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Abstract

Non-negative matrix factorization (NMF) is widely used in many applications for dimensionality

reduction. Inferring an appropriate number of factors for NMF is a challenging problem, and several

approaches based on information criteria or sparsity-inducing priors have been proposed. However,

inference in these models is often complicated and computationally challenging. In this paper, we

introduce a novel methodology for overfitted Bayesian NMF models using “compressive hyperpri-

ors” that force unneeded factors down to negligible values while only imposing mild shrinkage on

needed factors. The method is based on using simple semi-conjugate priors to facilitate inference,

while setting the strength of the hyperprior in a data-dependent way to achieve this compressive

property. We apply our method to mutational signatures analysis in cancer genomics, where we find

that it outperforms state-of-the-art alternatives. In particular, we illustrate how our compressive

hyperprior enables the use of biologically informed priors on the signatures, yielding significantly

improved accuracy. We provide theoretical results establishing the compressive property, and we

demonstrate the method in simulations and on real data from a breast cancer application.

1 Introduction

Non-negative matrix factorization (NMF) is a dimensionality reduction technique that decomposes

a non-negative matrix into the product of two lower-dimensional non-negative matrices of a desired

rank by minimizing a given loss function, such as the squared-error loss or Kullback–Leibler divergence

(Lee and Seung, 2000). Several Bayesian NMF methods have been studied, using both parametric

(Cemgil, 2009; Zhou, 2018) and nonparametric models (Hoffman et al., 2010; Gopalan et al., 2014;

Ayed and Caron, 2021). See the general overview of Wang and Zhang (2013), and refer to Zhou and

Carin (2015) for a detailed summary of Bayesian factorization methods for discrete outcomes.

In cancer genomics, non-negative matrix factorization has been successfully used to discover a

wide range of mutational signatures corresponding to distinct processes, such as damaged DNA repair
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mechanisms and environmental mutagens like tobacco smoking or metabolic byproducts (Alexandrov

et al., 2013). These signatures, defined as vectors of the frequencies with which different types of

point mutations occur, are inferred from mutation counts in whole-genome or whole-exome sequencing

using NMF algorithms (Nik-Zainal et al., 2012, 2016; Alexandrov et al., 2013, 2020). Identifying these

patterns in the DNA of cancer patients is a significant advance toward understanding the etiology

of cancer (Koh et al., 2021), improving the effectiveness of precision therapies (Aguirre et al., 2018;

Gulhan et al., 2019), and characterizing the evolution of the disease over time (Rubanova et al., 2020).

A number of NMF-based methods have been proposed for mutational signatures analysis; see Islam

et al. (2022) and references therein. However, a difficult aspect of NMF is choosing an appropriate

number of latent factors, which corresponds to the number of mutational signatures present in the

data. Choosing too many factors can lead to the discovery of spurious signatures, while choosing

too few factors can lead to incorrectly merging distinct signatures. Existing techniques for selecting

the number of factors include the Bayesian information criterion (Rosales et al., 2016; Fischer et al.,

2013), cross-validation (Lal et al., 2021), or even neural networks (Nebgen et al., 2021; Islam et al.,

2022). The disadvantage of such approaches is that they require estimating a separate model for each

choice of rank or regularization parameter, making them computationally intensive. Another popular

approach is to use automatic relevance determination (Tan and Févotte, 2013; Kim et al., 2016),

which is extremely fast but only provides point estimates without any uncertainty quantification.

Bayesian nonparametric models with sparsity-inducing priors have been used to address this problem

in Gaussian factor models (Bhattacharya and Dunson, 2011; Legramanti et al., 2020), however, these

have not yet been applied to NMF, to our knowledge.

In this article, we introduce a novel Bayesian NMF method that yields accurate and reliable

inference in a computationally simple way by using compressive hyperpriors to drive the weights

of unneeded factors to zero. Specifically, we use a Poisson factorization model with semi-conjugate

Dirichlet and gamma priors over the signatures and the loadings, respectively, and we induce sparsity

by using a shrinkage hyperprior that strengthens with the amount of data in such a way that (a)

unneeded factors are given negligible weight with probability tending to one, while (b) needed factors

are given weights that are only mildly shrunk. This compressive property enables the method to

select an appropriate number of latent factors in a continuous way, without the need to fit multiple

models or discretely jump between models in Markov chain Monte Carlo samplers. Further, posterior

inference can be carried out using a simple auxiliary variable Gibbs sampling algorithm as in Dunson

and Herring (2005) and Cemgil (2009), making the method easy to implement. A crucial benefit of

our use of semi-conjugate continuous priors and hyperpriors is that they yield a posterior surface that

is easy to explore, in contrast with spike-and-slab constructions that could lead to stronger multi-

modalilty.
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Additionally, the compressive hyperprior makes it straightforward to take advantage of prior in-

formation about the latent factors. This is especially useful for mutational signatures analysis, since

the Catalog Of Somatic Mutations In Cancer (cosmic) database provides a curated set of mutational

signatures and their putative etiologies (Alexandrov et al., 2020). By using an informative prior cen-

tered at the cosmic signatures, we find that the model obtains improved sensitivity to detect the

presence of signatures and infers unambiguous matches to the original database.

The paper is organized as follows. Section 2 defines the model, introduces our compressive hy-

perprior, and provides a Gibbs sampler algorithm for posterior inference. In Section 3, we provide

theoretical results establishing the compressive property of the model. Section 4 provides background

on mutational signatures analysis. Section 5 contains a simulation study comparing to leading meth-

ods, and Section 6 presents an application to mutational signatures analysis using a benchmark breast

cancer dataset. We conclude with a brief discussion in Section 7.

2 Methodology

2.1 Poisson non-negative matrix factorization model

We describe the model in the context of mutational signatures, our primary application of interest.

Let Xij represent the number of mutations for channel i in sample j, where i = 1, . . . , I and j =

1, . . . , J , and let X ∈ RI×J denote the matrix with entries Xij . Typically, the channels would consist

of the 96 single-base substitution (SBS) types; see Sections 4 and S4 for details. Non-negative matrix

factorization (NMF) consists of finding two non-negative matrices R ∈ RI×K
+ and Θ ∈ RK×J

+ such

that X ≈ RΘ, with the rank K typically chosen so that K ≤ min{I, J}. The kth column of R,

denoted rk = (r1k, . . . , rIk), is referred to as the kth mutational signature. The kth row of Θ, denoted

θk = (θk1, . . . , θkJ), is the vector of weights representing the loading of signature k in each of the J

samples, sometimes referred as the signature activity.

From a probabilistic perspective, it is natural to model the mutation counts as

Xij ∼ Poisson

( K∑
k=1

rikθkj

)
(1)

independently for i = 1, . . . , I and j = 1, . . . , J , where Poisson(λ) denotes the Poisson distribution with

mean λ. In Section S4, we show that Equation (1) can be derived from first principles by modeling

the occurrences of mutations as continuous-time Markov processes across the genome. Maximum

likelihood estimation for R and Θ in Equation (1) is equivalent to minimizing the Kullback–Leibler

divergence in the original formulation of Lee and Seung (2000); see Zhou and Carin (2015) for a

discussion.
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In mutational signatures analysis, it is common to impose the constraint that
∑I

i=1 rik = 1 for all

k = 1, . . . ,K. This avoids scaling ambiguities in both the signature vectors rk = (r1k, . . . , rIk) and their

loadings θk = (θk1, . . . , θkJ). Most methods do not impose such a constraint during inference, opting

to enforce it as a post-processing step (Tan and Févotte, 2013; Drummond et al., 2023). However, we

find that building
∑I

i=1 rik = 1 into our model has the additional benefits of simplifying the inference

algorithm and enabling direct use of cosmic signatures for constructing informative priors.

2.2 Prior

For the prior distribution on the signatures rk and loadings θk, we take

rk = (r1k, . . . , rIk) ∼ Dirichlet(α, . . . , α), (2)

θk1, . . . , θkJ | µk ∼ Gamma(a, a/µk), (3)

µk ∼ π(µk), (4)

independently for k = 1, . . . ,K, where α > 0, a > 0, µk > 0, and π(µk) is a hyperprior. The Dirichlet

prior in Equation (2) automatically enforces the constraint that
∑I

i=1 rik = 1. Here, Gamma(a, b)

denotes the gamma distribution with mean a/b and variance a/b2. Thus, the prior mean of the

loadings is E(θkj | µk) = µk, implying that µk controls the overall contribution of signature rk to the

factorization and, in turn, to the total number of mutations generated by process k.

We refer to µ1, . . . , µK as relevance weights, following the usage of this type of prior structure in

automatic relevance determination (ARD) for shrinking the weights of unneeded factors to near-zero

values (Tan and Févotte, 2013). However, unlike Tan and Févotte (2013), we take a fully Bayesian

approach, quantifying uncertainty in rk and θk rather than just optimizing them. Also, unlike typical

uses of ARD in Bayesian neural networks and Gaussian processes (Neal, 1996; Bishop, 2006), the

marginal likelihood in the Poisson NMF model does not have a closed-form expression and thus is

not amenable to direct optimization of µk. Nonetheless, it turns out that with a certain choice of

data-dependent hyperprior on µk, we can obtain appealing computational properties similar to ARD,

while performing inference with simple Gibbs sampling updates; we discuss this next.

2.3 Compressive hyperprior

The hyperprior on the relevance weights in Equation (4) plays a crucial role in inferring the number

of factors. Several approaches have been developed to provide sparsity in Gaussian factorization

models, such as spike-and-slab priors that introduce exact zeros in the loadings (Carvalho et al., 2008;

Ročková and George, 2016) or induce cumulative shrinkage to near-zero values for redundant factors

(Legramanti et al., 2020; Frühwirth-Schnatter, 2023); also see Liu et al. (2019) for an extension to
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NMF settings. However, in our model, we found that spike-and-slab priors over µk tend to make

posterior inference difficult, likely due to the strong multimodal nature of the resulting posterior.

Instead, we propose a simpler alternative based on continuous shrinkage priors. Specifically, we let

µk ∼ InvGamma(aJ + 1, εaJ) (5)

independently for k = 1, . . . ,K, where InvGamma(a0, b0) denotes the inverse-gamma distribution with

mean b0/(a0 − 1) when a0 > 1. Here, a is the shape parameter from the prior on θkj in Equation (3),

and we set ε > 0 to be a small constant, such as ε = 0.001. Note that this makes µk small a priori,

since E(µk) = ε. Further, the full conditional mean is

E(µk | −) =
1

2
ε+

1

2
θ̄k, (6)

where θ̄k = 1
J

∑J
j=1 θkj , implying that the prior mean ε and the average loading θ̄k for signature

k have equal influence on the posterior for µk. This strength-matching property of the hyperprior

remains stable as the sample size J increases. It is important to note that this hyperprior should not

be interpreted as a meaningful representation of prior uncertainty regarding µk. Instead, it is designed

to yield a posterior with good properties in terms of computation and accuracy.

This deceptively simple choice of hyperprior has some key features. First, it favors sparse solutions,

since E(µk) = ε. This makes it so that for any extra unneeded signatures, the hyperprior encourages

the corresponding relevance weights µk to be small, on the order of ε. This leads to the compressive

property of the model, which we analyze in more detail in Section 3.2.

Second, despite its growing strength with J , this hyperprior does not overly shrink the loadings

θkj for factors that are needed to fit the data. To see why, suppose we instead used a fixed-strength

hyperprior, say, µk ∼ InvGamma(a0, b0). Then instead of ε/2 + θ̄k/2, the full conditional mean of µk

would be (b0+ aJθ̄k)/(a0+ aJ), which is approximately θ̄k when J is sufficiently large. Consequently,

when J is large and θ̄k ≥ ε, the prior mean of θkj differs by less than a multiple of 2 under the

fixed-strength and strength-matching hyperpriors since E(θkj | µk) = µk, and this has only a small

effect on the full conditional of θkj due to the overwhelming contribution from the likelihood.

