Homework #6 (BST 263, Spring 2019)

- 1. Shrinkage. In this exercise, you will explore the concept of shrinkage through an example called Stein's paradox. Suppose $Y_j \sim \mathcal{N}(\mu_j, \sigma^2)$ for $j = 1, \ldots, p$. You observe Y_1, \ldots, Y_p and need to estimate μ_1, \ldots, μ_p . For example, Y_j and μ_j could be measured blood glucose and mean blood glucose, respectively, for subject j.
 - (a) The most obvious estimator of μ_j is $\hat{\mu}_j(1) = Y_j$. In fact, it's hard to imagine how one could improve upon this obvious estimate.
 - i. What is the bias of $\hat{\mu}_i(1)$? (The bias is defined as $E(\hat{\mu}_i(1)) \mu_i$.)
 - ii. Based on your answer to part 1(a)i and the bias-variance tradeoff, do you think it might be possible to improve upon $\hat{\mu}_i(1)$? Why?
 - (b) A shrinkage estimator of μ_j is $\hat{\mu}_j(c) = c Y_j$, where $c \in [0, 1]$ is a user-specified setting controlling the amount of shrinkage. Write R code to do the following:
 - i. Set p = 1000. Randomly generate $\mu_j \sim \text{Uniform}(0, 10)$ for $j = 1, \dots, p$.
 - ii. Randomly generate $Y_j \sim \mathcal{N}(\mu_j, \sigma^2)$ for $j = 1, \ldots, p$, where $\sigma = 4$.
 - iii. For each $c \in \{0.0, 0.01, 0.02, \dots, 0.99, 1.0\}$:

Compute the squared error, $SE(c) = \sum_{j=1}^{p} (\hat{\mu}_j(c) - \mu_j)^2$.

- iv. Plot SE(c) versus c. For your particular data set, what value of c minimizes SE(c)? So, does shrinkage help?
- (c) Mathematical verification:
 - i. What is the bias of $\hat{\mu}_j(c)$, as a function of c, μ_j , and σ ? Let's call it $\text{bias}_j(c)$.
 - ii. What is $\operatorname{Var}(\hat{\mu}_i(c))$, as a function of c, μ_i , and σ ?
 - iii. Plot the following three curves on the same plot versus c:
 - A. $\sum_{j=1}^{p} \operatorname{bias}_{j}(c)^{2}$
 - B. $\sum_{j=1}^{p} \operatorname{Var}(\hat{\mu}_{j}(c))$
 - C. $\sum_{j=1}^{p} \left(\operatorname{bias}_{j}(c)^{2} + \operatorname{Var}\left(\hat{\mu}_{j}(c)\right) \right)$

Discuss what you see. Compare to your plot of SE(c).

2. Ridge. The ridge regression estimate $\hat{\beta}^{\text{ridge}} \in \mathbb{R}^p$ is the minimizer of

$$F(\beta) = \sum_{i=1}^{n} (y_i - x_i^{\mathsf{T}}\beta)^2 + \lambda \sum_{j=1}^{p} \beta_j^2.$$

- (a) Show that $\hat{\beta}^{\text{ridge}} = (A^{\mathsf{T}}A + \lambda I)^{-1}A^{\mathsf{T}}y$ where $A = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^{\mathsf{T}} \in \mathbb{R}^{n \times p}$ and $y = (y_1, \ldots, y_n)^{\mathsf{T}} \in \mathbb{R}^n$. Hint: The derivation is nearly identical to problem 1 from Homework 3.
- (b) Suppose n = p and $A = I = I_{p \times p}$ (the $p \times p$ identity matrix).
 - i. Show that $\hat{\beta}^{\text{ridge}} = cy$ for some $c \in \mathbb{R}$ in this case. Give the mathematical expression for c as a function of λ .

- ii. Make the connection with the shrinkage example in problem 1 above, in terms of the assumed probabilistic model and the form of the estimator.
- (c) Collinear predictors. Look over the following R code and add a comment to each line to explain. Try running the code with (i) lambda=1, (ii) lambda=100, and (iii) lambda=10000. Report what you get and discuss. What happens when you try to compute beta_leastsquares? Provide a mathematical explanation for why this issue happens with least-squares but not with ridge regression.

```
n = 100
x = runif(n)
y = 3*x + 0.25*rnorm(n)
A = cbind(rep(1,n), x, 2*x)
lambda = 1
beta_ridge = solve(t(A) %*% A + lambda*diag(3), t(A) %*% y)
y_hat = A %*% beta_ridge
plot(x, y, col=4, pch=19)
points(x, y_hat, col=2, pch=19)
beta_leastsquares = solve(t(A) %*% A, t(A) %*% y)
```

3. Lasso. In this exercise, you will gain intuition for how the lasso method works and why it yields sparsity. Run the following R code to generate data and define the lasso objective function, F_lasso. The lasso estimate is the minimizer of F_lasso.

```
set.seed(1)
n = 20 # number of samples
x1 = rnorm(n) # predictor 1 values
x2 = rnorm(n) # predictor 2 values
y = 2*x1 + 1*x2 + 0.25*rnorm(n) # outcome values
F_lasso = function(b1,b2) { # lasso objective function
0.5*sum((y - b1*x1 - b2*x2)^2)/n + lambda*(abs(b1) + abs(b2))
}
(a) Run the following R code to view F_lasso for a range of lambda values.
# Perspective plot of F_lasso for a range of lambda values
betas = seq(-2,3,0.1) # range of coefficient values for plots
for (lambda in seq(0,2,0.1)) {
F_lasso_grid = outer(betas,betas,Vectorize(F_lasso))
persp(betas,betas,F_lasso_grid,theta=120,phi=30)
```

```
}
```

Sys.sleep(0.5)

Describe how the shape of F_{lasso} changes as lambda increases. Based on what you see, write a paragraph explaining in your own words why the lasso estimate

sometimes contains exact zeros (i.e., why $\hat{\beta}_j$ may be exactly zero). (NOTE: Your explanation should be based on the shape of F_lasso — not the usual explanation of lasso's sparsity based on the constrained dual form.) The following code may also help you visualize what is happening.

```
# Contour plot of F_lasso for a range of lambda values
library("glmnet")
for (lambda in seq(0,2,0.02)) {
    F_lasso_grid = outer(betas,betas,Vectorize(F_lasso))
    contour(betas,betas,F_lasso_grid,nlevels=30)
    lasso_fit = glmnet(cbind(x1,x2),y,intercept=F,standardize=F,lambda=lambda)
    points(lasso_fit$beta[1],lasso_fit$beta[2],pch=19,cex=2,col=4)
    grid()
    Sys.sleep(0.1)
}
```

- (b) Would you increase or decrease lambda if you wanted a sparser lasso estimate (i.e., more zeros)? Explain.
- (c) For which value of lambda is the least-squares estimate equal to the minimizer of F_lasso? Based on the plots in part 3a, explain in your own words why the least-squares estimate doesn't usually contain exact zeros.