
Homework #6 (BST 263, Spring 2019)

1. Shrinkage. In this exercise, you will explore the concept of shrinkage through an
example called Stein's paradox. Suppose Yj ∼ N (µj, σ

2) for j = 1, . . . , p. You observe
Y1, . . . , Yp and need to estimate µ1, . . . , µp. For example, Yj and µj could be measured
blood glucose and mean blood glucose, respectively, for subject j.

(a) The most obvious estimator of µj is µ̂j(1) = Yj. In fact, it's hard to imagine how
one could improve upon this obvious estimate.

i. What is the bias of µ̂j(1)? (The bias is de�ned as E(µ̂j(1))− µj.)

ii. Based on your answer to part 1(a)i and the bias-variance tradeo�, do you
think it might be possible to improve upon µ̂j(1)? Why?

(b) A shrinkage estimator of µj is µ̂j(c) = c Yj, where c ∈ [0, 1] is a user-speci�ed
setting controlling the amount of shrinkage. Write R code to do the following:

i. Set p = 1000. Randomly generate µj ∼ Uniform(0, 10) for j = 1, . . . , p.

ii. Randomly generate Yj ∼ N (µj, σ
2) for j = 1, . . . , p, where σ = 4.

iii. For each c ∈ {0.0, 0.01, 0.02, . . . , 0.99, 1.0}:
Compute the squared error, SE(c) =

∑p
j=1(µ̂j(c)− µj)

2.

iv. Plot SE(c) versus c. For your particular data set, what value of c minimizes
SE(c)? So, does shrinkage help?

(c) Mathematical veri�cation:

i. What is the bias of µ̂j(c), as a function of c, µj, and σ? Let's call it biasj(c).

ii. What is Var
(
µ̂j(c)

)
, as a function of c, µj, and σ?

iii. Plot the following three curves on the same plot versus c:

A.
∑p

j=1 biasj(c)
2

B.
∑p

j=1Var
(
µ̂j(c)

)
C.
∑p

j=1

(
biasj(c)

2 +Var
(
µ̂j(c)

))
Discuss what you see. Compare to your plot of SE(c).

2. Ridge. The ridge regression estimate β̂ridge ∈ Rp is the minimizer of

F (β) =
n∑

i=1

(yi − xTiβ)2 + λ

p∑
j=1

β2
j .

(a) Show that β̂ridge = (ATA + λI)−1ATy where A =
[
x1 · · · xn

]T ∈ Rn×p and
y = (y1, . . . , yn)

T ∈ Rn. Hint: The derivation is nearly identical to problem 1
from Homework 3.

(b) Suppose n = p and A = I = Ip×p (the p× p identity matrix).

i. Show that β̂ridge = cy for some c ∈ R in this case. Give the mathematical
expression for c as a function of λ.
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ii. Make the connection with the shrinkage example in problem 1 above, in terms
of the assumed probabilistic model and the form of the estimator.

(c) Collinear predictors. Look over the following R code and add a comment to each
line to explain. Try running the code with (i) lambda=1, (ii) lambda=100, and
(iii) lambda=10000. Report what you get and discuss. What happens when you
try to compute beta_leastsquares? Provide a mathematical explanation for
why this issue happens with least-squares but not with ridge regression.

n = 100

x = runif(n)

y = 3*x + 0.25*rnorm(n)

A = cbind(rep(1,n), x, 2*x)

lambda = 1

beta_ridge = solve(t(A) %*% A + lambda*diag(3), t(A) %*% y)

y_hat = A %*% beta_ridge

plot(x, y, col=4, pch=19)

points(x, y_hat, col=2, pch=19)

beta_leastsquares = solve(t(A) %*% A, t(A) %*% y)

3. Lasso. In this exercise, you will gain intuition for how the lasso method works and
why it yields sparsity. Run the following R code to generate data and de�ne the lasso
objective function, F_lasso. The lasso estimate is the minimizer of F_lasso.

set.seed(1)

n = 20 # number of samples

x1 = rnorm(n) # predictor 1 values

x2 = rnorm(n) # predictor 2 values

y = 2*x1 + 1*x2 + 0.25*rnorm(n) # outcome values

F_lasso = function(b1,b2) { # lasso objective function

0.5*sum((y - b1*x1 - b2*x2)^2)/n + lambda*(abs(b1) + abs(b2))

}

(a) Run the following R code to view F_lasso for a range of lambda values.

# Perspective plot of F_lasso for a range of lambda values

betas = seq(-2,3,0.1) # range of coefficient values for plots

for (lambda in seq(0,2,0.1)) {

F_lasso_grid = outer(betas,betas,Vectorize(F_lasso))

persp(betas,betas,F_lasso_grid,theta=120,phi=30)

Sys.sleep(0.5)

}

Describe how the shape of F_lasso changes as lambda increases. Based on what
you see, write a paragraph explaining in your own words why the lasso estimate
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sometimes contains exact zeros (i.e., why β̂j may be exactly zero). (NOTE: Your
explanation should be based on the shape of F_lasso� not the usual explanation
of lasso's sparsity based on the constrained dual form.) The following code may
also help you visualize what is happening.

# Contour plot of F_lasso for a range of lambda values

library("glmnet")

for (lambda in seq(0,2,0.02)) {

F_lasso_grid = outer(betas,betas,Vectorize(F_lasso))

contour(betas,betas,F_lasso_grid,nlevels=30)

lasso_fit = glmnet(cbind(x1,x2),y,intercept=F,standardize=F,lambda=lambda)

points(lasso_fit$beta[1],lasso_fit$beta[2],pch=19,cex=2,col=4)

grid()

Sys.sleep(0.1)

}

(b) Would you increase or decrease lambda if you wanted a sparser lasso estimate
(i.e., more zeros)? Explain.

(c) For which value of lambda is the least-squares estimate equal to the minimizer
of F_lasso? Based on the plots in part 3a, explain in your own words why the
least-squares estimate doesn't usually contain exact zeros.
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