Lecture 3: Measuring performance
Statistical Learning (BST 263)
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K-nearest neighbors (KNN)

@ Our first statistical learning method!

@ We'll use KNN to illustrate the concepts in this lecture.

KNN regression algorithm

Input: z*, training set (x1,91),..., (Zn,yn), and K.
Output: y* (predicted outcome value at z*)

1. Find the K training points x; that are nearest to z*.

2. y* = average of the training y; values for these K points.

o Typically, z; € R% and y; € R, and Euclidean distance is used
to define how near z* is to each ;.

@ More general spaces and distances are easy to handle as well.
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KNN regression using K =1, K =2, and K =4
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K-nearest neighbors (KNN) regression

(R code example)
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KNN: Considerations for choosing when to use it

@ Supervised learning method
@ Can be used for regression or classification.

@ Useful for pure prediction problems — not very useful for
getting insight/understanding.

@ Match to data generating process?
» Based on assumption that nearby z's have similar y's.
> In other words, f(z) is assumed to be “smooth”.
@ Algorithmic method — not likelihood-based.
» But KNN is dirt simple, so it is still easy to interpret and
analyze.
@ How flexible?

KNN is nonparametric — can fit any function.
Can be very flexible.

“Smoothness” is controlled by choice of K.
Smaller K = Less smooth (more flexible)
Larger K = More smooth (less flexible)
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Outline

Measuring regression performance
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Mean squared error

@ The simplest measure of performance for regression is the
mean squared error (MSE).

@ The MSE on the training data set is
training MSE = 1En:(f( ) — ui)?
g 0 £ X Yi;
1=

where f(xz) is the predicted outcome for point xz;, and the
training set is ((z1,y1)s .-+, (Tn, Yn))-
@ The (expected) test MSE at a particular test point x is

test MSE = E((f(xo) - Yp)?)

where Y{ is a random variable representing the true outcome
for z¢ (e.g., Yo = f(xo) + € where € is random noise).

37



Example 1: Mean squared error
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FIGURE 2.9. Left: Data simulated from f, shown in black. Three estimates of
f are shown: the linear regression line (orange curve), and two smoothing spline
fits (blue and green curves). Right: Training MSE (grey curve), test MSE (red
curve), and minimum possible test MSE over all methods (dashed line). Squares
represent the training and test MSEs for the three fits shown in the left-hand
panel.

The flexibility knob here is the “effective degrees of freedom”; see ISL 7.5.
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Example 2: Mean squared error
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FIGURE 2.10. Details are as in Figure 2.9, using a different true f that is
much closer to linear. In this setting, linear regression provides a very good fit to
the data.

The flexibility knob here is the “effective degrees of freedom”; see ISL 7.5.
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Example 3: Mean squared error
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FIGURE 2.11. Details are as in Figure 2.9, using a different f that is far from
linear. In this setting, linear regression provides a very poor fit to the data.

The flexibility knob here is the “effective degrees of freedom”; see ISL 7.5.
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Bias-variance tradeoff for examples 1-3
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FIGURE 2.12. Squared bias (blue curve), variance (orange curve), Var(e)
(dashed line), and test MSE (red curve) for the three data sets in Figures 2.9-2.11.
The vertical dotted line indicates the flexibility level corresponding to the smallest
test MSE.

The flexibility knob here is the “effective degrees of freedom”; see ISL 7.5.
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Bias-variance tradeoff

@ A common misperception is that bias is always bad.

@ In fact, allowing some bias usually improves performance!

@ Why? Because the variance of the predictions can be reduced
by allowing some bias.

@ This is due to the bias-variance tradeoff.

Bias-variance tradeoff

The test MSE can be decomposed as

test MSE = bias® + variance + noise.

We will make this more precise in a little bit.
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Bias-variance tradeoff

@ Roughly, “variance” refers to the variability in f(a:) due to the
randomness in the training dataset.