Another important feature of the strength-matching hyperprior in Equation (5) is that small de-

partures from the assumed Poisson NMF model do not strongly affect the number of factors used by

the model. As J grows, a fixed-strength hyperprior on µk would be overwhelmed by the likelihood

since the number of parameters θkj grows with J , leading to the inclusion of spurious extra signa-

tures when the model is slightly misspecified. Meanwhile, the strength-matching drives out spurious

extra signatures by maintaining a balance between the contribution from the loadings and from the

hyperprior, as is evident from Equation (6).
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Finally, the resulting posterior density is highly tractable due to the use of semi-conjugate dis-

tributions. This improves the performance of the sampling algorithm that we employ for inference,

providing expeditious convergence to NMF solutions along with Bayesian uncertainty quantification.

2.4 Posterior inference

Posterior inference for the hierarchical model defined by Equations (1) to (5) can be efficiently

performed via Gibbs sampling. Since the sum of independent Poisson random variables is Poisson, we

can equivalently write the hierarchical model as

Xij =
∑K

k=1 Yijk,

Yijk | µk, rk, θk ∼ Poisson(rikθkj),

(r1k, . . . , rIk) ∼ Dirichlet(α, . . . , α),

θk1, . . . , θkJ | µk ∼ Gamma(a, a/µk),

µk ∼ InvGamma(aJ + 1, εaJ).

(7)

Each auxiliary variable Yijk can be interpreted as the number of mutations due to signature k in

channel i for sample j. Defining the vector Yij = (Yij1, . . . , YijK), it turns out that Yij | Xij , R,Θ fol-

lows a Multinomial
(
Xij , (qij1, . . . , qijK)

)
distribution, where qijk = rikθkj/Qij and Qij =

∑K
k=1 rikθkj .

This auxiliary variable decomposition has been used in several previous methods (Dunson and Her-

ring, 2005; Cemgil, 2009; Rosales et al., 2016; Zhou and Carin, 2015). The rest of the sampler relies

on standard semi-conjugate updates, which are straightforward to derive.

Gibbs sampler algorithm

1. For i = 1, . . . , I and j = 1, . . . , J , update the latent mutation counts by drawing

(Yij | −) ∼ Multinomial
(
Xij , (qij1, . . . , qijK)

)
where qijk = rikθkj/Qij and Qij =

∑K
k=1 rikθkj .

2. For k = 1, . . . ,K, update the signatures by drawing

(rk | −) ∼ Dirichlet

(
α+

J∑
j=1

Y1jk, . . . , α+
J∑

j=1

YIjk

)
.

3. For k = 1, . . . ,K and j = 1, . . . , J , update the loadings by drawing

(θkj | −) ∼ Gamma

(
a+

I∑
i=1

Yijk,
a

µk
+ 1

)
.
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4. For k = 1 . . . ,K, update the relevance weights by drawing

(µk | −) ∼ InvGamma

(
2aJ + 1, εaJ + a

J∑
j=1

θkj

)
.

The model is symmetric with respect to the order of the factors, in the sense that the priors and

likelihood are invariant to permutations of k = 1, . . . ,K. While attractive from a modeling standpoint,

this symmetry could potentially lead to label switching when running the Gibbs sampler, complicating

the calculation of posterior expectations. However, we have not encountered label switching on either

simulated or real data, so this has not been an issue in practice.

2.5 Informative priors based on known signatures

A favorable aspect of mutational signatures analysis is the abundance of historical data on sig-

natures across many cancer types. The cosmic database contains a curated collection of signatures,

annotated with associated cancer types and inferred etiologies (Alexandrov et al., 2020). It is natural

to leverage such prior information as follows.

Suppose sk = (s1k, . . . , sIk), for k = 1, . . . ,Kpre, are pre-defined mutational signatures known to

occur in cancer. To allow for variation in signatures across studies, we let ρk = (ρ1k, . . . , ρIk) denote

a study-specific version of sk. We then generalize Equation (1) by modeling

Xij ∼ Poisson

(Kpre∑
k=1

ρikωkj +

Knew∑
k=1

rikθkj

)
(8)

independently, where rik and θik are given the priors in Equations (2) and (3), respectively, and

ρk ∼ Dirichlet(βks1k, . . . , βks1k),

ωkj | τk ∼ Gamma(b, b/τk),

τk ∼ InvGamma(bJ + 1, εbJ).

(9)

Thus, the prior on ρk is centered at sk, with concentration parameter βk. The loadings ωkj and

corresponding relevance weights τk are given the same prior and compressive hyperprior as θkj and

µk, respectively, but with b in place of a.

The model in Equation (8) is reminiscent of the recovery-discovery model discussed in Grabski

et al. (2023), when only a single study is taken into consideration. Notice that in such a framework,

the prior rank for the lower-dimensional matrices, Kpre + Knew, is often greater than J . This is at

odds with the classic approach to NMF, where the factorization rank is typically smaller than the

rank of X. However, the compressive mechanism behind our priors in Equation (9) still ensures a
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parsimonious representation in the posterior, such that only the active signatures have a nonnegligible

relevance weight τk. Posterior inference can be performed using the same steps as in Section 2.4, with

minor adjustments for handling ρk, ωkj , and τk; see Section S3 for details.

3 Theory

In this section, we establish certain theoretical properties of the hierarchical Poisson NMF model

in Section 2. In particular, we study the relationship between the latent mutation counts Yijk and the

relevance weights µk, and we prove a concentration result for µk given the Yijk values.

3.1 Conditional distribution of the relevance weights

We show that the distribution of µk | Y under the model in Equation (7), where Y is the tensor

(Yijk) ∈ RI×J×K , has a closed-form expression in terms of confluent hypergeometric functions. We

refer to the resulting family of distributions, which appears to be novel, as inverse Kummer.

Definition 1. The inverse Kummer distribution with parameters λ > 0, β > 0, δ > 0, and γ ∈ R is

a continuous distribution on (0,∞) with probability density function

π(µ) =
µ−(λ−γ)−1(1 + µ/δ)−γe−β/µ

δγ−λ Γ(λ)U(λ, λ+ 1− γ, β/δ)
. (10)

We write µ ∼ InvKummer(λ, β, γ, δ) to denote that µ has the density in Equation (10).

Here, U(a, b, z) denotes the confluent hypergeometric function of the second kind,

U(a, b, z) =
1

Γ(a)

∫ ∞

0
ta−1(1 + t)b−a−1e−ztdt,

with z > 0 (Abramowitz and Stegun, 1972). We call this an inverse Kummer distribution since if

µ ∼ InvKummer(λ, β, γ, δ) then 1/µ follows a Kummer distribution, which was introduced by Armero

and Bayarri (1997) when studying a M/M/∞ queuing problem. The moments have closed-form

expressions in terms of the hypergeometric function, following Equation (6.7) in Armero and Bayarri

(1997): for m < λ, the mth moment of µ ∼ InvKummer(λ, β, γ, δ) is

E(µm) = δm
Γ(λ−m)

Γ(λ)

U(λ−m, λ−m+ 1− γ, β/δ)

U(λ, λ+ 1− γ, β/δ)
. (11)

The inverse Kummer is a generalization of the inverse gamma distribution, since InvKummer(λ, β, 0, δ) =

InvGamma(λ, β). To elucidate the relationship between the inverse Kummer and inverse gamma, in

Section S2.1 we show that when λ > 2, the mean E(µ) is monotonically increasing as a function of γ.
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Figure 1: (A) Density of µk | Y as the average number of mutations Ȳk and the sample size J varies.
Here, a = 1 and ε = 0.001. (B) Mean of µk | Y as a function of Ȳk, for varying values of J . Dashed
lines indicate the 10th and the 90th percentiles of µk | Y . The black line shows where µk = Ȳk.

In the compressive NMF model in Equation (7), the inverse Kummer arises as the posterior dis-

tribution of the relevance weights given the latent counts, integrating out the signatures and loadings.

Theorem 1. Let Y = (Yijk) ∈ RI×J×K denote the tensor of latent counts. Under the hierarchical

model in Equation (7), it holds that

(µk | Y ) ∼ InvKummer
(
2aJ + 1, εaJ, JȲk + aJ, a

)
,

where Ȳk = 1
J

∑I
i=1

∑J
j=1 Yijk is the average number of mutations assigned to signature k.

See Section S1 for the proof. Figure 1(A) shows the density of µk | Y for various Ȳk and J values.

3.2 Compressive property

The essence of the compressive hyperprior is that for unneeded factors, the relevance weights are

shrunk to ≈ ε, while for needed factors they are only partly shrunk towards ε. Precisely this behavior

is seen in Figure 1(B), which shows the relationship between Ȳk and the mean of µk | Y , based on

the result in Theorem 1. The average number of mutations due to the kth signature, Ȳk, is a minimal

sufficient statistic for µk and plays a fundamental role in determining its posterior distribution. When

Ȳk ≤ a, we see that µk | Y becomes concentrated near ε. Meanwhile, when Ȳk ≥ a, E(µk | Y )

grows approximately linearly as a function of Ȳk. Thus, given the latent counts Y , the model induces

shrinkage by a fixed factor when Ȳk is large, while it has a sparsity inducing effect when Ȳk is small.

Further, both Figure 1(A) and (B) illustrate that µk | Y concentrates as J increases.

In the following result, we make this rigorous by providing a concentration result for the posterior

distribution of µk in Theorem 1 as J → ∞.
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Theorem 2. Consider the hierarchical model in Equation (7). If Ȳk → y ∈ [0,∞) as J → ∞, then

for all d > 0,

P
(
|µk − µ∗| ≤ d

∣∣ Y )
−−−→
J→∞

1,

where µ∗ = 2aε/
(√

(y − a+ ε)2 + 8aε− (y − a+ ε)
)
.

In Section S2.2, we show that µ∗ is monotone increasing as a function of y. Further, by a first-order

Taylor approximation to the denominator of µ∗, when ε ≪ |y − a|,

µ∗ ≈


y − a

2
if y > a

εa(a− y)

(a− y)2 + (a+ y)ε
if 0 ≤ y < a

(12)

This explains the shape of E(µk | Y ) seen in Figure 1; in particular, µ∗ ≈ εa/(a + ε) as y ≈ 0. The

following corollary of Theorem 2 provides a criterion for thresholding the relevance weights.

Corollary 1. Under the assumptions of Theorem 2, if Ȳk → 0 as J → ∞, then for all C > 1,

P(µk > Cε | Y ) −−−→
J→∞

0.

Hence, when signature k is not being used by the model, Corollary 1 shows that the posterior for

µk concentrates on the interval (0, Cε), for any C > 1. We refer to this as the compressive property

of the model. This provides a natural criterion for selecting signatures for inclusion in the model, by

using a threshold of µk > Cε to decide which signatures to keep and which to discard. Inspection

of the proofs of Theorems 1 and 2 shows that they hold for any prior on signatures rk such that∑
i rik = 1. Consequently, the concentration results in Theorem 2 and Corollary 1 also hold for the

relevance weights τk of the augmented model in Equation (9), which employs informative priors on rk.

This compressive property parallels the automatic selection of the number of active components

in overfitted mixture models described by Rousseau and Mengersen (2011), which has also been used

in factor analysis (e.g., Ferrari and Dunson, 2021).

