption that nearby x’s have similar y’s.
I In other words, f(x) is assumed to be “smooth”.

Algorithmic method — not likelihood-based.
I But KNN is dirt simple, so it is still easy to interpret and

analyze.

How flexible?
I KNN is nonparametric — can fit any function.
I Can be very flexible.
I “Smoothness” is controlled by choice of K.
I Smaller K =⇒ Less smooth (more flexible)
I Larger K =⇒ More smooth (less flexible)

7 / 37



Outline

K-nearest neighbors (KNN)

Measuring regression performance

Measuring classification performance

8 / 37



Mean squared error

The simplest measure of performance for regression is the
mean squared error (MSE).

The MSE on the training data set is

training MSE =
1

n

n∑
i=1

(f̂(xi)− yi)
2

where f̂(xi) is the predicted outcome for point xi, and the
training set is ((x1, y1), . . . , (xn, yn)).

The (expected) test MSE at a particular test point x0 is

test MSE = E
(
(f̂(x0)− Y0)

2
)

where Y0 is a random variable representing the true outcome
for x0 (e.g., Y0 = f(x0) + ε where ε is random noise).
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Example 1: Mean squared error

The flexibility knob here is the “effective degrees of freedom”; see ISL 7.5.
10 / 37



Example 2: Mean squared error

The flexibility knob here is the “effective degrees of freedom”; see ISL 7.5.
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Example 3: Mean squared error

The flexibility knob here is the “effective degrees of freedom”; see ISL 7.5.
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Bias-variance tradeoff for examples 1-3

The flexibility knob here is the “effective degrees of freedom”; see ISL 7.5.
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Bias-variance tradeoff

A common misperception is that bias is always bad.

In fact, allowing some bias usually improves performance!

Why? Because the variance of the predictions can be reduced
by allowing some bias.

This is due to the bias-variance tradeoff.

Bias-variance tradeoff

The test MSE can be decomposed as

test MSE = bias2 + variance + noise.

We will make this more precise in a little bit.
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Bias-variance tradeoff

Roughly, “variance” refers to the variability in f̂(x) due to the
randomness in the training dataset.

Roughly, “bias” refers to the expected difference between
f̂(x) and the true f(x).

Less flexibility leads to:
I more bias, since we cannot fit the data distribution as closely.
I less variance, since there are fewer parameters to estimate.

More flexibility leads to:
I less bias, since we can fit the data distribution more closely.
I more variance, since there are more parameters to estimate.

Consequently, there is a tradeoff, and test MSE is minimized
by setting the flexibility equal to some critical point.
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K-nearest neighbors (KNN) regression

(R code example to illustrate bias-variance tradeoff)
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Schematic of the bias-variance tradeoff

(figure from Friedman et al. (2009).)
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Precise statement of the bias-variance tradeoff

Suppose the training data set is D = ((x1, Y1), . . . , (xn, Yn)).

(The xi’s are fixed, whereas the Yi’s are random variables.)

Suppose f̂D(x) is the prediction function generated by some
algorithm using D.

Suppose x0 is a fixed test point, and we want to predict the
true unobserved Y0.

We then predict Ŷ0 = f̂D(x0).

(Ŷ0 is a random variable, since the Yi’s are random variables.)

Bias-variance tradeoff

If Y0 = f(x0) + ε, where ε ⊥⊥ D and E(ε) = 0, then

E
(
(Ŷ0 − Y0)

2
)
=
(
E(Ŷ0)− f(x0)

)2
+Var(Ŷ0) + Var(ε).

In other words, test MSE = bias2 + variance + noise.
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KNN classifier with K = 3 (on data with 2-dim x’s)
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2d example: KNN classifier with K = 10
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2d example: KNN classifier with K = 1 and K = 100
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K-nearest neighbors (KNN) classifier algorithm

In classification, yi is categorical, e.g., yi ∈ {1, . . . , C}.
Usually xi ∈ Rd, but other spaces are common as well.

