Probability basics

Suppose X and Y are real-valued discrete random variables and $c \in \mathbb{R}$ is a (nonrandom) constant. Derive the following properties. Assume that variance is defined as $\operatorname{Var}(X)=$ $\mathrm{E}\left((X-\mathrm{E}(X))^{2}\right)$. (Hint: Use the results of the previous problems to save yourself a lot of work. For example, you can use problems 1 and 2 to do problem 3.)

1. $\mathrm{E}(X+Y)=\mathrm{E}(X)+\mathrm{E}(Y)$
2. $\mathrm{E}(c X)=c \mathrm{E}(X)$
3. $\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-\mathrm{E}(X)^{2}$
4. $\operatorname{Var}(X+c)=\operatorname{Var}(X)$
5. $\operatorname{Var}(c X)=c^{2} \operatorname{Var}(X)$
6. If X and Y are independent, then $\mathrm{E}(X Y)=\mathrm{E}(X) \mathrm{E}(Y)$.
7. $\mathrm{E}(\mathrm{E}(X \mid Y))=\mathrm{E}(X)$

Linear algebra basics

Suppose $A, B \in \mathbb{R}^{n \times n}$. Derive the following properties.
8. $(A B)^{-1}=B^{-1} A^{-1}$, assuming A and B are invertible.
(Hint: Just use the definition of the inverse of a matrix from the slides.)
9. $\operatorname{tr}(A B)=\operatorname{tr}(B A)$
10. If A is SPSD then $x^{\mathrm{T}} A x \geq 0$ for all $x \in \mathbb{R}^{n}$.
(Use the definition of SPSD given in the slides.)

Random vectors

11. Show that if $Y, Z \in \mathbb{R}^{n}$ are independent random vectors, then $\operatorname{Cov}(Y+Z)=\operatorname{Cov}(Y)+$ $\operatorname{Cov}(Z)$. (You may use the other properties of covariance matrices from the slides.)
12. Suppose you can generate independent standard normal random variables Z_{1}, \ldots, Z_{n}. Provide the formula for transforming these into a $\mathcal{N}(\mu, C)$ random vector, where $\mu \in \mathbb{R}^{n}$ and $C=B^{\mathrm{T}} B \in \mathbb{R}^{n \times n}$. Justify your answer using the properties from the slides.
