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Example: ELISA test
The enzyme-linked immunosorbent assay (ELISA) is a
chemical test for the presence of an antigen of interest.

Widely used for the detection of diseases such as malaria,
HIV, West Nile virus, and celiac disease.

We will use this to illustrate some concepts in this lecture.
See R code file: classification.r under Files/Code.
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Loss functions

If our goal is to get the correct answer as often as possible,
then we want to construct f̂ to minimize the test error rate.

However, what if certain types of errors are more costly than
others?

For instance, if we are detecting cancer, then a false positive
may result in unnecessary additional tests, whereas a false
negative may result in loss of life due to lack of treatment.

To handle such situations, we use a loss function L(ŷ, y) to
quantify the cost of predicting ŷ when the actual class is y.

Example: The 0-1 loss is L(ŷ, y) = I(ŷ 6= y).
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Decision theory

The expected loss is E(L(Ŷ0, Y0)), where (X0, Y0) is a random
data point distributed according to the true data generating
process, and Ŷ0 = f̂(X0) is the predicted outcome value.

Example: The expected 0-1 loss is the test error rate.

The decision theory approach to choosing f̂ is to try to
minimize expected loss.

This approach applies to both regression and classification.

Regression example:
I The square loss is L(ŷ, y) = (ŷ − y)2.
I The expected square loss is the test MSE.
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Confusion matrix
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Confusion matrix

Actual
0 (negative) 1 (positive)

Predicted
0 (negative) true neg. (TN) false neg. (FN)
1 (positive) false pos. (FP) true pos. (TP)

In the TP, FP, TN, FN terminology:
I “True”/“False” = prediction is correct/incorrect,
I “Positive”/“Negative” = predicted class is positive/negative.

False positive rate (FPR) = FP / (FP + TN)
I Fraction of actual negatives that were predicted to be positive.
I Specificity = 1− FPR

True positive rate (TPR) = TP / (TP + FN)
I Fraction of actual positives that were predicted to be positive.
I Sensitivity = TPR
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Confusion matrix example: ELISA test

(See R code file: classification.r.)
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Expected loss in binary classification setting

Loss matrix:

Actual
0 (negative) 1 (positive)

Predicted
0 (negative) L(0, 0) L(0, 1)
1 (positive) L(1, 0) L(1, 1)

Expected loss:

E(L(Ŷ0, Y0)) = L(0, 0)PTN+L(0, 1)PFN+L(1, 0)PFP+L(1, 1)PTP

where PTN = P(Ŷ0 = 0, Y0 = 0), etc.
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ROC curve

Binary classification (e.g., y ∈ {0, 1}).

Most binary classification methods have a detection threshold
(i.e., a cutoff) that can be adjusted.

ELISA example: f(x) = I(x > cutoff).

KNN: f̂(x) = I
(
p̂1(x) > cutoff

)
.

Can choose cutoff to try to maximize performance (i.e., to
minimize expected loss).
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ROC curve example
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ROC curve example: ELISA test

(See R code file: classification.r.)
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ROC curve

ROC curves are often used to compare classification methods.

The area under the ROC curve (“AUC” or “AUROC”)
summarizes the ROC curve in a single number.

If the loss function is known, though, we should compare
expected loss rather than ROC curves or AUC.
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Logistic regression

Logistic regression is a binary classification method.

For a ∈ R, the expit function (a.k.a. logistic function) is

expit(a) =
ea

ea + 1
=

1

1 + e−a
.

(See R code file: classification.r.)
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Logistic regression: expit and logit
For p ∈ (0, 1), the logit function is

logit(p) = log
( p

1− p

)
.

logit and expit are inverses, i.e.,

logit(expit(a)) = a and expit(logit(p)) = p.
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Logistic regression model

Training data (x1, y1), . . . , (xn, yn).

Inputs xi are mapped to feature vectors ϕ(xi) ∈ Rp.

Outcomes yi are binary, yi ∈ {0, 1}.

The outcomes yi are modeled as random variables

Yi ∼ Bernoulli
(
πβ(xi)

)
where πβ(xi) = expit

(
ϕ(xi)

Tβ
)
. Parameters: β ∈ Rp.

In other words,

P(Yi = 1 | β, xi) = πβ(xi) =
1

1 + exp(−ϕ(xi)Tβ)
.

Equivalently, logit
(
P(Yi = 1 | β, xi)

)
= ϕ(xi)

Tβ.
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Estimation for logistic regression

Likelihood function:

p(y1:n | β, x1:n) =
n∏
i=1

P(Yi = yi | β, xi)

=

n∏
i=1

πβ(xi)
yi
(
1− πβ(xi)

)1−yi .
Notation: x1:n = (x1, . . . , xn).