4 Background on mutational signatures analysis

Cancer development in humans is connected to the accumulation of mutations in the DNA of

somatic cells. When considering single-base substitutions, mutations are classified according to which

of the four nucleotide bases was present before and after the mutation, on the strand containing the

pyrimidine before the mutation occurred. Recalling that adenine (A) and guanine (G) are purines

while cytosine (C) and thymine (T) are pyrimidines and that C always binds with G and T with A,

there are six possible types of substitutions, namely, C>T, C>G, C>A, T>A, T>C and T>G. To

10



account for context-specific variability due to adjacent bases, mutations are further classified according

to which bases (A, G, C, or T) occur on the 5’ and the 3’ sides on the strand containing the pre-

substitution pyrimidine. This makes for a total of 6 × 4 × 4 = 96 types of single-base substitutions,

referred to as mutational channels (Alexandrov et al., 2013); see Section S4 for details.

It has been observed that many mutation-causing processes consistently produce each type of

mutation at a particular rate: for instance, ultraviolet radiation has been observed to produce a

large number of C>T substitutions in melanoma and glioma (Greenman et al., 2007). Due to this,

the mutational processes acting on somatic cells can be characterized according to their mutational

signatures (Nik-Zainal et al., 2012; Alexandrov et al., 2013), where the term “signature” refers to a

vector containing the probability of each type of mutation under consideration.

A curated set of known signatures is maintained in the cosmic database1 (Alexandrov et al., 2020),

which currently lists 86 single-base substitution (SBS) signatures. Many signatures can be attributed

to a specific etiology that has been experimentally validated. For example, signatures SBS7a, b, c,

and d are all linked to ultraviolet light exposure. Other signatures, such as SBS60, require further

investigation to understand whether they arise from true biological processes or are due to technical

artifacts. See Koh et al. (2021) for an overview.

The Poisson NMF model commonly used in mutational signatures analysis can be derived from

first principles by modeling the occurrence of nucleotide substitutions at each base in the genome as

a continuous-time Markov process (Section S4). Aggregating the resulting substitution counts across

the entire genome, and modeling each mutational process as acting independently, it turns out that the

counts are well approximated by the Poisson NMF model in Equation (1). This provides a compelling

biological justification for the use of this model. We provide a detailed derivation in Section S4.

4.1 Existing methods

Several methods have been developed for mutational signature analysis; see the review by Islam

et al. (2022). Currently, the most prominent method is SigProfiler (Alexandrov et al., 2020) and its

successor, SigProfilerExtractor (Islam et al., 2022). SigProfilerExtractor uses a bootstrap-

like procedure to resample the mutation count matrix from a Poisson model, and fits an NMF model

to each resampled data matrix by minimizing the Poisson Kullback–Leibler divergence. The number

of signatures is selected by applying the algorithm for a range of K values and using a neural network

to choose K (Nebgen et al., 2021).

A leading Bayesian method is signeR (Rosales et al., 2016; Drummond et al., 2023) which is based

on the Poisson NMF model in Equation (1), but employs independent hierarchical gamma priors over

both the signatures and the loadings. Selection of K is performed using the Bayesian information

1https://cancer.sanger.ac.uk/signatures/

11



criteria (BIC) after running a separate model for each K. Hence, both SigProfilerExtractor and

signeR are particularly slow when the range of possible K values is moderate to large.

A faster alternative is offered by SignatureAnalyzer (Kim et al., 2016), which fits the Poisson

NMF model in Equation (1) using a maximum a posteriori estimation algorithm (Tan and Févotte,

2013). Similarly to our approach, SignatureAnalyzer uses ARD with inverse-gamma hyperpriors

on the relevance weights to determine the number of signatures. While the method is efficient and

flexible in terms of the choice of the objective function (Kullback–Leibler or squared error) and prior

(exponential or half-normal), it does not provide any uncertainty quantification.

A natural Bayesian approach to selecting the number of latent factors is to use spike-and-slab

priors, where the relevance weight of each of the K signatures has some probability of being sampled

from a spike close to zero. This is the approach taken in the elegant nonparametric factorization model

proposed by Legramanti et al. (2020), which infers the number of factors using a cumulative shrinkage

spike-and-slab process prior (cusp). We adapt cusp to the Poisson NMF model in Equation (1) by

defining the loadings to be θkj = µkϑkj , where ϑkj ∼ Gamma(a, a), and µk ∼ (1−πk)Gamma(a0, b0)+

πkδµ∞ , with δx denoting the point mass at x. The spike location µ∞ is typically chosen to be very small

but nonzero, such as µ∞ = 0.01, while Gamma(a0, b0) represents the slab. The spike probability πk is

constructed via a stick-breaking process, specifically, πk =
∑k

ℓ=1 vℓ
∏ℓ−1

j=1(1−vj) where vℓ
iid∼ Beta(1, α)

and α > 0. Hence, this model assumes an infinite number of factors a priori, but the probability that

µk comes from the spike—effectively removing that factor from the model—increases with k. Posterior

inference is performed via an adaptive Metropolis algorithm; see Section S5.1 for details.

It is worth emphasizing that, unlike our model in Equation (8), none of these methods allow one

to simultaneously use informative priors based on the cosmic signatures and vague priors for de novo

analysis. Some of these methods could potentially be adapted to Equation (8), but others cannot –

for instance, the cusp prior would result in an unnatural asymmetry across the known signatures.

5 Simulations

In this section, we conduct a simulation study to evaluate the performance of our compressive

Poisson NMF method in terms of (a) detecting the true number of signatures that are active in the

data and (b) accurately recovering the true signatures and their associated loadings.

5.1 Setup of the simulations

We simulate data and true parameters as follows. The mutation counts are generated as Xij ∼

NegBin
(
1/τ, 1/(1 + τλ0

ij)
)
, where λ0

ij =
∑K0

pre

k=1 ρ0ikω
0
kj +

∑K0
new

k=1 r0ikθ
0
kj . We parametrize the negative

binomial such that the mean and variance of Xij are λ0
ij and λ0

ij(1 + τλ0
ij), respectively, where τ > 0
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is a parameter controlling overdispersion. We set K0
pre = 4, and for k = 1, . . . , 4, we define ρ0k =

(ρ01k, . . . , ρ
0
Ik) to be cosmic signatures SBS1, SBS2, SBS3, and SBS13, respectively. SBS1 is a sparse

signature present in every cancer type, arising from the spontaneous deamination of 5-methylcytosine.

SBS3 is a rather flat signature due to homologous recombination deficiencies in breast and pancreatic

cancers. SBS2 and SBS13 are commonly occurring signatures associated with APOBEC activity.

Meanwhile, we randomly generate r0k = (r01k, . . . , r
0
Ik) as r

0
k ∼ Dirichlet(0.25, . . . , 0.25), independently

for k = 1, . . . ,K0
new. We generate loadings by setting ω0

kj = wkξkj where wk ∼ Gamma(100, 1) and

ξkj ∼ Gamma(0.5, 0.5) independently, and θ0kj in the same way as ω0
kj .

For the overdispersion τ , we consider two settings: τ = 0, in which case the negative binomial

reduces to a Poisson (and thus, the assumed model is correct), and τ = 0.15, resulting in mild

misspecification. For the number of non-cosmic signaturesK0
new, we considerK

0
new = 2 andK0

new = 6,

so that the total number K0 = K0
pre + K0

new is either 6 or 10. We consider a range of sample sizes

J ∈ {50, 100, 200}. For each combination of τ , J , and K0, we generate 20 replicate sets of parameters

and data matrices as described above. On each simulated data matrix, we run six methods:

(i) CompNMF: our compressive NMF model in Equation (7) with K = 20 signatures and ε = 0.001,

(ii) CompNMF+cosmic: our enhanced model in Equation (8) withKnew = 15 de novo signatures and

the Kpre = 67 cosmic v3.4 signatures that are not regarded as “possible sequencing artifacts”,

and ε = 0.001,

(iii) PoissonCUSP: the cusp model with spike location µ∞ = 0.01, slab parameters a0 = b0 = 1,

starting at K = 20 and using Algorithm 2 of Legramanti et al. (2020) to adaptively tune K,

(iv) signeR: the signeR model (Rosales et al., 2016; Drummond et al., 2023) with default parameters

(estimate hyper = FALSE) and with K ranging from 2 to 20,

(v) SignatureAnalyzer: as implemented in the sig auto extract function of the sigminer package

(Wang et al., 2020), with selection method set to L1KL and K = 20,

(vi) SigProfiler: SigProfilerExtractor v1.1.23 (Islam et al., 2022) with random initialization and

5 replicates for each K ∈ {2, . . . , 20}, using the sigprofiler extract wrapper in sigminer.

For methods (i), (ii), and (iii), we set a = 1 and α = 0.5, and run the sampler for 5000 iterations,

discarding the first 4000 as burn-in. In method (iii), adaptation of K was started after 500 iterations.

In method (ii), we set the parameter βk such that under the Dirichlet prior in Equation (9), the median

cosine similarity between the prior mean and a sample from the prior is approximately 0.975. This

makes βk depend on the sparsity of the signature sk. For example, we set βk = 17.29 for the sparse

signature SBS2, while βk = 1337.26 for the rather flat SBS3.
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Figure 2: (A) Estimated number of signatures by each model, for varying choices of J , overdispersion, and
true number of signatures, across 20 replicated data set in each scenario. The horizontal grey line indicates the
true number (K0 = 6 or K0 = 10). (B) Average precision and sensitivity across 20 replicate data sets in each
scenario, with a 0.9 cutoff for the cosine similarity. The dashed contour lines in the background indicate the F1

score. (C) Average F1 score as a function of the cosine similarity cutoff, across 20 replicates in each scenario,
when the overdispersion is set to 0.15.
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5.2 Simulation results

Figure 2 shows the main results of the simulation study. Figure 2(A) reports the estimated number

of signatures for each method, for each combination of τ , J , and K0; the boxplots summarize the

distribution of estimated values across the 20 replicates. The estimated number of signatures K∗ is

defined as follows for each method: For (i) and (ii), K∗ is the number of signatures for which the

posterior mean of µk is greater than 5ε = 0.005; for (iii), K∗ is the number of signatures for which the

posterior probability of being assigned to the spike is less than 0.05; and for (iv), (v), and (vi), K∗ is

the suggested solution returned by the corresponding package.

As expected, all methods accurately estimate K0 when τ = 0 (zero overdispersion), since the

Poisson NMF model is correct in this case. Meanwhile, when τ = 0.15 (mild overdispersion), we

observe a noticeably different pattern of results. Our CompNMF+cosmic method, which leverages

informative priors based on all 67 cosmic signatures, correctly recovers K0 more often than all other

methods, both when K0 = 6 and K0 = 10. CompNMF, which does not rely on cosmic, tends to

slightly overestimate K0. This is likely due to the introduction of spurious signatures used by the

model to accommodate the overdispersion. Interestingly, signeR works well even when the model is

mildly misspecified, due to the tendency of the signeR to return a conservative estimate of the number

of signatures, as discussed in Drummond et al. (2023). SigProfiler is even more conservative than

signeR, frequently underestimating K0 slightly in these simulations. In contrast, SignatureAnalyzer

and PoissonCUSP strongly overestimate K0 when there is overdispersion.

Figure 2(B) displays the precision and sensitivity, averaged over the 20 replicates, for each model

in each setting. Here, we define precision as the proportion of estimated signatures that have a cosine

similarity ≥ 0.9 with at least one of the ground truth signatures, and sensitivity is the proportion of

ground truth signatures for which there is an estimated signature with cosine similarity ≥ 0.9. Since

this is a simulation study, the ground truth signatures ρ0k and r0k are known. The cutoff value of 0.9

was chosen following Islam et al. (2022), but we also vary it as described below. The contour lines in

Figure 2(B) represent the F1 score, defined as 2× precision× sensitivity/(precision + sensitivity).

