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Example: ELISA test

@ The enzyme-linked immunosorbent assay (ELISA) is a
chemical test for the presence of an antigen of interest.

o Widely used for the detection of diseases such as malaria,
HIV, West Nile virus, and celiac disease.

@ We will use this to illustrate some concepts in this lecture.
@ See R code file: classification.r under Files/Code.

Density of x given y=0 and y=1

pixly)
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Loss functions

o If our goal is to get the correct answer as often as possible,
then we want to construct f to minimize the test error rate.

@ However, what if certain types of errors are more costly than
others?

@ For instance, if we are detecting cancer, then a false positive
may result in unnecessary additional tests, whereas a false
negative may result in loss of life due to lack of treatment.

@ To handle such situations, we use a loss function L(y,y) to
quantify the cost of predicting § when the actual class is y.

e Example: The 0-1 loss is L(7,y) = I(§ # v).



Decision theory

o The expected loss is E(L(Yy,Yy)), where (Xg, Yp) is a random
data point distributed according to the true data generating
process, and Yy = f(Xy) is the predicted outcome value.

o Example: The expected 0-1 loss is the test error rate.

@ The decision theory approach to choosing f is to try to
minimize expected loss.

@ This approach applies to both regression and classification.

@ Regression example:

» The square loss is L(3),y) = (§ — y)?.
» The expected square loss is the test MSE.
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Confusion matrix

True default status
No  Yes | Total
Predicted No 9,644 252 | 9,896

default status ~ Yes 23 81 104
Total | 9,667 333 | 10,000

TABLE 4.4. A confusion matriz compares the LDA predictions to the true de-
fault statuses for the 10,000 training observations in the Default data set. Ele-
ments on the diagonal of the matriz represent individuals whose default statuses
were correctly predicted, while off-diagonal elements represent individuals that
were misclassified. LDA made incorrect predictions for 23 individuals who did
not default and for 252 individuals who did default.
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Confusion matrix

Actual
0 (negative) 1 (positive)
0 (negative) | true neg. (TN) | false neg. (FN)
1 (positive) | false pos. (FP) | true pos. (TP)

Predicted

@ In the TP, FP, TN, FN terminology:
» “True" /“False” = prediction is correct/incorrect,
» "Positive” / “Negative” = predicted class is positive/negative.

e False positive rate (FPR) = FP / (FP + TN)
» Fraction of actual negatives that were predicted to be positive.
» Specificity = 1— FPR

e True positive rate (TPR) = TP / (TP + FN)
» Fraction of actual positives that were predicted to be positive.
» Sensitivity = TPR



Confusion matrix example: ELISA test

(See R code file: classification.r.)
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Expected loss in binary classification setting

Loss matrix:
Actual
0 (negative) | 1 (positive)
. 0 (negative) L(0,0) L(0,1)
Predicted 13- ositive) | L(1,0) oL 1)

Expected loss:

E(L(Yp, Y)) = L(0,0)Pry+L(0, 1) Pen+ L(1,0) Pep + L(1, 1) Prp

where Pry = P(Yy = 0, Y = 0), etc.
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ROC curve

e Binary classification (e.g., y € {0,1}).

@ Most binary classification methods have a detection threshold
(i.e., a cutoff) that can be adjusted.

o ELISA example: f(z) = I(z > cutoff).
o KNN: f(z) = I(p1(z) > cutoff).

@ Can choose cutoff to try to maximize performance (i.e., to
minimize expected loss).
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ROC curve example
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FIGURE 4.8. A ROC curve for the LDA classifier on the Default data. It
traces out two types of error as we vary the threshold wvalue for the posterior
probability of default. The actual thresholds are not shown. The true positive rate
is the sensitivity: the fraction of defaulters that are correctly identified, using
a giwen threshold value. The false positive rate is I-specificity: the fraction of
non-defaulters that we classify incorrectly as defaulters, using that same threshold
value. The ideal ROC' curve hugs the top left corner, indicating a high true positive
rate and a low false positive rate. The dotted line represents the “no information”
classifier; this is what we would expect if student status and credit card balance

are not associated with probability of default. .



