Homework #6 (BST 263, Spring 2019)

1. Shrinkage. In this exercise, you will explore the concept of shrinkage through an
example called Stein’s paradox. Suppose Y; ~ N (u;,0?) for j =1,...,p. You observe
Yi,...,Y, and need to estimate ji, ..., p,. For example, Y; and j; could be measured
blood glucose and mean blood glucose, respectively, for subject j.

(a) The most obvious estimator of 1; is f1;(1) = Y;. In fact, it’s hard to imagine how
one could improve upon this obvious estimate.

i. What is the bias of /1;(1)? (The bias is defined as E(j;(1)) — p;.)
ii. Based on your answer to part 1(a)i and the bias-variance tradeoff, do you
think it might be possible to improve upon /i,;(1)? Why?
(b) A shrinkage estimator of p; is fi;(c) = cYj, where ¢ € [0,1] is a user-specified
setting controlling the amount of shrinkage. Write R code to do the following:
i. Set p=1000. Randomly generate pi; ~ Uniform(0,10) for j =1,...,p.
ii. Randomly generate Y; ~ N (p;,02) for j =1,...,p, where o = 4.
iii. For each ¢ € {0.0,0.01,0.02, ...,0.99, 1.0}:
Compute the squared error, SE(c) = > °_, (j1;(c) — p;)*.

iv. Plot SE(c) versus c¢. For your particular data set, what value of ¢ minimizes
SE(c)? So, does shrinkage help?

(c) Mathematical verification:

i. What is the bias of [i;(c), as a function of ¢, u;, and o? Let’s call it bias;(c).
ii. What is Var(,&j(c)), as a function of ¢, p;, and o7
iii. Plot the following three curves on the same plot versus c:
AL 7F_ biasj(c)?
B. >7F., Var(fi;(c))
C. 7, (biasy(e)? + Var(j;(c)))
Discuss what you see. Compare to your plot of SE(c).

2. Ridge. The ridge regression estimate fridge ¢ R? is the minimizer of

n p

F(B) = (g —2IB)* + 7> _ B}

i=1 j=1

(a) Show that f7dse = (ATA + AI)'ATy where A = ETRERE xn}T € R™P and
y = (y1,...,yn)" € R". Hint: The derivation is nearly identical to problem 1
from Homework 3.

(b) Suppose n =p and A =1 = [y, (the p X p identity matrix).

i. Show that 798¢ = cy for some ¢ € R in this case. Give the mathematical
expression for ¢ as a function of .
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ii. Make the connection with the shrinkage example in problem 1 above, in terms
of the assumed probabilistic model and the form of the estimator.

(c) Collinear predictors. Look over the following R code and add a comment to each
line to explain. Try running the code with (i) lambda=1, (ii) lambda=100, and
(iii) 1ambda=10000. Report what you get and discuss. What happens when you
try to compute beta_leastsquares? Provide a mathematical explanation for
why this issue happens with least-squares but not with ridge regression.

n = 100

x = runif(n)

y = 3*%x + 0.25*%rnorm(n)

A = cbind(rep(1l,n), x, 2*x)
lambda = 1

beta_ridge = solve(t(A) %*% A + lambdaxdiag(3), t(A) %*% y)
y_hat = A %xJ beta_ridge

plot(x, y, col=4, pch=19)

points(x, y_hat, col=2, pch=19)

beta_leastsquares = solve(t(A) %*% A, t(A) %% y)

3. Lasso. In this exercise, you will gain intuition for how the lasso method works and
why it yields sparsity. Run the following R code to generate data and define the lasso
objective function, F_lasso. The lasso estimate is the minimizer of F_lasso.

set.seed(1)

n = 20 # number of samples

x1 = rnorm(n) # predictor 1 values

x2 = rnorm(n) # predictor 2 values

y = 2%x1 + 1%x2 + 0.26%rnorm(n) # outcome values

F_lasso = function(bl,b2) { # lasso objective function
0.56xsum((y - bl*xl - b2%x2)~2)/n + lambda*(abs(bl) + abs(b2))

}

(a) Run the following R code to view F_lasso for a range of lambda values.

# Perspective plot of F_lasso for a range of lambda values
betas = seq(-2,3,0.1) # range of coefficient values for plots
for (lambda in seq(0,2,0.1)) {
F_lasso_grid = outer(betas,betas,Vectorize(F_lasso))
persp(betas,betas,F_lasso_grid,theta=120,phi=30)
Sys.sleep(0.5)
}

Describe how the shape of F_lasso changes as 1lambda increases. Based on what
you see, write a paragraph explaining in your own words why the lasso estimate



sometimes contains exact zeros (i.e., why £; may be exactly zero). (NOTE: Your
explanation should be based on the shape of F_lasso — not the usual explanation
of lasso’s sparsity based on the constrained dual form.) The following code may
also help you visualize what is happening.

# Contour plot of F_lasso for a range of lambda values

library("glmnet")

for (lambda in seq(0,2,0.02)) {
F_lasso_grid = outer(betas,betas,Vectorize(F_lasso))
contour(betas,betas,F_lasso_grid,nlevels=30)
lasso_fit = glmnet(cbind(x1,x2),y,intercept=F,standardize=F,lambda=lambda)
points(lasso_fit$betal[l],lasso_fit$betal[2],pch=19,cex=2,c0l=4)
grid()
Sys.sleep(0.1)

+

Would you increase or decrease lambda if you wanted a sparser lasso estimate
(i.e., more zeros)? Explain.

For which value of lambda is the least-squares estimate equal to the minimizer
of F_lasso? Based on the plots in part 3a, explain in your own words why the
least-squares estimate doesn’t usually contain exact zeros.