Points in the top-right corner of the plot in Figure 2(B) indicate better performance. When the

Poisson model is correct (no overdispersion), all of the methods perform well, except that SigProfiler

has lower sensitivity for smaller sample sizes. CompNMF+cosmic consistently performs the best, with

precision and sensitivity close to one in all of these settings. CompNMF and signeR also perform

well, but with somewhat reduced precision and sensitivity when K0 is larger and when there is

overdispersion. SigProfiler has good precision but much lower sensitivity, particularly in the presence

of overdispersion. Meanwhile, SignatureAnalyzer and PoissonCUSP struggle in the overdispersed

scenarios, exhibiting severely degraded precision as well as low sensitivity.
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Figure 3: Average computation time (in minutes) for each method. Times shown are the average across all
combinations of overdispersion τ and number of signatures K0 used in the simulation study.

To see the range of performance exhibited by each method as the cosine similarity cutoff varies, Fig-

ure 2(C) shows the average F1 score versus the cutoff value. As before, we see that CompNMF+cosmic

is a clear standout, generally exhibiting the best performance overall, and particularly excelling at cut-

off values between 0.9 and 0.98. CompNMF, signeR, and SigProfiler are roughly comparable by this

metric, whereas SignatureAnalyzer and especially PoissonCUSP suffer from significantly lower F1

scores across all cutoff values.

Figure 3 shows the total computation time required by each method, as a function of the number

of samples J . All computations were performed on an AMD Ryzen 3900-based dedicated server with

128GB of memory on Ubuntu 20.04, R version 4.3.1 linked to Intel MKL 2019.5-075. Calculations were

split across 20 cores via the foreach package, allocating one dataset per core for each combination

of τ , J , and K0, and running each method sequentially. Not surprisingly, SignatureAnalyzer is the

fastest method by an order of magnitude, always taking under one minute to complete. PoissonCUSP

is the second fastest method, because the number of signatures in the model varies adaptively within

the Gibbs sampler, preventing unnecessary computations on inactive factors. CompNMF is slightly

slower than PoissonCUSP since no adaptation in performed, but it is faster than signeR. SigProfiler

was the slowest among all methods by a wide margin.

Thus, in terms of computation time, both CompNMF and CompNMF+cosmic are competitive with

the next best-performing existing method, signeR. Furthermore, signeR is written in C++, whereas

CompNMF and CompNMF+cosmic are written in R code, so they could be significantly faster if

implemented in C++ or similar. Additionally, they could be sped up by updating only the non-

compressed factors when running the Gibbs sampler, following the adaptive approach of PoissonCUSP.

The dominant performance of CompNMF+cosmic demonstrates the benefits of using our informa-

tive prior. Notably, since CompNMF+cosmic includes all Kpre = 67 cosmic signatures—whereas only
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K0
pre = 4 cosmic signatures are used to generate the simulated data—this implies that 63 of these

signatures are correctly compressed out of the model, illustrating the effectiveness of our compressive

hyperprior. signeR performs impressively well in these simulations, tending to fall between CompNMF

and CompNMF+cosmic in nearly all metrics. However, as mentioned above, the CompNMF methods

would be significantly faster than signeR if implemented in the same language.

The poor performance of SignatureAnalyzer and PoissonCUSP in the misspecified settings appears

to be due to overfitting. Indeed, the overestimation of K0 seen in Figure 2(A), along with the fact that

SignatureAnalyzer and PoissonCUSP yield the lowest root-mean-square error for the count matrices

(see Section S5), is a clear sign of overfitting. In the case of PoissonCUSP, this is not surprising since

the flexible nonparametric nature of the model allows it to closely fit the data, although unfortunately

in this case it is fitting noise rather than signal.

6 Application: 21 breast cancer data

In this section, we apply our compressive NMF method to the benchmark 21 breast cancer dataset

considered by Nik-Zainal et al. (2012) in their landmark paper originating the study of mutational

signatures in cancer. In particular, we aim to assess the effect of our compressive hyperprior for small

sample sizes and evaluate whether our informative prior provides an advantage in practice.

The dataset is based on whole-genome sequencing of J = 21 patients, and consists of mutation

counts for each of the I = 96 channels for each patient. We obtained the data from the signeR

package (Drummond et al., 2023). The total mutation count is fairly homogeneous across patients,

except for patient PD4120a, for whom a large number of mutations was detected (70, 690) compared

to the others (18, 871 on average). This is attributable to the fact that PD4120a was sequenced more

deeply at nearly 200x coverage compared to around 30x for the others.

We evaluate the performance of our compressive NMF method (with and without the informative

cosmic-based prior) compared to the same alternatives as in Section 5. Here, for both CompNMF and

CompNMF+cosmic, we randomly initialize by sampling from the prior, and run the Gibbs sampler for

12,000 iterations, discarding the first 10,000 as burn-in. This is repeated four times, and we select the

run yielding the highest average log-posterior. Details of the settings used in all of the other methods

are reported in Section S6.

6.1 Application results

All of the methods fit the count matrix roughly equally well, with the exception of SigProfiler,

which exhibited significantly higher error. Specifically, the root-mean-squared error (RMSE) between
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Figure 4: (A) Cosine similarity between the signatures inferred by each method and the best matching sig-
nature in cosmic. Vertical error bars indicate 90% posterior credible intervals. (B) Signatures inferred by
CompNMF+cosmic. (C) Signatures inferred by CompNMF. The vertical grey lines in panels (B) and (C) in-
dicate univariate 90% posterior credible intervals for each mutational channel. The numbers on the top-right
corners of each panel denote the cosine similarity with the best matching cosmic signature.

the mutation count matrix X and R̂Θ̂ was 9.51 for CompNMF, 9.57 for CompNMF+cosmic, 9.81 for

signeR, 10.07 for PoissonCUSP, 10.08 for SignatureAnalyzer, and 37.08 for SigProfiler.

However, major differences were observed in the sets of estimated signatures. For each method,

Figure 4(A) shows the cosine similarity between each estimated signature and the best matching

cosmic signature in terms of cosine similarity; see Section S6 for all estimated signatures. Overall,

CompNMF+cosmic recovers the most signatures with the highest cosine similarities, which is not

surprising since the cosmic signatures are used to construct the informative prior used in Comp-

NMF+cosmic. Nonetheless, this compellingly demonstrates that the informative prior enables more

signal to be extracted from the data. For instance, CompNMF+cosmic finds evidence of the presence

of SBS8 and SBS40a, which are not recovered by any other method except for SigProfiler, which finds

a signature with moderate cosine similarity to SBS40a. SBS8 appears in other breast cancers and may

be associated with homologous recombination deficiency. SBS40a is a rather flat signature that has

unknown etiology but appears in every cancer type (Alexandrov et al., 2020).

CompNMF recovers all but two of the signatures found by CompNMF+cosmic, although with

somewhat lower cosine similarities. PoissonCUSP yields similar results to CompNMF, but includes

what appears to be a spurious match to SBS9, since it has low cosine similarity and SBS9 is not
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Figure 5: Average posterior loadings (%) by patient. Left: CompNMF+cosmic. Right: CompNMF.

found by any other method. Next, signeR is also similar to CompNMF, but does not recover SBS34,

which does appear to be truly present since CompNMF+cosmic detects it in many samples. Signa-

tureAnalyzer recovers four of the same signatures as CompNMF, with comparable cosine similarities;

however, it misses SBS34 and produces two signatures that are both matched to SBS2, one of which is

an amalgamation of SBS2 and SBS13. Lastly, SigProfiler recovers only three signatures. The strong

performance of the CompNMF methods demonstrates the utility of our compressive hyperprior.

Figures 4(B) and (C) show the estimated signature vectors rk for our two methods (Comp-

NMF+cosmic and CompNMF); corresponding figures for all other methods are in Section S6. The

informative prior enables CompNMF+cosmic to obtain clean signature estimates that are unambigu-

ously matched to known cosmic signatures, while still allowing for dataset-specific departures from

the cosmic signatures. In contrast, due to the small size of this dataset, all of the other methods

produce “merged” signatures that are combinations of two or more cosmic signatures. For instance,

CompNMF+cosmic perfectly distinguishes SBS2 and SBS13, whereas these are merged into a single

signature by all other methods; compare SBS2 and SBS13 in Figure 4(B) to CompNMF SigC in Fig-

ure 4(C) and the other methods’ results in Section S6. Both SBS2 and SBS13 are associated with

APOBEC activity and appear frequently in breast cancers. Similarly, CompNMF+cosmic perfectly

separates SBS1 and SBS40a, whereas these two are combined by all the other methods; see SigA in

Figure 4(C) and see Section S6.

The vertical bars in Figure 4(A,B,C) indicate model-based uncertainty in the form of 90% cred-

ible intervals; there are no bars for SigProfiler and SignatureAnalyzer since they only provide point

estimates. This uncertainty quantification is particularly useful for identifying signatures that may be

spurious. For instance, for both CompNMF+cosmic and CompNMF, the estimated signature matched

to SBS98 has high uncertainty in the cosine similarity and in the signature vector itself, indicating

that one should be skeptical about the validity of the estimated signature and whether it should be

matched to SBS98.
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Figure 5 shows the loadings θkj estimated by CompNMF+cosmic and CompNMF; see Section S6

for all other methods. The CompNMF+cosmic loadings provide insight into the interpretation of the

other methods’ results. For instance, in Figure 5, the loadings for SBS40a appear to have been split

up and added to the loadings for SBS1 and SBS3 to make the CompNMF loadings for SigA and SigD,

respectively. Indeed, looking at these signatures, it appears that SBS40a and SBS1 (Figure 4(B)) were

agglomerated to make SigA (Figure 4(C)), and that SBS40a and SBS3 were agglomerated to make

SigD. Similarly, CompNMF SigC appears to be a combination of SBS2 and SBS13. This is especially

apparent in patient PD4120a, for whom almost all mutations are attributed to SigC by CompNMF,

whereas CompNMF+cosmic splits the loading into equal contributions from SBS2 and SBS13.

7 Discussion

This article introduces a novel Bayesian NMF method that obtains state-of-the-art performance

for mutational signatures analysis, with lower computational burden. In particular, our compressive

hyperprior provides a simple but effective technique for determining the subset of active factors. This

enables the use of rich informative priors based on the cosmic database of known signatures, signifi-

cantly boosting the method’s precision and sensitivity for recovering true signatures. The informative

prior also disambiguates the allocation of loadings to signatures, resulting in more accurate estimation

of the contribution of each signature to each sample, as well as clarifying the results of other methods.

Furthermore, the method provides posterior uncertainty quantification, which helps distinguish real

from spurious signatures and can be used for downstream analyses.

There are several interesting directions for future work. First, one can envision several extensions of

the model. Following Grabski et al. (2023), it would be interesting to jointly model multiple studies or

multiple cancer types using a hierarchical model with study-specific or cancer type-specific parameters.

Another useful extension of the model would be to include sample-specific covariates, which could be

helpful in improving targeted therapies (Aguirre et al., 2018).

Additionally, the scope of applicability of the compressive hyperprior technique is potentially

broader than Poisson NMF models, and might prove useful in other latent factorization models such

as Gaussian factor models (Bhattacharya and Dunson, 2011; Legramanti et al., 2020) or in user-item

recommendation (Gopalan et al., 2014), especially when prior information on the factors is available.

