Homework #2 (BST 263, Spring 2019)

Part A: Book problems

Problems 1, 2, 3, and 5 from Chapter 2 of the ISL book.

Part B: Bias-variance decomposition

In this part, you will derive the bias-variance decomposition.

Suppose the training data set is $\mathcal{D} = ((x_1, Y_1), \ldots, (x_n, Y_n))$. (The x_i 's are fixed, whereas the Y_i 's are random variables.) Suppose $\hat{f}_{\mathcal{D}}(x)$ is the prediction function generated by some algorithm using \mathcal{D} . Suppose x_0 is a fixed test point, and we want to predict the true unobserved Y_0 . Define $\hat{Y}_0 = \hat{f}_{\mathcal{D}}(x_0)$. Suppose $Y_0 = f(x_0) + \varepsilon$, where $\varepsilon \perp \mathcal{D}$ and $\mathbf{E}(\varepsilon) = 0$.

You can use the following facts without justification:

- (i) The probability basics (problems 1-7) in Homework #1 apply to any real-valued random variables (not just discrete real-valued r.v.s).
- (ii) $\varepsilon \perp \mathcal{D}$ implies that $Y_0 \perp \hat{Y}_0$. (This is because if $X \perp \mathcal{I} Y$ then $g(X) \perp h(Y)$ for any functions g and h. The notation $X \perp \mathcal{I} Y$ means that X and Y are independent.)
- (iii) If $X, Y \in \mathbb{R}$ are independent random variables, then $\operatorname{Var}(X + Y) = \operatorname{Var}(X) + \operatorname{Var}(Y)$. (This is a special case of problem 11 from Homework #1.)

Define $Z = Y_0 - Y_0$. Justify steps (a)-(f) below by citing one or more of the Homework #1 problems or the assumptions and definitions above. Each step can be justified in one sentence.

$$\begin{split} \mathbf{E} \left((\hat{Y}_0 - Y_0)^2 \right) &\stackrel{(a)}{=} \mathbf{E}(Z^2) \\ &\stackrel{(b)}{=} \operatorname{Var}(Z) + \mathbf{E}(Z)^2 \\ &\stackrel{(c)}{=} \operatorname{Var}(\hat{Y}_0 - Y_0) + \mathbf{E}(\hat{Y}_0 - Y_0)^2 \\ &\stackrel{(d)}{=} \operatorname{Var}(\hat{Y}_0 - Y_0) + \left(\mathbf{E}(\hat{Y}_0) - \mathbf{E}(Y_0) \right)^2 \\ &\stackrel{(e)}{=} \operatorname{Var}(\hat{Y}_0) + \operatorname{Var}(Y_0) + \left(\mathbf{E}(\hat{Y}_0) - \mathbf{E}(Y_0) \right)^2 \\ &\stackrel{(f)}{=} \operatorname{Var}(\hat{Y}_0) + \operatorname{Var}(\varepsilon) + \left(\mathbf{E}(\hat{Y}_0) - f(x_0) \right)^2. \end{split}$$

(g) Which term is the "bias squared", which is the "variance", and which is the "noise"?