KNN classifier algorithm – class prediction version

Input: x∗, training set (x1, y1), . . . , (xn, yn), and K.
Output: y∗ (predicted class at x∗)

1. Find the K training points xi that are nearest to x∗.

2. y∗ = most frequently occurring class yi over these K points.

In other words, take a majority vote of the classes of the K
nearest points.

Ties can be broken arbitrarily, e.g., randomly if you wish.
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KNN classifier – probability version

KNN classifier algorithm – probability version

Input: x∗, training set (x1, y1), . . . , (xn, yn), and K.
Output: p̂y = estimated probability of class y at x∗, for each y.

1. Find the K training points xi that are nearest to x∗.

2. p̂y = proportion of these K points that have yi = y.

In other words, for each class y, compute what fraction of the
K nearest points have class y.

The class prediction version can be recovered by setting

y∗ = argmax
y

p̂y.

How would you explain, in words, what is this formula doing?
Notation: argmaxx g(x) is the x at which g(x) is maximized.
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KNN classifier on univariate x’s and binary y’s
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KNN classifier on univariate x’s and binary y’s

(R code example)
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Error rate (a.k.a. misclassification rate)

Classification is supervised learning with categorical y’s.

Simplest measure of classification performance is error rate.

Error rate = fraction of points that are classified incorrectly.

The training error rate is

train error =
1

n

n∑
i=1

I(ŷi 6= yi)

where ŷi is the predicted class for point xi, and the training
set is ((x1, y1), . . . , (xn, yn)).

Notation: I(·) denotes the indicator function: I(A) = 1 if A is
true, and I(A) = 0 otherwise.
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Error rate (a.k.a. misclassification rate)

The (expected) test error rate is

test error = E(I(Ŷ0 6= Y0)) = P(Ŷ0 6= Y0)

where (X0, Y0) is a random data point distributed according
to the true data generating process, and Ŷ0 = f̂D(X0) where
f̂D is constructed from the training data D.

Randomness of Ŷ0 can come from three sources:

1. randomness of the test point X0,
2. randomness of the training x’s in D, and/or
3. randomness of the training y’s in D.

Sometimes we consider test error given one or more of these
three sources. Need to be careful to clarify.

For example, in the bias-variance discussion, we conditioned
on X0 = x0 and on the training x’s (but not the training y’s).
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Example: Error rate of KNN classifier

(R code example to illustrate error rate)
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The Bayes optimal classifier

The Bayes optimal classifier (or Bayes classifier) is defined as
the classifier that has the smallest test error rate:

foptimal = argmin
f

P(f(X0) 6= Y0).

Notation: argminx g(x) is the x at which g(x) is minimized.

(Technically, it is the set of all such minimizing values x.)

The Bayes optimal classifier is a theoretical construct, not a
practical classification method.

It’s what we would ideally use if we knew the distribution of
(X0, Y0), i.e., if we knew the true data generating process.
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The Bayes optimal classifier

What can we say about the Bayes optimal classifier?

First, if f(x0) minimizes P(f(x0) 6= Y0 | X0 = x0) for each
x0, then f minimizes the test error rate P(f(X0) 6= Y0).

(This is probably not obvious. . . Can you see why this is true?)

This is equivalent to f(x0) being the class y with the highest
probability given x0, i.e., the highest P(Y0 = y | X0 = x0).

(Can you see why this is true?)

Therefore,

foptimal(x0) = argmax
y

P(Y0 = y | X0 = x0).

(How would you state this result in words?)
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The Bayes optimal classifier

In practice, we don’t know the true distribution of (X0, Y0).

But we do have samples from it, namely, the training set
((x1, y1), . . . , (xn, yn)).

Thus, a probabilistic model-based approach to classification is:

1. estimate the true distribution of (X0, Y0) from the training set,
2. use the Bayes optimal classifier for the estimated distribution.
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Example: Bayes optimal classifier

(R code example to illustrate)
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2d example: Bayes optimal classifier
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Example: Bias-variance tradeoff

(R code example to illustrate)
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Bias-variance tradeoff for classification vs regression

(figure from Friedman et al. (2009))
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