Finally, while our method can handle mild misspecification in the form of small overdispersion, it is

fundamentally based on the assumption that the counts are Poisson distributed – like all of the leading

methods considered in our empirical results (signeR, SigProfiler, SignatureAnalyzer, PoissonCUSP).

Consequently, larger departures from the assumed Poisson NMF model can be expected to negatively

impact the performance of all of these methods. Of course, overdispersion can simply be handled by

modeling the data as negative binomial rather than Poisson (Lyu et al., 2020). However, there are
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many other plausible ways in which the model could be misspecified, and any parametric elaboration

of the model will inevitably be misspecified in some way. Thus, an important area for future work

is providing improved robustness to misspecification for mutational signatures analysis as well as

non-negative matrix factorization more generally.
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Supplementary Material for
“Compressive Bayesian non-negative matrix factorization for

mutational signatures analysis”

Section S1 contains the proofs of the theoretical results. Section S2 provides additional results

related to the inverse Kummer distribution and the marginal distribution of the latent counts. Sec-

tion S3 gives a detailed description of the sampler for the NMF with informative priors. Section S4

provides additional background on mutational signatures, including a first-principles derivation of the

model. Section S5 contains additional details of the simulations in Section 5, including an adapta-

tion of the CUSP model of Legramanti et al. (2020) to the setting of Poisson non-negative matrix

factorization. Finally, Section S6 provides additional results on the application.

S1 Proofs

Proof of Theorem 1

Proof. The proof proceeds by directly marginalizing rk and θk from the joint distribution. For no-

tational simplicity, we first handle the general case of µk ∼ InvGamma(a0, b0), and then plug in the

values of a0 and b0 for the compressive hyperprior. Under the model in Equation (7), the joint density

of Y = (Yijk), Θ = (θkj), R = (rik), and µ = (µk) is

π(Y,Θ, R, µ) ∝
{∏

i,j,k

e−rikθkj
(rikθkj)

Yijk

Yijk!

}
× (Latent Poisson counts)

{∏
i,k

rα−1
ik

}
× (Dirichlet prior on rk){∏

j,k

( a

µk

)a
θa−1
kj e−aθkj/µk

}
× (Gamma prior on θk){∏

k

µ−a0−1
k e−b0/µk

}
, (InvGamma prior on µk)

(S1)

dropping constants of proportionality. Since
∑

i rik = 1 for all k, we have
∏

i e
−rikθkj = e−θkj . Thus,

by Equation (S1), we have

π(Y,Θ, R, µ) = f(Y,R)

{∏
j,k

θ
∑

i Yijk+a−1
kj e−θkj−aθkj/µk

}{∏
k

µ−Ja−a0−1
k e−b0/µk

}
(S2)
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where f(Y,R) is a function that does not depend on Θ or µ. Hence,

π(µ | Y ) ∝
µ
π(Y, µ) =

∫ ∫
π(Y,Θ, R, µ) dΘ dR

=

{∫
f(Y,R) dR

}{∏
k

µ−Ja−a0−1
k e−b0/µk

}{∏
j,k

∫
θ
∑

i Yijk+a−1
kj e−θkj−aθkj/µkdθkj

}

∝
µ

{∏
k

µ−Ja−a0−1
k e−b0/µk

}{∏
j,k

Γ(a+
∑

i Yijk)

(1 + a/µk)
a+

∑
i Yijk

}
.

Since this factors over k into products that depend on µ1, . . . , µK , respectively, it follows that

π(µk | Y ) ∝ µ−Ja−a0−1
k e−b0/µk

(
1 +

a

µk

)−Ja−
∑

i,j Yijk

∝ µ
−(a0−

∑
i,j Yijk)−1

k

(µk

a
+ 1

)−Ja−
∑

i,j Yijk

e−b0/µk

∝ InvKummer
(
µk

∣∣∣ a0 + Ja, b0, Ja+
∑
i,j

Yijk, a
)

by Definition 1. The proof is completed by letting a0 = aJ + 1 and b0 = εaJ .

Proof of Theorem 2

To establish Theorem 2, we prove the following concentration result for inverse Kummer distribu-

tions. Theorem 2 then follows immediately from Theorem 1 and Theorem 3.

Theorem 3. Let ε > 0, a > 0, and yn ≥ 0 such that yn → y for some y ∈ [0,∞) as n → ∞. If

µn ∼ InvKummer(2an+ 1, εan, nyn + an, a) then for any d > 0,

P(|µn − µ∗| ≤ d) −−−→
n→∞

1

where µ∗ = 2aε/(
√
(y − a+ ε)2 + 8aε− (y − a+ ε)).

Proof. We first prove concentration of Tn = a/µn, and use this to show the concentration of µn.

Applying this change of variables to Equation (10) and simplifying, we find that the density of Tn is

fn(t) ∝ t2an(1 + t)−nyn−ane−εnt = exp(−ngn(t)),

where gn(t) and its derivative are

gn(t) = −2a log(t) + (yn + a) log(1 + t) + εt (S3)

g′n(t) = −2a

t
+

yn + a

1 + t
+ ε. (S4)
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By Lemma 1, g′n(t) has a unique zero in (0,∞) at

t∗n =

√
(yn − a+ ε)2 + 8aε− (yn − a+ ε)

2ε
, (S5)

g′n(t) is strictly monotone increasing on (0, t∗n), and for all t0 > 0, we have

inf
t≥t0

g′n(t) ≥ min{ε, g′n(t0)}. (S6)

Further, g′n(t) < 0 for all t ∈ (0, t∗n), and g′n(t) > 0 for all t > t∗n. Define t∗ = limn→∞ t∗n, noting that

by continuity and the fact that yn → y by assumption,

t∗ =

√
(y − a+ ε)2 + 8aε− (y − a+ ε)

2ε
. (S7)

Let δ ∈ (0, t∗) be arbitrary. Let Br(t
∗) = {t > 0 : |t− t∗| ≤ r} denote the ball of radius r around

t∗ in (0,∞), and let Br(t
∗)c = {t > 0 : |t− t∗| > r} denote its complement in (0,∞). Then

P(|Tn − t∗| > δ) =

∫
Bδ(t∗)c

e−ngn(t)dt∫∞
0 e−ngn(t)dt

≤

∫
Bδ(t∗)c

e−ngn(t)dt∫
Bδ(t∗)

e−ngn(t)dt
. (S8)

We seek a suitable upper bound for the numerator and a lower bound for the denominator to show

that Equation (S8) converges to 0 as n → ∞. Define αn = min{gn(t∗ + δ), gn(t
∗ − δ)} and βn =

min{ε, g′n(t∗ + δ),−g′n(t
∗ − δ)}. To bound the numerator, we claim that for all n sufficiently large,

gn(t) ≥ αn + βn
(
t− (t∗ + δ)

)
for t > t∗ + δ, (S9)

gn(t) ≥ αn − βn
(
t− (t∗ − δ)

)
for 0 < t < t∗ − δ. (S10)

To see this, choose n large enough that |t∗n− t∗| < δ. Then by Equation (S6) with t0 = t∗+ δ, we have

g′n(t) ≥ min{ε, g′n(t∗ + δ)} ≥ βn for all t ≥ t∗ + δ. Hence, for t ≥ t∗ + δ,

gn(t) = gn(t
∗ + δ) +

∫ t

t∗+δ
g′n(τ)dτ ≥ αn +

∫ t

t∗+δ
βndτ = αn + βn

(
t− (t∗ + δ)

)
,

proving Equation (S9). Meanwhile, since g′n(t) is monotone increasing on (0, t∗n) and t∗ − δ ≤ t∗n, we

have g′n(t) ≤ g′n(t
∗ − δ) for 0 < t < t∗ − δ. Thus, for 0 < t < t∗ − δ,

gn(t) = gn(t
∗ − δ)−

∫ t∗−δ

t
g′n(τ)dτ ≥ αn +

∫ t∗−δ

t
βndτ = αn − βn

(
t− (t∗ − δ)

)
,
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proving Equation (S10). Hence, for the numerator in Equation (S8), for all n sufficiently large,

∫
Bδ(t∗)c

e−ngn(t)dt =

∫ t∗−δ

0
e−ngn(t)dt+

∫ ∞

t∗+δ
e−ngn(t)dt

≤
∫ t∗−δ

0
e−n

(
αn−βn(t−(t∗−δ))

)
dt+

∫ ∞

t∗+δ
e−n

(
αn+βn(t−(t∗+δ))

)
dt

≤ 2e−nαn

∫ ∞

0
e−nβntdt

≤ 2e−nαn

nβn
. (S11)

Next, we turn to finding a lower bound for the denominator of Equation (S8). Since yn → y, we

have that gn(t) → g(t) and g′n(t) → g′(t) pointwise for all t > 0, where g(t) is defined by replacing yn

with y in Equation (S3). Define α = limn→∞ αn and β = limn→∞ βn. By Lemma 1 applied to g′(t),

we have g′(t) < 0 for all t ∈ (0, t∗), and g′(t) > 0 for all t > t∗. Thus, β > 0 and α > g(t∗) since t∗

is the unique minimizer of g(t). Pick any γ such that g(t∗) < γ < α. By the continuity of g(t), we

can choose r ∈ (0, δ) such that supt∈Br(t∗) g(t) < γ. Note that gn converges uniformly to g on Bδ(t
∗),

since for all t ∈ Bδ(t
∗),

|gn(t)− g(t)| = |yn − y| log(1 + t) ≤ |yn − y| log(1 + t∗ + δ).

Therefore, for all n sufficiently large, supt∈Br(t∗) gn(t) < γ, and hence,

∫
Bδ(t∗)

e−ngn(t)dt ≥
∫
Br(t∗)

e−ngn(t)dt ≥
∫
Br(t∗)

e−nγdt = 2re−nγ . (S12)

Applying the bounds in Equations (S11) and (S12) to Equation (S8) yields

P(|Tn − t∗| > δ) ≤

∫
Bδ(t∗)c

e−ngn(t)dt∫
Bδ(t∗)

e−ngn(t)dt
≤ 2e−nαn/(nβn)

2re−nγ
=

e−n(αn−γ)

nβnr
−−−→
n→∞

0

since αn → α > γ and βn → β > 0. Since δ ∈ (0, t∗) was arbitrary, this implies P(|Tn − t∗| ≤ δ) → 1

for all δ > 0.

Now, define µ∗ = a/t∗ and let d ∈ (0, µ∗). Then |µn − µ∗| ≤ d if and only if µ∗ − d ≤ µn ≤ µ∗ + d,

or equivalently, a/(µ∗ + d) ≤ a/µn ≤ a/(µ∗ − d). Choose δ > 0 small enough that

a

µ∗ + d
<

a

µ∗
− δ = t∗ − δ < t∗ + δ =

a

µ∗
+ δ <

a

µ∗ − d
.

Then, recalling that Tn = a/µn, we have P(|µn − µ∗| ≤ d) ≥ P(|Tn − t∗| ≤ δ) → 1 as n → ∞.

Lemma 1. Let a > 0, y ≥ 0, and ε > 0, and define h(t) = −2a/t+(y+a)/(1+ t)+ ε for t > 0. Then
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1. h(t) has a unique zero on (0,∞) at t∗ =
(√

(y − a+ ε)2 + 8aε− (y − a+ ε)
)
/(2ε),

2. h(t) < 0 for 0 < t < t∗ and h(t) > 0 for t > t∗,

3. h(t) is strictly monotone increasing on (0, t∗), and

4. for all t0 > 0, we have inft≥t0 h(t) ≥ min{ε, h(t0)}.

Proof. To find the zeros, we set h(t) = 0 and solve. For t > 0, we have h(t) = 0 if and only if

0 = t(t+ 1)h(t) = −2a(t+ 1) + (y + a)t+ εt(t+ 1) = εt2 + (y − a+ ε)t− 2a.

