Homework \#2 (BST 263, Spring 2019)

Part A: Book problems

Problems 1, 2, 3, and 5 from Chapter 2 of the ISL book.

Part B: Bias-variance decomposition

In this part, you will derive the bias-variance decomposition.
Suppose the training data set is $\mathcal{D}=\left(\left(x_{1}, Y_{1}\right), \ldots,\left(x_{n}, Y_{n}\right)\right)$. (The x_{i} 's are fixed, whereas the Y_{i} 's are random variables.) Suppose $\hat{f}_{\mathcal{D}}(x)$ is the prediction function generated by some algorithm using \mathcal{D}. Suppose x_{0} is a fixed test point, and we want to predict the true unobserved Y_{0}. Define $\hat{Y}_{0}=\hat{f}_{\mathcal{D}}\left(x_{0}\right)$. Suppose $Y_{0}=f\left(x_{0}\right)+\varepsilon$, where $\varepsilon \Perp \mathcal{D}$ and $\mathrm{E}(\varepsilon)=0$.

You can use the following facts without justification:
(i) The probability basics (problems 1-7) in Homework \#1 apply to any real-valued random variables (not just discrete real-valued r.v.s).
(ii) $\varepsilon \Perp \mathcal{D}$ implies that $Y_{0} \Perp \hat{Y}_{0}$. (This is because if $X \Perp Y$ then $g(X) \Perp h(Y)$ for any functions g and h. The notation $X \Perp Y$ means that X and Y are independent.)
(iii) If $X, Y \in \mathbb{R}$ are independent random variables, then $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$. (This is a special case of problem 11 from Homework \#1.)

Define $Z=\hat{Y}_{0}-Y_{0}$. Justify steps (a)-(f) below by citing one or more of the Homework \#1 problems or the assumptions and definitions above. Each step can be justified in one sentence.

$$
\begin{aligned}
\mathrm{E}\left(\left(\hat{Y}_{0}-Y_{0}\right)^{2}\right) & \stackrel{(\mathrm{a})}{=} \mathrm{E}\left(Z^{2}\right) \\
& \stackrel{(\mathrm{b})}{=} \operatorname{Var}(Z)+\mathrm{E}(Z)^{2} \\
& \stackrel{(\text { c) }}{=} \operatorname{Var}\left(\hat{Y}_{0}-Y_{0}\right)+\mathrm{E}\left(\hat{Y}_{0}-Y_{0}\right)^{2} \\
& \stackrel{(\mathrm{~d})}{=} \operatorname{Var}\left(\hat{Y}_{0}-Y_{0}\right)+\left(\mathrm{E}\left(\hat{Y}_{0}\right)-\mathrm{E}\left(Y_{0}\right)\right)^{2} \\
& \stackrel{(\text { e }}{=} \operatorname{Var}\left(\hat{Y}_{0}\right)+\operatorname{Var}\left(Y_{0}\right)+\left(\mathrm{E}\left(\hat{Y}_{0}\right)-\mathrm{E}\left(Y_{0}\right)\right)^{2} \\
& \stackrel{(\mathrm{f})}{=} \operatorname{Var}\left(\hat{Y}_{0}\right)+\operatorname{Var}(\varepsilon)+\left(\mathrm{E}\left(\hat{Y}_{0}\right)-f\left(x_{0}\right)\right)^{2} .
\end{aligned}
$$

(g) Which term is the "bias squared", which is the "variance", and which is the "noise"?