@ Roughly, “bias” refers to the expected difference between
f(x) and the true f(x).

o Less flexibility leads to:

» more bias, since we cannot fit the data distribution as closely.
» less variance, since there are fewer parameters to estimate.

@ More flexibility leads to:

> less bias, since we can fit the data distribution more closely.
» more variance, since there are more parameters to estimate.

o Consequently, there is a tradeoff, and test MSE is minimized
by setting the flexibility equal to some critical point.
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K-nearest neighbors (KNN) regression

(R code example to illustrate bias-variance tradeoff)
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Schematic of the bias-variance tradeoff
Closest fit in population
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FIGURE 7.2. Schematic of the behavior of bias and varian
is the set of all possible predictions from the model, with the
with a black dot. The model bias from the truth is shown, along with the variance,
indicated by the large yellow circle centered at the black dot labeled “closest fit
in population.” A shrunken or reqularized fit is also shown, having additional
estimation bias, but smaller prediction error due to its decreased variance.

(figure from Friedman et al. (2009).)
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Precise statement of the bias-variance tradeoff

@ Suppose the training data set is D = ((x1,Y1),. .., (Tn, Yn)).
(The x;'s are fixed, whereas the Y;'s are random variables.)

@ Suppose fp(a:) is the prediction function generated by some
algorithm using D.

@ Suppose xg is a fixed test point, and we want to predict the
true unobserved Yj.

o We then predict Yy = fp ().
(Yo is a random variable, since the Y;'s are random variables.)

Bias-variance tradeoff

If Yo = f(z0) + €, where ¢ 1L D and E(¢) = 0, then

E((Yo — Y0)%) = (E(Y0) — f(x0))? + Var(¥o) + Var(e).
In other words, test MSE = bias? + variance + noise.
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Outline

Measuring classification performance
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KNN classifier with K’ = 3 (on data with 2-dim z's)

FIGURE 2.14. The KNN approach, using K = 3, is illustrated in a simple
situation with siz blue observations and six orange observations. Left: a test ob-
servation at which a predicted class label is desired is shown as a black cross. The
three closest points to the test observation are identified, and it is predicted that
the test observation belongs to the most commonly-occurring class, in this case
blue. Right: The KNN decision boundary for this ezample is shown in black. The
blue grid indicates the region in which a test observation will be assigned to the
blue class, and the orange grid indicates the region in which it will be assigned to
the orange class.
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2d example: KNN classifier with K = 10

KNN: K=10

X,

FIGURE 2.15. The black curve indicates the KNN decision boundary on the
data from Figure 2.13, using K = 10. The Bayes decision boundary is shown as
a purple dashed line. The KNN and Bayes decision boundaries are very similar.
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2d example: KNN classifier with K =1 and K = 100

KNN: K=1 KNN: K=100

FIGURE 2.16. A comparison of the KNN decision boundaries (solid black
curves) obtained using K = 1 and K = 100 on the data from Figure 2.13. With
K =1, the decision boundary is overly flexible, while with K = 100 it is not
sufficiently flexible. The Bayes decision boundary is shown as a purple dashed
line.
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K-nearest neighbors (KNN) classifier algorithm

@ In classification, y; is categorical, e.g., y; € {1,...,C}.

o Usually z; € R?, but other spaces are common as well.

KNN classifier algorithm — class prediction version

Input: z*, training set (x1,91),..., (Zn,yn), and K.
Output: y* (predicted class at z*)

1. Find the K training points x; that are nearest to z*.

2. y* = most frequently occurring class y; over these K points.

@ In other words, take a majority vote of the classes of the K
nearest points.

@ Ties can be broken arbitrarily, e.g., randomly if you wish.
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KNN classifier — probability version

KNN classifier algorithm — probability version

Input: z*, training set (x1,91), ..., (Zn,yn), and K.
Output: p, = estimated probability of class y at x*, for each y.

1. Find the K training points x; that are nearest to z*.

2. py = proportion of these K points that have y; = y.

@ In other words, for each class y, compute what fraction of the
K nearest points have class y.