By the quadratic formula, this equation has zeros at t∗ = (−b±
√
b2 + 8aε)/(2ε) where b = y− a+ ε.

Since | − b| =
√
b2 <

√
b2 + 8aε, there is exactly one positive solution t∗ at

t∗ =

√
(y − a+ ε)2 + 8aε− (y − a+ ε)

2ε
.

Therefore, h(t) has a unique zero on (0,∞) at t∗, proving part 1. Since h(t) → −∞ as t → 0, and

h(t) → ε as t → ∞, the intermediate value theorem implies that h(t) < 0 for 0 < t < t∗ and h(t) > 0

for t > t∗. This proves part 2.

For part 3, to show that h(t) is strictly increasing on (0, t∗), let 0 < t1 < t2 < t∗. Define

h̃(t) = −2a/t + (y + a)/(1 + t) + ε̃ where ε̃ = ε − h(t2), noting that ε̃ > 0 since h(t2) < 0 by part 2.

Since h̃(t2) = 0 by the definition of h̃, by applying part 1 to h̃ we know t2 is the unique zero of h̃.

Therefore, by applying part 2 to h̃(t), we know h̃(t1) < 0 since t1 < t2. Since h̃(t) = h(t)− h(t2), this

implies h(t1) < h(t2) as desired.

To show part 4, we use proof by contradiction. Let t0 > 0, and suppose there exists t1 > t0 such

that h(t1) < min{ε, h(t0)}. Define h̃(t) = −2a/t+ (y+ a)/(1 + t) + ε̃ where ε̃ = ε− h(t1), noting that

ε̃ > 0 since h(t1) < ε by assumption. Further, h̃(t1) = 0 by the definition of h̃, and h̃(t0) > h̃(t1) since

h̃(t0)− h̃(t1) = h(t0)−h(t1) > 0 by assumption. Thus, by the intermediate value theorem, there exists

t′ ∈ (0, t0) such that h̃(t′) = h̃(t1) = 0, because h̃(t) → −∞ as t → 0. But then h̃(t) would have two

zeros in (0,∞), which is a contradiction. Therefore, h(t) ≥ min{ε, h(t0)} for all t > t0, which proves

part 4.

Proof of Corollary 1

Proof. Suppose Ȳk → 0. Then in Theorem 2, y = 0 and therefore the concentration point is µ∗ =

2aε/(
√
(ε− a)2 + 8aε− (ε−a)). It holds that µ∗ < ε, since (ε−a)2+8aε > (ε−a)2+4aε = (ε+a)2,

and hence,
√
(ε− a)2 + 8aε − (ε − a) > 2a. Let d = Cε − µ∗, noting that d > 0 since C > 1 and
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µ∗ < ε. Then by Theorem 2,

P(µk > Cε | Y ) ≤ P(|µk − µ∗| > d | Y ) = 1− P(|µk − µ∗| ≤ d | Y ) −−−→
J→∞

0.

S2 Additional results

S2.1 Further properties of the Inverse Kummer

We study the relationship between the hyperparameter γ ∈ R of the inverse Kummer distribution

(Definition 1), and the first moment of the distribution. In particular, the following proposition implies

that the mean of an inverse Kummer with γ > 0 is larger than the mean of the corresponding inverse

gamma distribution, when λ > 2.

Proposition 1. Let µ ∼ InvKummer(λ, β, γ, δ). If λ > 2, then E(µ) is monotone increasing as a

function of γ, for γ ∈ (0,∞).

Proof. Fix ϵ ∈ (0, 1). Let µγ ∼ InvKummer(λ, β, γ, δ) and µγ+ϵ ∼ InvKummer(λ, β, γ + ϵ, δ), and

define f(t) = tλ−1(1 + t)−γe−βt/δ. Our aim is to show that E(µγ+ϵ) ≥ E(µγ). By Equation (11), this

is true if and only if ∫∞
0

1
t(1+t)ϵ f(t)dt∫∞

0
1

(1+t)ϵ f(t)dt
≥

∫∞
0

1
t f(t)dt∫∞

0 f(t)dt
. (S13)

Let X be the continuous random variable on (0,∞) with probability density function p(x) =

f(x)/
∫∞
0 f(t)dt. Then, after multiplying and dividing the left-hand side by

∫∞
0 f(t)dt, Equation (S13)

can be written in terms of expectations as

E
(

1
X(1+X)ϵ

)
E
(

1
(1+X)ϵ

) ≥ E
( 1

X

)
. (S14)

or equivalently,

Cov
( 1

X
,

1

(1 +X)ϵ

)
≥ 0. (S15)

Define g(x) = −1/x and h(x) = −1/(1 + x)ϵ for x ∈ (0,∞). Observe that, by transformation of

random variables, 1/X ∼ InvKummer(λ, β, γ, δ). Thus, by Equation (11), since λ > 2 by assumption,

E|g(X)|2 = E
( 1

X2

)
< ∞,

E|h(X)|2 = E
(

1

(1 +X)2ϵ

)
≤ E

( 1

X2ϵ

)
< ∞.
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Therefore, since g(x) and h(x) are monotone increasing and have finite second moments, we have

Cov(g(X), h(X)) ≥ 0 by Schmidt (2003), which is equivalent to Equation (S15). This completes the

proof.

S2.2 Characterizing the concentration point of the inverse Kummer

We characterize the point at which the inverse Kummer concentrates, µ∗, in Theorem 2. Define

µ∗(ε, y, a) =
2aε√

(y − a+ ε)2 + 8aε− (y − a+ ε)
(S16)

for ε > 0, y ≥ 0, and a > 0.

Proposition 2. For all ε > 0 and a > 0, µ∗(ε, y, a) is monotone increasing as a function of y.

Proof. Fix ε > 0 and define

g(y) =
√
(y − a+ ε)2 + 8aε,

so that µ∗(ε, y, a) = 2aε/(g(y)− (y − a+ ε)). Then

∂µ∗
∂y

=
−2aε

(
g′(y)− 1

)(
g(y)− (y − a+ ε)

)2 .
Differentiating g, we find that

g′(y) =
y − a+ ε√

(y − a+ ε)2 + 8aε
< 1.

Therefore, ∂µ∗/∂y > 0, showing that µ∗ is monotone increasing as a function of y.

Next, we derive Equation (12) using a first-order Taylor approximation. Fix y ≥ 0 and a > 0, and

define

h(ε) =
√

(y − a+ ε)2 + 8aε (S17)

for ε > 0. Differentiating and simplifying, we find that

h′(ε) =
y + ε+ 3a

h(ε)
. (S18)

Thus, h(0) = |y − a| and h′(0) = (y + 3a)/|y − a|. Hence, a first-order Taylor approximation to h at

ε = 0 yields

h(ε) ≈ h(0) + h′(0)ε = |y − a|+ y + 3a

|y − a|
ε (S19)
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when ε is small relative to |y−a|. Plugging this into the definition of µ∗ in Equation (S16), we obtain

µ∗(ε, y, a) ≈
2aε

|y − a|+ y+3a
|y−a|ε− (y − a+ ε)

. (S20)

When y > a, we have |y − a| = y − a, so in this case Equation (S20) becomes

µ∗(ε, y, a) ≈
y − a

2
.

Meanwhile, when 0 ≤ y < 1, we have |y − a| = a− y, so in this case

µ∗(ε, y, a) ≈
εa(a− y)

(a− y)2 + (a+ y)ε

by collecting and rearranging terms. Therefore, the first-order Taylor approximation is

µ∗(ε, y, a) ≈


y − a

2
if y > a

εa(a− y)

(a− y)2 + (a+ y)ε
if 0 ≤ y < a

(S21)

as claimed in Equation (12).

S2.3 Relationship between the relevance weights and the latent counts

We further characterize the relationship between the latent counts Yijk and relevance weights µk. In

particular, we derive the distribution of Yijk | µk, integrating out rk and θk in Equation (7). We show

that, appealingly, this distribution has a closed-form expression in terms of hypergeometric functions.

First, the distribution of Yijk | µk, rk, integrating out θkj in Equation (7), is easily seen to be Yijk |

µk, rk ∼ NegBin
(
a, a/(a + rikµk)

)
, where the negative binomial is parametrized such that the mean

and variance are E(Yijk | µk, rk) = µkrik and Var(Yijk | µk, rk) = µkrik(a+ µkrik). When both rk and

θk are integrated out, we obtain the following result, where 2F 1(a, b, ; c, z) =
∑∞

n=0
(a)n(b)n

(c)n
zn

n! denotes

the Gauss-hypergeometric function and (a)n = Γ(a+ n)/Γ(a) is the ascending factorial (Abramowitz

and Stegun, 1972).

Proposition 3. The probability mass function of Yijk | µk under the model in Equation (7) is

P(Yijk = y | µk) =
(µk

a

)y (a)y(α)y
y!(αI)y

2F 1

(
y + a, y + α, y + αI, −µk

a

)
,

for y ∈ {0, 1, 2, . . .}. Furthermore, the mean of this distribution is E(Yijk | µk) = µk/I.
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Proof. Recall that Yijk | µk, rk, θk ∼ Poisson(rikθkj) and θkj | µk ∼ Gamma(a, a/µk). Also, rik ∼

Beta(α, αI − α) by marginalization property of the Dirichlet distribution. Hence,

π(Yijk = y | µk) =

∫ 1

0

{∫ ∞

0
P(Yijk = y | µk, rk, θk)p(θkj | µk)dθkj

}
p(rik)drik

=

∫ 1

0

{∫ ∞

0
(rikθkj)

y e
−rikθkj

y!

(a/µk)
a

Γ(a)
θa−1
kj e−(a/µk)θkjdθkj

}
Γ(αI)

Γ(α)Γ(αI − α)
rα−1
ik (1− rik)

αI−α−1drik

=
(a/µk)

a

y! Γ(a)

Γ(αI)

Γ(α)Γ(αI − α)

∫ 1

0

{∫ ∞

0
θy+a−1
kj e−(rik+a/µk)θkjdθkj

}
ry+α−1
ik (1− rik)

αI−α−1drik

=
(a/µk)

a

y! Γ(a)

Γ(αI)

Γ(α)Γ(αI − α)

∫ 1

0

Γ(y + a)

(rik + a/µk)y+a
ry+α−1
ik (1− rik)

αI−α−1drik

=
(a)y(µk/a)

y

y!

Γ(αI)

Γ(α)Γ(αI − α)

∫ 1

0
(tµk/a+ 1)−(y+a)ty+α−1(1− t)(y+αI)−(y+α)−1dt

=
(µk

a

)y (a)y(α)y
y!(αI)y

2F 1

(
y + a, y + α, y + αI, −µk/a

)
,

where (x)n = Γ(x+ n)/Γ(x) is the ascending factorial, and

2F 1(a, b, c, z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− tz)−adt,

with c > b > 0 and a, z ∈ R is an alternative representation of the Gauss-hypergeometric function;

see Abramowitz and Stegun (1972).

This result further explains the role of each µk in the mutational process: it directly controls the

contribution of signature k in determining the number of mutations Xij in channel i for patient j, for

given values of hyperparameters a and α.

S3 Gibbs sampler for NMF with informative priors

In this section, we present the general Gibbs sampler for the model in Equation (8) with priors as

in Equation (9). Each step follows from simple semi-conjugate prior updates, so we omit the deriva-

tions. Note that we set the value of βk depending on the level of sparsity of each cosmic signature.

