Homework #1 (BST 263, Spring 2019)

Probability basics

Suppose X and Y are real-valued discrete random variables and $c \in \mathbb{R}$ is a (nonrandom) constant. Derive the following properties. Assume that variance is defined as $\operatorname{Var}(X) = \operatorname{E}((X - \operatorname{E}(X))^2)$. (Hint: Use the results of the previous problems to save yourself a lot of work. For example, you can use problems 1 and 2 to do problem 3.)

1. E(X + Y) = E(X) + E(Y)

2.
$$\operatorname{E}(cX) = c\operatorname{E}(X)$$

- 3. $Var(X) = E(X^2) E(X)^2$
- 4. $\operatorname{Var}(X+c) = \operatorname{Var}(X)$
- 5. $\operatorname{Var}(cX) = c^2 \operatorname{Var}(X)$
- 6. If X and Y are independent, then E(XY) = E(X)E(Y).

7.
$$E(E(X|Y)) = E(X)$$

Linear algebra basics

Suppose $A, B \in \mathbb{R}^{n \times n}$. Derive the following properties.

8. $(AB)^{-1} = B^{-1}A^{-1}$, assuming A and B are invertible.

(Hint: Just use the definition of the inverse of a matrix from the slides.)

9.
$$\operatorname{tr}(AB) = \operatorname{tr}(BA)$$

10. If A is SPSD then $x^{\mathsf{T}}Ax \ge 0$ for all $x \in \mathbb{R}^n$.

(Use the definition of SPSD given in the slides.)

Random vectors

- 11. Show that if $Y, Z \in \mathbb{R}^n$ are independent random vectors, then $\operatorname{Cov}(Y+Z) = \operatorname{Cov}(Y) + \operatorname{Cov}(Z)$. (You may use the other properties of covariance matrices from the slides.)
- 12. Suppose you can generate independent standard normal random variables Z_1, \ldots, Z_n . Provide the formula for transforming these into a $\mathcal{N}(\mu, C)$ random vector, where $\mu \in \mathbb{R}^n$ and $C = B^{\mathsf{T}}B \in \mathbb{R}^{n \times n}$. Justify your answer using the properties from the slides.