ROC curve example: ELISA test

(See R code file: classification.r.)
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ROC curve

@ ROC curves are often used to compare classification methods.

@ The area under the ROC curve (“AUC" or “AUROC")
summarizes the ROC curve in a single number.

@ If the loss function is known, though, we should compare
expected loss rather than ROC curves or AUC.
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Logistic regression

o Logistic regression is a binary classification method.

e For a € R, the expit function (a.k.a. logistic function) is
e’ 1
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(See R code file: classification.r.)
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Logistic regression: expit and logit
e For p € (0,1), the logit function is

o logit

logit(p) = log <1P%p .

N——

logit function

00 02 04 06 08 10

and expit are inverses, i.e.,

logit(expit(a)) =a and expit(logit(p)) = p.
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Logistic regression model

e Training data (z1,41),. .-, (ZTn,Yn)-
@ Inputs x; are mapped to feature vectors p(z;) € RP.

e Outcomes y; are binary, y; € {0,1}.

The outcomes y; are modeled as random variables
Y; ~ Bernoulli(7g(z;))

where mg(x;) = expit (go(a:i)TB). Parameters: 3 € RP.

@ In other words,

1

PY; =1]p,2;) = Wﬂ(fﬁi) = 1+ exp(—go(a:i)Tﬁ)'

o Equivalently, logit(P(Y; = 1| 8, ;)) = ¢(z:)"5.
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Estimation for logistic regression

@ Likelihood function:

p(yl:n ‘ 67-7;1:71) - HP(Y; =Yi ‘ /87-7;2)
i=1
n ‘ 1,
:Hﬂ'ﬂ(ﬁi)yl(l—ﬂ'ﬁ($i)> Y .
i=1
e Notation: x1., = (z1,...,2n).

@ Can't analytically maximize likelihood with respect to 5.

o lterative Reweighted Least Squares (IRLS) algorithm is used
to find the MLE for 3.

» Each step is similar to computing the MLE for linear regression.

» See ESL 4.4 for details.
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Prediction with logistic regression

@ Can use estimate /3’ to predict yo for a future xg.

@ Estimated probability of yg being class 1 given zg is

P(Yb =1 ‘ B,xo) = Wﬁ(l’o).

@ Can threshold probability at a cutoff to make predictions:

f(zo) = I(Wg(xo) > cutoff).



Pros/cons of logistic regression

Pros
@ Interpretable
@ Tends to have lower variance (but this depends on )

o Relatively simple and easy to use

Cons
@ Tends to have higher bias (but this depends on )
e MLE 3 can be unstable

> e.g., if classes are well separated or predictors are collinear.

» Can fix this with regularization.
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Logistic regression example: South African Heart Disease

Western Cape, South Africa
Coronary Risk Factor Study (CORIS)

High incidence of myocardial infarction (MI) in region: 5.1%

160 cases, 302 controls. Ages 15-64.

Outcome y; is presence/absence of MI at time of survey.
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Logistic regression example: South African Heart Disease
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Logistic regression example: South African Heart Disease

TABLE 4.2. Results from a logistic regression fit to the South African heart

disease data.

Coefficient  Std. Error Z Score

(Intercept) —4.130 0.964  —4.285
sbp 0.006 0.006 1.023

tobacco 0.080 0.026 3.034
1d1l 0.185 0.057 3.219

famhist 0.939 0.225 4.178
obesity -0.035 0.029  —1.187
alcohol 0.001 0.004 0.136

age 0.043 0.010 4.184

See ESL Section 4.4.2 for more details.
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Linear/Quadratic Discriminant Analysis (LDA/QDA)

@ Linear Discriminant Analysis (LDA) is one of the oldest
classification methods.

o Basic idea: Model the classes using multivariate normal
distributions, and use the Bayes optimal classifier.

