
Lab: Linear Regression and Bias-Variance Tradeoff
1. Linear Regression - Bias-Variance Tradeoff

Assume that X1, X2 are two independent variables but with a same distribution N(1, 1). The true relation-
ship between Yi and X1i, X2i is Yi = 1 +X1i + 0.001X2i + εi, where εi

i.i.d∼ N(0, σ2).

(a) Is the intercept/coefficient of X1 biased if you only regress on X1? What is your intuition?

The estimated intercept is biased but the coefficient of X1 is not biased. Since X1, X2, ε are independent, we
can treat η = 0.0001X2+ε as a new error term instead of ε. Based on the properties of normal distribution, we
derive the distribution of η, which isN(0.0001, 0.00012+σ2) = 0.0001+N(0, 0.00012+σ2) = 0.0001+η∗.Thus,
our model is equivalent to Y = 1.0001 +X1 + η∗, where η∗ has a mean 0. From here, we can see, if we only
regress on X1, the intercept would be biased but not the coefficient of X1.

(b) Follow-up: Show your conclusion in (a) mathmatically. Here are some hints:

Step 1: Based on the model we fit, we assume E(Y |X1) = β0 + β1X1.
Step 2: We know the ‘true’ relationship between Y and X1, X2, use it to replace Y in the above equation.

E(α0 + α1X1 + α2X2 + ε|X1) = β0 + β1X1

Step 3: Work on the expectation and reach your conculsion.

α0 + α1E(X1|X1) + α2E(X2|X1) + E(ε|X1) = β0 + β1X1

α0 + α1X1 + α2E(X2) + E(ε) = β0 + β1X1

α0 + α1X1 + α2 = β0 + β1X1

(α0 + α2) + α1X1 = β0 + β1X1

This equation is valid no matter what X1 is, so β0 = α0 + α2 and β1 = α1.

(c) Would you include X2 to improve your model based on your intuition?
No, the effect size of X2 is too small. By estimating a new parameter, we may lose power in estimating
the existing parameters (larger variance).

(d) [Teamwork] Verify your conclusion using a simulation. Please follow the comments in the code chunk.

## Step 1: generate a training set
set.seed(263)
n = 50
x1 = rnorm(n,1,1)
x2 = rnorm(n,1,1)
eps = rnorm(n,0,0.2)
y = 1+x1+0.001*x2+eps
trainset=data.frame(cbind(y,x1,x2))
## Step 2: fit models on trainset: y~x1 and y~x1+x2
fit1 = lm(y~x1,data=trainset)
fit2 = lm(y~x1+x2,data=trainset)
## Step 3: generate a test set
m=10000
x1 = rnorm(m,1,1)

1



x2 = rnorm(m,1,1)
eps = rnorm(m,0,0.2)
y = 1+x1+0.001*x2+eps
testset=data.frame(cbind(y,x1,x2))
## Step 4: get the predictions in test set:
pred1 = predict(fit1,testset)
pred2 = predict(fit2,testset)
## Step 5: compare the MSEs in test set
MSE1 = mean((testset$y-pred1)^2)
MSE2 = mean((testset$y-pred2)^2)

Try to answer the questions below and get the idea of bias-variance tradeoff:
(1) In Model 1, the estimate of the intercept is unbiased, the MSE on the test set is 0.0398.
(2) In Model 2, the estimate of the intercept is biased, the MSE on the test set is 0.0403.
(3) Based on MSE, Model 1 is better, so you can infer that the predicitons using Model 2 have a larger
variance.

(e) (Optional advanced problem) Let’s go back to (a) and think, is the intercept/coefficient of X1 biased
if you only regress on X1, given that X1 is correlated with X2?

Both intercept and coefficient would be biased. The only different part in derivation from (b) is E(X2|X1)
is not 1 anymore, it’s a function of X1 now.

2. Predict House Price Using Regression

This dataset(‘kc_house_data.csv’) contains house sale prices for King County, which includes Seattle. It
includes homes sold between May 2014 and May 2015. There are 19 house features plus the price and the
id columns, along with 21613 observations. The dictionary of the variables is listed in the next page.

