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Linear regression

The most important statistical learning method!

You are already very familiar with linear regression. . .
I running it on data,
I interpreting the results,
I applying it to examples,
I and possibly estimation.
I (See ISL Chapter 3 for this kind of stuff.)

So we will not rehash this stuff.

Instead, we will do a more advanced treatment of the math
behind linear regression.

Why? It is the foundation for many, many other methods.
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Probabilistic model for linear regression

Linear regression corresponds to using a probabilistic model
based on the normal distribution.

Training data: (x1, y1), . . . , (xn, yn), where yi ∈ R and xi can
be in any arbitrary space.

xi is mapped to ϕ(xi) = (ϕ1(xi), . . . , ϕp(xi))
T ∈ Rp.

ϕ1, . . . , ϕp are called the basis functions or feature functions.

What is an example of basis functions you have used before?

The outcome yi is modeled as a random variable

Yi = ϕ(xi)
Tβ + εi

where β ∈ Rp, and ε1, . . . , εn ∼ N (0, σ2) independently.

Is the model linear in the x’s, in β, or in both?
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Model for linear regression – Linear algebra version

We can describe the model more succinctly by defining
Y = (Y1, . . . , Yn)

T, ε = (ε1, . . . , εn)
T, and

A =

 ϕ(x1)
T

...
ϕ(xn)

T

 .
What are the dimensions of A?

Then the model is Y = Aβ + ε where ε ∼ N (0, σ2I).

In words, what do Y , A, β, and ε represent?

Equivalently, the entire model can be written in the single
expression Y ∼ N (Aβ, σ2I).

Why is this equivalent to the previous line?
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Model for linear regression – Linear algebra version

Model: Y ∼ N (Aβ, σ2I) where A =
[
ϕ(x1) · · · ϕ(xn)

]T
.

So, the density of Y (given β, σ2, x) is

p(y | β, σ2, x) = N (y | Aβ, σ2I)

=
1

(2π)n/2|det(σ2I)|1/2
exp
(
− 1

2(y −Aβ)
T(σ2I)−1(y −Aβ)

)
.

Here, x = (x1, . . . , xn) for notational simplicity.

|det(σ2I)|1/2 = |(σ2)n|1/2 = (σ2)n/2 = σn.

Can you simplify the exp() part to remove the matrix inverse?
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Basis functions in linear regression

A wide range of input-output relationships can be handled
through the choice of basis functions ϕ1, . . . , ϕp.

Can handle nonlinear relationships between xi and yi.

The “linear” part of linear regression refers to linearity in β,
not linearity in the xi’s.

What equation are we referring to, here?

Each xi can be highly complex. . .

e.g., images of varying size, time-series of varying length,
natural language text, a collection of records, . . .

The basis functions conveniently transform xi into a
fixed-dimensionality vector of features (ϕ1(xi), . . . , ϕp(xi))

T.
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Basis functions: Common examples

Linear with intercept:

ϕ(xi) = (1, xi1, . . . , xid)
T.

Quadratic:

ϕ(xi) = (1, xi1, . . . , xid, x
2
i1, . . . , x

2
id, xi1xi2, . . . , xi(d−1)xid)

T.

Subset of selected interactions

Higher-order polynomials

Splines

Radial basis functions

Fourier basis (sines and cosines)

Wavelets

10 / 25



Basis functions: Transformations

Dummy variables for qualitative/categorical variables:
I Binary variable, e.g.,

I(subject i is female).

I Categorical variable xij taking k possible values v1, . . . , vk:
transform to k − 1 dummy variables,

I(xij = v1), . . . , I(xij = vk−1).

I If xij is a categorical variable encoded as an integer, it is
important to do this transformation!
What assumption are you making if you do not transform it?

Fractions or percentages are often transformed using
logit(x) = log(x/(1− x)).

Positive numbers are often transformed using log(x).
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Basis functions: Controlling flexibility

The flexibility of a linear regression model can be controlled
via the choice of basis functions.

e.g., the number of variables to use, which variables, which
interactions, the number of spline knots, etc.

However, making this choice is sometimes difficult.

(. . . both computationally and statistically)

Often, it is easier to control flexibility using regularization.

e.g., penalized regression such as ridge regression, lasso, or
elastic net, or Bayesian linear regression.

We will return to this later in the course.
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Maximum likelihood estimation for linear regression

As a function of the parameters β and σ2, p(y | β, σ2, x) is
called the likelihood function.

For the moment, let’s suppose σ2 is known.

The log-likelihood for β is

log p(y | β, σ2, x) = const− 1

2σ2
(y −Aβ)T(y −Aβ),

where const denotes a constant that does not depend on β.

A common way to estimate the parameters of a probabilistic
model is to maximize the log-likelihood.
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Maximum likelihood estimation for linear regression

Maximizing the log-likelihood of β is same as minimizing

h(β) = (y −Aβ)T(y −Aβ)
= yTy − 2βTATy + βTATAβ.