@ The class prediction version can be recovered by setting
y* = argmax p,.
Y

How would you explain, in words, what is this formula doing?
Notation: argmax, g(x) is the  at which g(x) is maximized.
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KNN classifier on univariate z's and binary y's
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KNN classifier on univariate z's and binary y's

(R code example)
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Error rate (a.k.a. misclassification rate)

o Classification is supervised learning with categorical y's.
@ Simplest measure of classification performance is error rate.

@ Error rate = fraction of points that are classified incorrectly.

@ The training error rate is

n

, 1 N
train error = - Zl(yi # yi)

i=1
where ; is the predicted class for point x;, and the training

setis ((x1,91), -+, (Tn,Yn)).

e Notation: I(-) denotes the indicator function: I(A) =1 if Ais
true, and I(A) = 0 otherwise.
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Error rate (a.k.a. misclassification rate)

@ The (expected) test error rate is
test error = E(I(Yy # Yp)) = P(Yy # Vo)

where (Xo,Yp) is a random data point distributed according
to the true data generating process, and Yy = fp(Xy) where
fp is constructed from the training data D.

@ Randomness of Y;; can come from three sources:

1. randomness of the test point Xy,
2. randomness of the training x's in D, and/or
3. randomness of the training y's in D.

@ Sometimes we consider test error given one or more of these
three sources. Need to be careful to clarify.

@ For example, in the bias-variance discussion, we conditioned

on Xy =z and on the training z's (but not the training y's).

28 /37



Example: Error rate of KNN classifier

(R code example to illustrate error rate)
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The Bayes optimal classifier

e The Bayes optimal classifier (or Bayes classifier) is defined as
the classifier that has the smallest test error rate:

foptimal = arg;nin P(f(XO) 7é YO)

e Notation: argmin, g(z) is the x at which g(z) is minimized.

(Technically, it is the set of all such minimizing values x.)

@ The Bayes optimal classifier is a theoretical construct, not a
practical classification method.

@ It's what we would ideally use if we knew the distribution of
(Xo,Yp), i.e., if we knew the true data generating process.
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The Bayes optimal classifier

@ What can we say about the Bayes optimal classifier?

e First, if f(xo) minimizes P(f(x0) # Yo | Xo = zo) for each
xg, then f minimizes the test error rate P(f(Xy) # Yp).

(This is probably not obvious. .. Can you see why this is true?)

e This is equivalent to f(z() being the class y with the highest
probability given xg, i.e., the highest P(Yy =y | Xo = x0).

(Can you see why this is true?)

@ Therefore,
foptimal(20) = argmax P(Yy = y | Xo = 20).
Yy
(How would you state this result in words?)
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The Bayes optimal classifier

@ In practice, we don't know the true distribution of (X, Yp).

@ But we do have samples from it, namely, the training set
((x1,91)s -y (TnyYn))-

@ Thus, a probabilistic model-based approach to classification is:

1. estimate the true distribution of (Xg, Yy) from the training set,
2. use the Bayes optimal classifier for the estimated distribution.
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Example: Bayes optimal classifier

(R code example to illustrate)
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2d example: Bayes optimal classifier

X,

FIGURE 2.13. A simulated data set consisting of 100 observations in each of
two groups, indicated in blue and in orange. The purple dashed line represents
the Bayes decision boundary. The orange background grid indicates the region
in which a test observation will be assigned to the orange class, and the blue
background grid indicates the region in which a test observation will be assigned
to the blue class.
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Example: Bias-variance tradeoff

(R code example to illustrate)
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Bias-variance tradeoff for classification vs regression
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FIGURE 7.3. Expected prediction error (orange), squared bias (green) and vari-
ance (blue) for a simulated ezample. The top row is regression with squared error
loss; the bottom row is classification with 0-1 loss. The models are k-nearest
neighbors (left) and best subset regression of size p (right). The variance and bias
curves are the same in reg and i but the prediction error curve

is different. 36/37
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