Can’t analytically maximize likelihood with respect to β.

Iterative Reweighted Least Squares (IRLS) algorithm is used
to find the MLE for β.

I Each step is similar to computing the MLE for linear regression.
I See ESL 4.4 for details.
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Prediction with logistic regression

Can use estimate β̂ to predict y0 for a future x0.

Estimated probability of y0 being class 1 given x0 is

P(Y0 = 1 | β̂, x0) = πβ̂(x0).

Can threshold probability at a cutoff to make predictions:

f̂(x0) = I
(
πβ̂(x0) > cutoff

)
.

22 / 37



Pros/cons of logistic regression

Pros

Interpretable

Tends to have lower variance (but this depends on ϕ)

Relatively simple and easy to use

Cons

Tends to have higher bias (but this depends on ϕ)

MLE β̂ can be unstable
I e.g., if classes are well separated or predictors are collinear.
I Can fix this with regularization.
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Logistic regression example: South African Heart Disease

Western Cape, South Africa

Coronary Risk Factor Study (CORIS)

High incidence of myocardial infarction (MI) in region: 5.1%

160 cases, 302 controls. Ages 15-64.

Outcome yi is presence/absence of MI at time of survey.
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Logistic regression example: South African Heart Disease
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Logistic regression example: South African Heart Disease

See ESL Section 4.4.2 for more details.
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Linear/Quadratic Discriminant Analysis (LDA/QDA)

Linear Discriminant Analysis (LDA) is one of the oldest
classification methods.

Basic idea: Model the classes using multivariate normal
distributions, and use the Bayes optimal classifier.

In ELISA example, we implicitly used LDA!

LDA and QDA are generative models for classification.

Generative: Model p(y) and p(x|y), and derive p(y|x).
How do you derive p(y|x) from p(y) and p(x|y)?

Discriminative: Model p(y|x) directly.
I Examples: KNN, logistic regression.
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Linear Discriminant Analysis (LDA)
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Linear Discriminant Analysis (LDA)
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Linear Discriminant Analysis (LDA)

(Figure from ESL)
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LDA versus QDA

LDA uses a linear decision rule. (less flexible)

QDA uses a quadratic decision rule. (more flexible)
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Probabilistic model for LDA/QDA

Training data (x1, y1), . . . , (xn, yn).

Inputs xi ∈ Rp are real-valued vectors.

Outputs yi are categorical, yi ∈ {1, . . . ,K}.

πk = P(Yi = k) = prior probability of class k.

p(xi | Yi = k) = N (xi | µk, Ck) (multivariate normal)

“Class conditional distribution” for class k.

LDA constrains C1 = · · · = CK . Let’s denote C = Ck.

I.e., LDA uses same covariance matrix for each class.

QDA allows each class k to have a different Ck.
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Prediction using the LDA/QDA model
How can we use this model to predict the y0 for a future x0?

Suppose we know the parameters πk, µk, and Ck for each k.
Then LDA just uses the Bayes optimal classifier:

Choose k to maximize P(Y0 = k | x0).

How do we compute P(Y0 = k | x0)? Note that

p(y|x) = p(x|y)p(y)
p(x)

=
p(x|y)p(y)∑
y′ p(x|y′)p(y′)

.

This is called Bayes’ theorem, but it is just basic probability.
Can you derive this from our probability basics?

Thus, in the LDA/QDA model,

P(Y0 = k | x0) =
N (x0 | µk, Ck)πk∑K
j=1N (x0 | µj , Cj)πj

.
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Estimation for LDA and QDA

How can we estimate πk, µk, and Ck for each k?

Define nk = #{i : yi = k} (# training points in class k)

Estimates: π̂k = nk/n (fraction of training points in class k)

µ̂k =
1

nk

∑
i: yi=k

xi (sample mean for class k)

QDA: Ĉk =
1

nk

∑
i: yi=k

(xi − µ̂k)(xi − µ̂k)T

(sample covariance matrix for class k)

LDA: Ĉ =
1

n

K∑
k=1

∑
i: yi=k

(xi − µ̂k)(xi − µ̂k)T
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LDA versus QDA

LDA is less flexible than QDA. . .

fewer parameters to estimate, lower variance, higher bias.
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Comparison of KNN, Logistic regression, LDA, and QDA

Typically, we would expect:

KNN – good when complex boundaries and n is sufficiently
large.

Logistic regression and LDA – good when linear boundaries or
p is big relative to n.

I LDA extends better to multi-class problems
I LDA is more stable during estimation
I Logistic regression is more robust to outliers

QDA – good when quadratic (or moderately complex)
boundaries and n is moderately big.
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