To find the minimizer, set the gradient ∇h(β) to zero. . .

0 = ∇h(β) = −2ATy + 2ATAβ

and solve for β. . .

β = (ATA)−1ATy

assuming ATA is invertible.

Can you verify the preceding steps? More advanced: Can you
verify that it is a minimum (not just a critical point)?
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Maximum likelihood estimation for linear regression

Thus, the maximum likelihood estimate (MLE) is

β̂ = (ATA)−1ATy.

The estimated prediction function is f̂(x0) = ϕ(x0)
Tβ̂.

The MLE for σ2 turns out to be

σ̂2 =
1

n
(y −Aβ̂)T(y −Aβ̂) = 1

n

n∑
i=1

(yi − ŷi)2.
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Uncertainty quantification

We can quantify our uncertainty in the estimate β̂, as well as
in the predictions f̂(x0), by considering their probability
distributions under the assumed model.

The basic idea is to view β̂ as a random vector, where the
randomness comes from the outcomes Yi in the training data
(x1, Y1), . . . , (xn, Yn). The inputs xi are treated as fixed (i.e.,
non-random) in this type of analysis.

Under this setup, we can analytically derive the distributions
of β̂, of f̂(x0), and of the residuals Yi − Ŷi.
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Uncertainty quantification

These distributions are used to construct:
I confidence intervals for the coefficient estimates,
I p-values for testing whether coefficients are equal to 0,
I confidence intervals for the prediction function,
I prediction intervals for future outcomes, and
I various residual diagnostics.

The caveat is that these distributions are only correct when
the assumed linear regression model is correct.

In practice, the model is usually incorrect, so the resulting
intervals and p-values must be viewed with skepticism.
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Distribution of β̂

Under the model, Y = Aβ + ε where ε ∼ N (0, σ2I).

Y ∈ Rn is a random vector. A ∈ Rn×p and β ∈ Rp are fixed.

So β̂ is a random vector (where the randomness is from Y ):

β̂ = (ATA)−1ATY

= (ATA)−1AT(Aβ + ε)

= β + (ATA)−1ATε

∼ N (β, σ2(ATA)−1)

Can you verify the preceding steps?
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Distribution of β̂

Therefore, if the model is correct, then

β̂ ∼ N (β, σ2(ATA)−1).

If σ2 is known, this can be used to construct confidence

intervals for the coefficients βj , e.g., β̂j ± 1.96
√
Var(β̂j).

Usually, though, σ2 is not known, and some more math is
needed to construct correct confidence intervals when using σ̂2

instead of σ2. We won’t go into these additional details here.
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Distribution of f̂(x0)

If the linear regression model is correct, then

f̂(x0) = ϕ(x0)
Tβ̂ ∼ N

(
ϕ(x0)

Tβ, σ2ϕ(x0)
T(ATA)−1ϕ(x0)

)
by the affine transformation property. Can you see why?

In words, what is this formula telling us?

If σ2 is known, this can be used to construct confidence
intervals for f(x0) and prediction intervals for a future
outcome Y0 = f(x0) + ε0.

As before, if σ2 is not known, then more work is needed to
construct correct confidence intervals and prediction intervals
when using σ̂2.
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Distribution of the residuals

The residuals are the differences between the observed
outcomes Yi and the fitted outcomes Ŷi = ϕ(xi)

Tβ̂.

Define Ŷ = (Ŷ1, . . . , Ŷn)
T. Then

Ŷ = Aβ̂ = A(ATA)−1ATY = HY

where H = A(ATA)−1AT is called the hat matrix.

So the vector of residuals is

Y − Ŷ = Y −HY = (I −H)Y

∼ N
(
(I −H)Aβ, σ2(I −H)(I −H)T

)
by the affine transformation property, since Y ∼ N (Aβ, σ2I).
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Distribution of the residuals

Since HA = A, then (I −H)Aβ = 0. Further, since H = HT

and HH = H, then (I −H)(I −H)T = I −H. Thus,

Y − Ŷ ∼ N
(
0, σ2(I −H)

)
.

If σ2 is known, then we can compute the standardized
residuals (Yi − Ŷi)/(σ

√
1−Hii), and this result implies that

they are N (0, 1) distributed (but not independent).

If σ2 is unknown, then one can derive the distribution of the
studentized residuals, (Yi − Ŷi)/(σ̂

√
1−Hii).

The definition of “standardized residuals” and “studentized
residuals” varies from source to source, so you may need to be
careful about precisely what definition is being used.
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Leverage

The leverage of point i is defined as Hii, the ith diagonal
entry of H.

Ŷi =
∑n

j=1HijYj , so if Hii is large then Yi has a large

influence on the fitted value Ŷi.

Identifying high leverage points is a useful diagnostic for
finding points that might be having excessive influence and
might be causing spurious results.

The leverages always sum to p, i.e.,
∑n

i=1Hii = p.

More advanced: Can you see why this is true?
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