## Load in the data, split the data into training set and test set
house = read.csv('kc_house_data.csv',header = T)
trainset = house[1:floor(nrow(house)*0.8),]
testset = house[-(1:floor(nrow(house)*0.8)),]

(a) Fit a linear model on the training set: price = bedrooms + bathrooms + condition. Interpret the
estimated coefficient of bathrooms and provide the corresponding 95% confidence interval.

fit1 = lm(price~bedrooms+bathrooms+condition,data=trainset)
summary(fit1)

##
## Call:
## lm(formula = price ~ bedrooms + bathrooms + condition, data = trainset)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1482279 -180134 -39247 110776 5925764
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -198419 15333 -12.941 < 2e-16 ***
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## bedrooms 12184 2956 4.122 3.77e-05 ***
## bathrooms 248936 3662 67.975 < 2e-16 ***
## condition 51341 3567 14.394 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 309800 on 17286 degrees of freedom
## Multiple R-squared: 0.2836, Adjusted R-squared: 0.2835
## F-statistic: 2281 on 3 and 17286 DF, p-value: < 2.2e-16

confint(fit1)

## 2.5 % 97.5 %
## (Intercept) -228473.190 -168364.75
## bedrooms 6390.309 17976.88
## bathrooms 241758.221 256114.63
## condition 44349.454 58332.40

Interpretation: The average house price will increase 248936 dollars for every one more bathroom in the
house adjusting for number of bedrooms and house condition.

(b) Fit a linear model on the training set: price = bedrooms + bathrooms + condition + sqft_above.
Compare the coefficients of bedrooms here with the one in (a), what do you find?

fit2 = lm(price~bedrooms+bathrooms+condition+sqft_above,data=trainset)
summary(fit2)

##
## Call:
## lm(formula = price ~ bedrooms + bathrooms + condition + sqft_above,
## data = trainset)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1047706 -161963 -32861 106841 5007967
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.894e+05 1.402e+04 -20.638 < 2e-16 ***
## bedrooms -1.640e+04 2.728e+03 -6.011 1.89e-09 ***
## bathrooms 1.058e+05 4.089e+03 25.876 < 2e-16 ***
## condition 7.717e+04 3.271e+03 23.594 < 2e-16 ***
## sqft_above 2.246e+02 3.726e+00 60.265 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 281600 on 17285 degrees of freedom
## Multiple R-squared: 0.408, Adjusted R-squared: 0.4078
## F-statistic: 2978 on 4 and 17285 DF, p-value: < 2.2e-16

The coefficient of bedrooms becomes negative, which doesn’t make sense. It is caused by the colinearity of
bedrooms and sqft_above.
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Figure 1: variable_dict
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(c) Using the model in (a), predict the price in the test set and calculate the mean square loss L =
1

M

∑M
i=1(Yi − Ŷi)2.

pred = predict(fit1,testset)
mean((pred-testset$price)^2)

## [1] 96659063399

(d) [Teamwork] Competition Time!
Use linear regression to get the best prediction! (Minimal square loss in test set). Think about:
1.Transformation: what is the best φ(x), e.g. log(sqft_above)? sqrt(sqft_above)? or original?
2.Should we include all variables? How to combine different pieces of information, e.g.yr_built and
yr_renovated?
3.continuous or categorical?
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Figure 2: sol

3. (Optional advanced problem) Distribution Theory - Matrix Representation

This question is beyond the scope of this class. It is here only for those who want more practice on matrix
representations.

Let y be a k × 1 multivariate normal random vector with mean µ and nonsingular variance-convariance
matrix V , y ∼ N(µ, V ). Additionally, let A be a k × k matrix of constants and B be a q × k matrix. Then,
the linear form W = By and quadratic form U = yTAy are independent if BV A = 0.

Prove that β̂ = (XTX)−1XTY and σ̂2 are independent using the theorem above.
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