Specifically, for a given sk, we calculate βk by drawing 1000 samples ρk ∼ Dirichlet(βks1k, . . . , βksIk)

for a range of plausible βk values (from 10 to 5000, evenly spaced on a log scale), and we select the

value for which the median cosine similarity between sk and the sampled ρk vectors is closest to 0.975.

This ensures that all signatures have approximately equal variance under the prior. All values are

available at https://github.com/alessandrozito/CompressiveNMF.

Inference in the CompNMF+cosmic model is performed by iterating the following steps.

S9
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1. For i = 1, . . . , I and j = 1, . . . , J , update the latent mutation counts by drawing

(Yij | −) ∼ Multinomial
(
Xij , (q̃ij1, . . . , q̃ijKpre , qij1, . . . , qijKnew)

)
where q̃ijk = ρikωkj/Qij and qijk = rikθkj/Qij , with Qij =

∑Kpre

k=1 ρikωkj +
∑Knew

k=1 rikθkj .

2. For k = 1, . . . ,Kpre, update the cosmic signatures by drawing

(ρk | −) ∼ Dirichlet

(
βks1k +

J∑
j=1

Y1jk, . . . , βksIk +
J∑

j=1

YIjk

)
.

3. For k = Knew + 1, . . . ,Kpre +Knew, update the de novo signatures by drawing

(rk | −) ∼ Dirichlet

(
α+

J∑
j=1

Y1jk, . . . , α+

J∑
j=1

YIjk

)
.

4. For k = 1, . . . ,Kpre and j = 1, . . . , J , update the loadings associated to the cosmic signatures

by drawing

(ωkj | −) ∼ Gamma

(
b+

I∑
i=1

Yijk,
b

τk
+ 1

)
.

5. For k = Knew + 1, . . . ,Kpre +Knew and j = 1, . . . , J , update the loadings associated to the de

novo signatures by drawing

(θkj | −) ∼ Gamma

(
a+

I∑
i=1

Yijk,
a

µk
+ 1

)
.

6. For k = 1, . . . ,Kpre, update the relevance weights associated to the cosmic signatures by drawing

(τk | −) ∼ InvGamma

(
2bJ + 1, εbJ + b

J∑
j=1

ωkj

)
.

7. For k = Knew + 1, . . . ,Kpre + Knew, update the relevance weights associated to the de novo

signatures by drawing

(µk | −) ∼ InvGamma

(
2aJ + 1, εaJ + a

J∑
j=1

θkj

)
.

One important behavior we noticed is that, occasionally, the sampler either (i) morphs a novel

signature into a cosmic one even if that cosmic signature has been specified in the prior, or (ii)

morphs an existing cosmic signature into another cosmic one. This is due to the multi-modal nature
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of the NMF model and can be influenced by initialization. While carefully eliciting each βk as above

does help, such incoherence sometimes can hold for relatively flat cosmic signatures, such as SBS3,

SBS5, or SBS40a,b. To solve the issue, we apply a label-switching step at 2/3 of the burn-in phase,

where the signatures that have not been compressed out of the model are re-matched to the cosmic

signatures via the Hungarian algorithm. This does not invalidate the MCMC algorithm since it is

only performed in the burn-in phase.

S4 Rationale for the model likelihood

S4.1 Types of base pair substitutions

In DNA, there are four bases: cytosine (C), thymine (T), adenine (A), and guanine (G). Consid-

ering both strands of the double helix, cytosine always pairs with guanine, and thymine always pairs

with adenine. Thus, if we distinguish one of the two strands of a given DNA molecule, there are four

possible base pairs at each point: C-G, G-C, T-A, and A-T.

When considering base pair substitutions at a given point, the convention is to distinguish the

strand containing the pyrimidine (C or T) before the substitution has been made. Recall that cytosine

(C) and thymine (T) are pyrimidines, whereas adenine (A) and guanine (G) are purines. With this

convention, there are six possible types of substitutions at any given point:

before after abbreviation

1 C-G A-T C>A

2 C-G G-C C>G

3 C-G T-A C>T

4 T-A A-T T>A

5 T-A C-G T>C

6 T-A G-C T>G

Sometimes, these are abbreviated denoting only the pre-substitution pyrimidine and what it changes

to, as seen above.

These six classes can be further divided by considering the trinucleotide context, that is, the bases

directly adjacent to the base undergoing substitution. The convention is to label the context in terms

of the bases (C, T, A, or G) on the 5’ and 3’ sides on the strand containing the pre-substitution

pyrimidine. For instance, in a substitution C>A, the C may be flanked by a T on the 5’ side and a G

on the 3’ side:

before after abbreviation

TCG TAG T[C>A]G

5’ 3’ 5’ 3’
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There are 4× 4 = 16 different contexts for each of the original six substitution types. Therefore, there

are 16× 6 = 96 single-base substitution types when the trinucleotide context is taken into account.At

each position in the genome, one of the two strands contains a pyrimidine C or T, flanked by bases

on the 5’ and 3’ sides, say, X and Y, respectively: so the trinucleotide context is either XCY or XTY.

Thus, each position in the genome can be in one of 2 × 4 × 4 = 32 possible states. Since there are

three possible single-base substitutions at every position, we arrive at a total of 32×3 = 96 mutational

channels.

S4.2 Continuous-time Markov process for substitutions

Focusing on one position ℓ in the genome, let us assume mutations at ℓ occur as a time-homogeneous

continuous-time Markov process, holding the neighboring bases fixed. More precisely, when the current

state is a, it remains a for an Exponential(|Λaa|) amount of time and then transitions to b ̸= a with

probability Λab/|Λaa|, where Λ is a 32×32 matrix such that (i) Λab ≥ 0 for a ̸= b, and (ii)
∑

b Λab = 0.

This is equivalent to saying that transitions from a to b occur with rate Λab; thus, Λ is called the

transition rate matrix. See Lawler (2018) for background.

Let St
ℓ denote the state at locus ℓ at time t, and let S0

ℓ be the state at ℓ for the normal (germline)

genome of the individual under consideration. Let P t
ab = P(St

ℓ = b | S0
ℓ = a) be the probability that

the state is b at time t given that the state is a at time 0. From the theory of continuous-time Markov

processes, we have that

P t = exp(tΛ) =

∞∑
k=0

(tΛ)k

k!

where exp(·) denotes the matrix exponential. Since the mutation rates Λab are very small, it is

reasonable to use a first-order Taylor approximation, P t ≈ I + tΛ.

S4.3 Substitution counts are approximately Poisson distributed

Let ai and bi denote the starting and ending states, respectively, for each of the substitution types

i = 1, . . . , 96. Let λi = Λaibi , and define Xt
i = #{ℓ : S0

ℓ = ai, S
t
ℓ = bi}, that is, Xt

i is the number of

positions in the genome that undergo substitution i, starting at state ai at time 0 and ending at state

bi at time t.

Now, consider all of the positions ℓ that are in state a at time 0, and to simplify the math, let us

assume that (a) no two of these positions are adjacent, and (b) that substitions occur independently

across positions. Of the 32 states, only four of them can be reached from a: the state can remain

at a, or one of three substitutions can occur. Suppose these three substitutions are i = 1, 2, 3, so

that the starting states are a1 = a2 = a3 = a and the ending states are b1, b2, b3, respectively. Let

s0 = (s0ℓ : ℓ = 1, . . . , L) be a fixed vector of starting states for all positions ℓ, and let n = #{ℓ : s0ℓ = a}
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be the number of positions starting in state a at time 0. Let λ0 = λ1 + λ2 + λ3 be the sum of

the rates for substitution types 1, 2, 3. By the definition of P t
ab and the assumption of independence

across positions, letting Xt
0 = Xt

1 + Xt
2 + Xt

3, the vector (Xt
1, X

t
2, X

t
3, n − Xt

0) follows a multinomial

distribution. Specifically, for non-negative integers x1, x2, x3 such that x0 := x1 + x2 + x3 ≤ n, we

have

P(Xt
1:3 = x1:3 | S0 = s0) =

n!

(n− x0)!x1!x2!x3!
(P t

aa)
n−x0

3∏
i=1

(P t
aibi

)xi

≈ n!

(n− x0)!x1!x2!x3!
(1− tλ0)

n−x0(tλ1)
x1(tλ2)

x2(tλ3)
x3 (S22)

by the first-order Taylor approximation, P t ≈ I + tΛ. Since the genome is large and mutation rates

are small, it is natural to assume that n is large and tλ0 = O(1/n). Thus, letting c = ntλ0 we have

(1− tλ0)
n = (1− c/n)n ≈ e−c = exp(−ntλ0) and (1− tλ0)

−x0 = (1− c/n)−x0 ≈ 1 when x0 ≪ n, which

is the case with high probability. Plugging these approximations into Equation (S22) yields

≈ n!

(n− x0)!x1!x2!x3!
exp(−ntλ0)(tλ1)

x1(tλ2)
x2(tλ3)

x3

=
n!n−x0

(n− x0)!

3∏
i=1

exp(−ntλi)
(ntλi)

xi

xi!

since x0 = x1 + x2 + x3 and λ0 = λ1 + λ2 + λ3 by definition. By Stirling’s approximation,

n!n−x0

(n− x0)!
∼

√
2πn (n/e)nn−x0√

2π(n− x0) ((n− x0)/e)n−x0
=

√
n

n− x0

e−x0nn

(n− x0)n
(n− x0)

x0

nx0
−→ 1

as n → ∞ with x0 fixed, since (1− x0/n)
n → e−x0 . Hence, we have

P(Xt
1:3 = x1:3 | S0 = s0) ≈

3∏
i=1

Poisson(xi | ntλi)

when n is large, x0 ≪ n, and tλ0 = O(1/n).

For each of the 32 distinct possible starting states a, the same approximation applies to the set of

positions starting in state a. Modeling these 32 sets of positions independently, we have

P(Xt
1:96 = x1:96 | S0 = s0) ≈

96∏
i=1

Poisson(xi | nitλi)

where ni = #{ℓ : s0ℓ = ai}. In other words, the counts of the 96 substitution types are approximately

distributed as independent Poisson random variables with rates nitλi.
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The preceding derivation ignores the fact that a substitution at one position changes the context

of the two adjacent positions. However, since it is rare for single-base substitutions to occur at two

adjacent positions, the effect of ignoring this should be negligible.

S4.4 Multiple mutational processes

Suppose xij is the number of mutations of substitution type i for subject j, for i = 1, . . . , I and

j = 1, . . . , J , where I = 96. The derivation above justifies modeling these mutation counts as

Xij ∼ Poisson(nijλijtj)

independently, where tj is the age or exposure time of subject j, λij is the mutation rate for substitution

type i in subject j, and nij is the number of positions that are in state ai in the normal genome of

subject j, out of all positions that were measured. The positions measured may be a subset of the

genome due to whole-exome/targeted sequencing or low sequencing depth, for example.

From birth, each subject is exposed to many mutational processes, such as environmental ex-

posures, replication errors, defective DNA repair mechanisms, and so on. Each mutational process

causes each substitution type to occur at a given rate, and the profile of rates across the 96 substi-

tution types can be expected to vary depending on the mutational process. Since rates are additive

in a continuous-time Markov process, it is natural to model the subject-specific mutation rates λij

as linear combinations of these mutational process rate profiles, with non-negative weights depending

on the exposure of the subject to each process. Further, assuming the opportunity counts nij are

constant (or nearly constant) across all subjects j, one can absorb nij into λij , which changes the

interpretation of λij by reparametrizing it. This leads to using a representation of the form

nijλijtj =

K∑
k=1

rikθkj

where the weight θkj ≥ 0 is the exposure of subject j to process k, and (r1k, . . . , rIk) is the mutation

rate profile for mutational process k, which is referred to as its mutational signature. Thus, we arrive

at the Poisson non-negative matrix factorization model in Equation (1),

Xij ∼ Poisson
( K∑

k=1

rikθkj

)
.