@ In ELISA example, we implicitly used LDA!

e LDA and QDA are generative models for classification.

e Generative: Model p(y) and p(z|y), and derive p(y|z).
How do you derive p(y|x) from p(y) and p(x|y)?
e Discriminative: Model p(y|x) directly.
» Examples: KNN, logistic regression.
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Linear Discriminant Analysis (LDA)
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FIGURE 4.4. Left: Two one-dimensional normal density functions are shown.
The dashed vertical line represents the Bayes decision boundary. Right: 20 obser-
vations were drawn from each of the two classes, and are shown as histograms.
The Bayes decision boundary is again shown as a dashed vertical line. The solid
vertical line represents the LDA decision boundary estimated from the training
data.
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Linear Discriminant Analysis (LDA)

FIGURE 4.5. Two multivariate Gaussian density functions are shown, with
p = 2. Left: The two predictors are uncorrelated. Right: The two variables have
a correlation of 0.7.
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Linear Discriminant Analysis (LDA)

Canonical Coordinate 2

Canonical Coordinate 1
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LDA versus QDA

o LDA uses a linear decision rule. (less flexible)

@ QDA uses a quadratic decision rule. (more flexible)

FIGURE 4.9. Left: The Bayes (purple dashed), LDA (black dotted), and QDA
(green solid) decision boundaries for a two-class problem with ;1 = X3. The
shading indicates the QDA decision rule. Since the Bayes decision boundary is
linear, it is more accurately approzimated by LDA than by QDA. Right: Details
are as given in the left-hand panel, except that X1 # Xo. Since the Bayes decision
boundary is non-linear, it is more accurately approximated by QDA than by LDA.
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Probabilistic model for LDA/QDA

Training data (z1,y1), ..., (Tn, Yn)-
Inputs x; € RP are real-valued vectors.

Outputs y; are categorical, y; € {1,...,K}.

e 7, = P(Y; = k) = prior probability of class k.

p(x; | Yi = k) = N(z; | pk, Cx) (multivariate normal)
“Class conditional distribution” for class k.

@ LDA constrains Cy = --- = Ck. Let's denote C = C}.
l.e., LDA uses same covariance matrix for each class.

QDA allows each class k& to have a different Cj.
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Prediction using the LDA/QDA model

@ How can we use this model to predict the yq for a future zg?

Suppose we know the parameters 7y, ug, and Cy for each k.
Then LDA just uses the Bayes optimal classifier:

Choose k to maximize P(Yy = k | z).

e How do we compute P(Yy = k | z9)? Note that

~plxly)p(y)  plzly)p(y)
plyle) = p(x) X, ply)ply)

This is called Bayes' theorem, but it is just basic probability.
Can you derive this from our probability basics?

Thus, in the LDA/QDA model,
N(zo | pg, Cr) 7

]P’(Y() =k ’ :L‘()) = .
S N | p, C)
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Estimation for LDA and QDA

@ How can we estimate 7y, pg, and Cy for each k7?7

Define ny = #{i: y; = k} (# training points in class k)

e Estimates: 7 = ny/n (fraction of training points in class k)
iy, = L g (sample mean for class k)

° z; (sample mean for class
F ng !

i:yi=k

N 1
DA: = — i — (i i — )T
Q Ck ” i.yzk(x fie) (i — fur,)

(sample covariance matrix for class k)

LDA: C = — ZZ — )T

k liiy;=k
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LDA versus QDA
LDA is less flexible than QDA. ..

fewer parameters to estimate, lower variance, higher bias.

FIGURE 4.9. Left: The Bayes (purple dashed), LDA (black dotted), and QDA
(green solid) decision boundaries for a two-class problem with 31 = X,. The
shading indicates the QDA decision rule. Since the Bayes decision boundary is
linear, it is more accurately approzimated by LDA than by QDA. Right: Details
are as giwen in the left-hand panel, except that 31 # 3a. Since the Bayes decision
boundary is non-linear, it is more accurately approximated by QDA than by LDA.
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Comparison of KNN, Logistic regression, LDA, and QDA

Typically, we would expect:

@ KNN - good when complex boundaries and n is sufficiently
large.

o Logistic regression and LDA — good when linear boundaries or
p is big relative to n.

» LDA extends better to multi-class problems
» LDA is more stable during estimation
» Logistic regression is more robust to outliers

@ QDA - good when quadratic (or moderately complex)
boundaries and n is moderately big.
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