Homework \#6 (BST 263, Spring 2019)

1. Shrinkage. In this exercise, you will explore the concept of shrinkage through an example called Stein's paradox. Suppose $Y_{j} \sim \mathcal{N}\left(\mu_{j}, \sigma^{2}\right)$ for $j=1, \ldots, p$. You observe Y_{1}, \ldots, Y_{p} and need to estimate μ_{1}, \ldots, μ_{p}. For example, Y_{j} and μ_{j} could be measured blood glucose and mean blood glucose, respectively, for subject j.
(a) The most obvious estimator of μ_{j} is $\hat{\mu}_{j}(1)=Y_{j}$. In fact, it's hard to imagine how one could improve upon this obvious estimate.
i. What is the bias of $\hat{\mu}_{j}(1)$? (The bias is defined as $\mathrm{E}\left(\hat{\mu}_{j}(1)\right)-\mu_{j}$.)
ii. Based on your answer to part 1 (a)i and the bias-variance tradeoff, do you think it might be possible to improve upon $\hat{\mu}_{j}(1)$? Why?
(b) A shrinkage estimator of μ_{j} is $\hat{\mu}_{j}(c)=c Y_{j}$, where $c \in[0,1]$ is a user-specified setting controlling the amount of shrinkage. Write R code to do the following:
i. Set $p=1000$. Randomly generate $\mu_{j} \sim \operatorname{Uniform}(0,10)$ for $j=1, \ldots, p$.
ii. Randomly generate $Y_{j} \sim \mathcal{N}\left(\mu_{j}, \sigma^{2}\right)$ for $j=1, \ldots, p$, where $\sigma=4$.
iii. For each $c \in\{0.0,0.01,0.02, \ldots, 0.99,1.0\}$:

Compute the squared error, $\operatorname{SE}(c)=\sum_{j=1}^{p}\left(\hat{\mu}_{j}(c)-\mu_{j}\right)^{2}$.
iv. Plot $\mathrm{SE}(c)$ versus c. For your particular data set, what value of c minimizes $\mathrm{SE}(c)$? So, does shrinkage help?
(c) Mathematical verification:
i. What is the bias of $\hat{\mu}_{j}(c)$, as a function of c, μ_{j}, and σ ? Let's call it $\operatorname{bias}_{j}(c)$.
ii. What is $\operatorname{Var}\left(\hat{\mu}_{j}(c)\right)$, as a function of c, μ_{j}, and σ ?
iii. Plot the following three curves on the same plot versus c :
A. $\sum_{j=1}^{p} \operatorname{bias}_{j}(c)^{2}$
B. $\sum_{j=1}^{p} \operatorname{Var}\left(\hat{\mu}_{j}(c)\right)$
C. $\sum_{j=1}^{p}\left(\operatorname{bias}_{j}(c)^{2}+\operatorname{Var}\left(\hat{\mu}_{j}(c)\right)\right)$

Discuss what you see. Compare to your plot of $\mathrm{SE}(c)$.
2. Ridge. The ridge regression estimate $\hat{\beta}^{\text {ridge }} \in \mathbb{R}^{p}$ is the minimizer of

$$
F(\beta)=\sum_{i=1}^{n}\left(y_{i}-x_{i}^{\mathrm{T}} \beta\right)^{2}+\lambda \sum_{j=1}^{p} \beta_{j}^{2} .
$$

(a) Show that $\hat{\beta}^{\text {ridge }}=\left(A^{\mathrm{T}} A+\lambda I\right)^{-1} A^{\mathrm{T}} y$ where $A=\left[\begin{array}{lll}x_{1} & \cdots & x_{n}\end{array}\right]^{\mathrm{T}} \in \mathbb{R}^{n \times p}$ and $y=\left(y_{1}, \ldots, y_{n}\right)^{\mathrm{T}} \in \mathbb{R}^{n}$. Hint: The derivation is nearly identical to problem 1 from Homework 3.
(b) Suppose $n=p$ and $A=I=I_{p \times p}$ (the $p \times p$ identity matrix).
i. Show that $\hat{\beta}^{\text {ridge }}=c y$ for some $c \in \mathbb{R}$ in this case. Give the mathematical expression for c as a function of λ.
ii. Make the connection with the shrinkage example in problem 1 above, in terms of the assumed probabilistic model and the form of the estimator.
(c) Collinear predictors. Look over the following R code and add a comment to each line to explain. Try running the code with (i) lambda=1, (ii) lambda=100, and (iii) lambda=10000. Report what you get and discuss. What happens when you try to compute beta_leastsquares? Provide a mathematical explanation for why this issue happens with least-squares but not with ridge regression.

```
n = 100
x = runif(n)
y = 3*x + 0.25*rnorm(n)
A = cbind(rep(1,n), x, 2*x)
lambda = 1
beta_ridge = solve(t(A) %*% A + lambda*diag(3), t(A) %*% y)
y_hat = A %*% beta_ridge
plot(x, y, col=4, pch=19)
points(x, y_hat, col=2, pch=19)
beta_leastsquares = solve(t(A) %*% A, t(A) %*% y)
```

3. Lasso. In this exercise, you will gain intuition for how the lasso method works and why it yields sparsity. Run the following R code to generate data and define the lasso objective function, F_lasso. The lasso estimate is the minimizer of F_lasso.
```
set.seed(1)
n = 20 # number of samples
x1 = rnorm(n) # predictor 1 values
x2 = rnorm(n) # predictor 2 values
y = 2*x1 + 1*x2 + 0.25*rnorm(n) # outcome values
F_lasso = function(b1,b2) { # lasso objective function
    0.5*sum((y - b1*x1 - b2*x2)^2)/n + lambda*(abs(b1) + abs(b2))
}
```

(a) Run the following R code to view F_lasso for a range of lambda values.

```
# Perspective plot of F_lasso for a range of lambda values
betas = seq(-2,3,0.1) # range of coefficient values for plots
for (lambda in seq(0,2,0.1)) {
        F_lasso_grid = outer(betas,betas,Vectorize(F_lasso))
        persp(betas,betas,F_lasso_grid,theta=120,phi=30)
        Sys.sleep(0.5)
}
```

Describe how the shape of F_lasso changes as lambda increases. Based on what you see, write a paragraph explaining in your own words why the lasso estimate
sometimes contains exact zeros (i.e., why $\hat{\beta}_{j}$ may be exactly zero). (NOTE: Your explanation should be based on the shape of F_lasso - not the usual explanation of lasso's sparsity based on the constrained dual form.) The following code may also help you visualize what is happening.

```
# Contour plot of F_lasso for a range of lambda values
library("glmnet")
for (lambda in seq(0,2,0.02)) {
    F_lasso_grid = outer(betas,betas,Vectorize(F_lasso))
    contour(betas,betas,F_lasso_grid,nlevels=30)
    lasso_fit = glmnet(cbind(x1,x2),y,intercept=F,standardize=F,lambda=lambda)
    points(lasso_fit$beta[1],lasso_fit$beta[2],pch=19,cex=2,col=4)
    grid()
    Sys.sleep(0.1)
}
```

(b) Would you increase or decrease lambda if you wanted a sparser lasso estimate (i.e., more zeros)? Explain.
(c) For which value of lambda is the least-squares estimate equal to the minimizer of F_lasso? Based on the plots in part 3a, explain in your own words why the least-squares estimate doesn't usually contain exact zeros.