A statistical issue with this representation is that there is a non-identifiability between the rik’s

and θkj ’s, since arbitrary multiplicative constants ck can be moved between them. We deal with this
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by normalizing the mutational signatures to sum to 1, that is, by enforcing the constraint
∑I

i=1 rik = 1

for all k.

S5 Simulation details and additional results

S5.1 Details of PoissonCUSP

The cusp model described in Legramanti et al. (2020) is a spike-and-slab shrinkage prior that

enables automatic selection of the number of latent factors in Gaussian factorization models. We

adapt it to the Poisson factorization model as follows. We begin by specifying the following prior

structure for the signatures and the loadings:

(r1k, . . . , rIk) ∼ Dirichlet(α, . . . , α), θkj = ϑkjµk, ϑkj ∼ Gamma(a, a).

Then, we let

µk ∼ (1− πk)Gamma(a0, b0) + πkδµ∞ ,

where δx denotes the point mass at x and πk is the prior probability of sampling the spike µ∞ = 0.01,

which is modeled as

πk =
k∑

ℓ=1

ϕℓ, ϕℓ = vℓ

ℓ−1∏
m=1

(1− vm), vℓ ∼ Beta(1, α).

Hence, πk increases as k increases. As a spike-and-slab prior, this enables automatic selection of the

number of signatures. Each iteration of the Gibbs sampler for the basic PoissonCUSP model consists

of the following steps:

1. For i = 1, . . . , I and j = 1, . . . , J , sample auxiliary variables Yij = (Yij1, . . . , YijK) according to

Yij ∼ Multinomial
(
Xij , (qij1, . . . , qijK)

)
, where qijk = rikθkj/

∑K
κ=1 riκθκ,j .

2. Sample the individual loadings ϑkj from ϑkj ∼ Gamma
(
a+

∑I
i=1 Yijk, a+ µk

)
.

3. Sample the signatures rk = (r1k, . . . , rik) from rk ∼ Dirichlet
(
α+

∑J
j=1 Y1jk, . . . , α+

∑J
j=1 Yijk

)
.

4. For each k = 1, . . . ,K, sample the categorical auxiliary variables Zk as follows

P(Zk = ℓ | −) =


ϕℓ µ

∑
i,j Yijk

∞ exp(−µ∞
∑

j ϑkj) if 1 ≤ ℓ ≤ k

ϕℓ
ba00

Γ(a0)

Γ(a0 +
∑

ij Yijk)

(b0 +
∑

j ϑkj)
a0+

∑
ij Yijk

if k < ℓ ≤ K
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where ϕℓ = P(Zk = ℓ) is the prior probability of the auxiliary variables. These probabilities are

derived by integrating out the parameters µk, relying on the conjugacy of the model.

5. For ℓ = 1, . . . ,K − 1, sample the sticks from

vℓ ∼ Beta

(
1 +

K∑
k=1

1(Zk = ℓ), απ +
K∑
k=1

1(Zk > ℓ)

)
,

and fix vK = 1.

6. Calculate ϕ1, . . . , ϕK via the stick-breaking construction, namely ϕℓ = vℓ
∏ℓ−1

m=1(1− vm).

7. For k = 1, . . . ,K, if Zk ≤ k then set µk = δµ∞ , otherwise sample

µk ∼ Gamma

(
a0 +

I∑
i=1

J∑
j=1

Yijk, b0 +
J∑

j=1

ϑkj

)
.

Notice that here we assume a multiplicative structure for θkj , while our compressive hyperprior

approach assumes a hierarchical one. In principle, one could specify θkj ∼ Gamma(a, a/µk) and

µk ∼ (1−πk)InvGamma(a0, b0)+πkδµ∞ to mimic our model. However, in practice, we found that this

approach did not yield the desired shrinkage effect, since the Gibbs sampler preferred to sample from

the prior slab rather than allocating the signatures to the spike. This happened both when a0 = 1

and b0 = 1 were fixed and when they were chosen according to our compressive model as a0 = aJ + 1

and b0 = aµ∞J with µ∞ = 0.01. This is likely due to a mixing issue and to the strong multimodal

nature of the resulting posterior. Instead, we found that the sampler described above worked better.

Inference for the number of signatures K∗ in PoissonCUSP can be performed using the same

adaptive Metropolis sampler as in Algorithm 2 in Legramanti et al. (2020). This automatically tunes

the number of columns in the factorization in a random manner, by eliminating the columns that in a

given iteration fall within the spike (that is, the signatures for which Zk ≤ k) and potentially adding

novel ones. Refer to Legramanti et al. (2020) for a description. We implement their algorithm with

their choice of tuning hyperparameters.

S5.2 Additional simulation results

We now present additional results for the simulations in Section 5. In particular, we compare the

models by assessing the root mean squared error (RMSE) for (i) the observed counts X, (ii) the true

mean matrix Λ0 = (λ0
ij), (iii) the true matrix of signatures R0, and (iv) the true loadings matrix Θ0.

First, we consider the RMSE for X and Λ0, calculated as rmse(X, Λ̂) =
(∑

ij(Xij − λ̂ij)
2/IJ

)1/2
and rmse(Λ0, Λ̂) =

(∑
ij(λ

0
ij − λ̂ij)

2/IJ
)1/2

, respectively, where λ̂ij =
∑K∗

k=1 r̂ikθ̂kj and K∗ is the
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Figure S1: RMSE between (top) Λ̂ and the count matrix X, and (bottom) Λ̂ and the true mean matrix Λ0, for
each method across 20 replicates, when data are generated with overdispersion τ = 0, i.e., the Poisson model.

estimated number of signatures for each method. Figures S1 and S2 display the comparison across all

models and replicate data sets for overdispersion τ = 0 and τ = 0.15, respectively. In the correctly

specified case (τ = 0), no method performs overwhelmingly better than all the others. This is expected

since all models correctly estimate the true number of signatures in this case; see Figure 2(A). One

exception is SigProfiler, which performs noticeably worse than the others, particularly in terms of the

RMSE for Λ0. The performance of SigProfiler does improve somewhat as the sample size increases,

suggesting that the algorithm might struggle in small dimensions or on relatively low mutation counts.

The situation changes, however, in the overdispersed (negative binomial) case with τ = 0.15,

displayed in Figure S2. Here, SignatureAnalyzer and PoissonCUSP obtain the lowest rmse(X, Λ̂)

across all values of J , however, their corresponding rmse(Λ0, Λ̂) shows the opposite trend. This is

a clear indication of overfitting, which is reinforced by the fact that both models overestimate the

number of signatures; see Figure 2(A).

To enable a direct comparison of performance in terms of estimating the true signature and loadings

matrices R0 and Θ0, we first perform a matching step to maximize the total pairwise cosine similarity

between the estimated R̂ and true R0 using the Hungarian algorithm. If the true number of signatures

and the estimated number differ, we also pad the smaller matrix with zeros for the non-matched

signatures, which penalizes incorrect estimation of K. The rows of Θ̂ and Θ0 are also permuted

accordingly, and are also padded with zeros to make the dimensions the same. We then calculate

rmse(R0, R̂) =
(∑

ik(r
0
ik− r̂ik)

2/IK
)1/2

and rmse(Θ0, Θ̂) =
(∑

kj(θ
0
kj− θ̂kj)

2/KJ
)1/2

, where r̂ik and

θ̂kj are the estimated signatures and loadings, obtained by averaging posterior samples in the case of

the Bayesian models. The results for τ = 0 and τ = 0.15 are shown in Figures S3 and S4, respectively.

The best performance is attained by CompNMF+cosmic. While this model uses information from
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signatures R̂ and true signatures R0, over 20 replicate datasets, when data are generated with overdispersion
τ = 0.15, i.e., negative binomial.

the true cosmic signatures in the prior, it correctly filters out the signatures that are not needed.

Moreover, the improved estimation of the cosmic signatures improves the estimation of the associated

loadings. The performance of all the other models, with the exception of SigProfiler, is virtually

identical when τ = 0. Finally, when τ = 0.15, PoissonCUSP and SignatureAnalyzer perform poorly

due to overfitting, as before.

S6 Additional results from the 21 breast cancer data

This section presents the complete sets of signatures inferred by each method on the 21 breast

cancer data from Section 6. The models we run are the same as in Section 5, with only the following

changes:

(i) CompNMF: K = 15 signatures, ε = 0.01.

(ii) CompNMF+cosmic: Knew = 10, de novo and Kpre = 67 cosmic v3.4 signatures, ε = 0.01.

(iii) PoissonCUSP: starting at K = 15,

(iv) signeR: we set estimate hyper = TRUE as in Rosales et al. (2016), and let K range from 2 to 15.

Unlike Rosales et al. (2016), however, we do not include the opportunity counts in the model.

(v) SignatureAnalyzer: K = 15, selection method set to L1W.L2H (same as Alexandrov et al. (2020)).

(vi) SigProfiler: K ranging from 2 to 15.

Both compressive methods and PoissonCUSP are run for 12,000 iterations, discarding the first 10,000

as burn-in.
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We obtain the following results. SigProfiler estimates only three signatures (matched to SBS2,

SBS3, and SBS40a), and the cosine similarity is high only for SBS3; see Figure S5. This is likely a

consequence of the small sample size, which can lead to the merging of two or more signatures due

to insufficient signal to distinguish them. Interestingly, SignatureAnalyzer estimates five signatures

(matched to SBS1, SBS2, SBS2, SBS3, and SBS13), but there is duplication since one of them appears

to be a combination of SBS2 and SBS13, and ends up being matched to SBS2; see Figure S6.

We find that signeR infers five signatures (matched to SBS1, SBS2, SBS3, SBS13, and SBS96),

similar to the results in the signeR paper (Rosales et al., 2016) but with slight differences since we do

not account for the opportunity matrix in order to provide a consistent comparison between methods;

see Figure S7. In the signeR results, SBS1 (which is sparse) appears to have been merged with a

flatter signature and thus is retrieved with lower cosine similarity. The method also infers a signature

that is matched to SBS96, but with low cosine similarity.

CompNMF and PoissonCUSP estimate a larger number of signatures (six and seven, respectively);

see Figures S8 and S9. In both cases, SBS1, SBS2, SBS3, and SBS13 are inferred with cosine similar-

ities comparable to the other methods. They also both infer SBS34 and SBS98, but these have larger

credible intervals, indicating greater uncertainty. SBS98 also has particularly low cosine similarity in

both cases, suggesting that it may be spurious. PoissonCUSP also estimates a signature matched to

SBS9, but again with relatively high uncertainty and low cosine similarity. SBS9 has been found in

other breast cancer types (Alexandrov et al., 2020), but its current hypothesized etiology (polymerase

eta somatic hypermutation in lymphoid cells) has not been validated.

Finally, our CompNMF+cosmic model estimates eight signatures, all with cosine similarity near

1, except for SBS98; see Figure S10. The estimated signature matched to SBS98 has very high

uncertainty and low cosine similarity, suggesting it is probably a spurious match. As in the simulations,

the informative prior appears to provide significantly improved sensitivity to detect the presence of

signatures, while still allowing for departures from the cosmic signatures.

The loadings estimated by PoissonCUSP, SignatureAnalyzer, SigProfiler, and signeR are displayed

in Figure S11 as percentages.
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Figure S5: Mutational signatures inferred by SigProfiler on the 21 breast cancer dataset.
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Figure S6: Mutational signatures inferred by SignatureAnalyzer on the 21 breast cancer dataset.
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Figure S7: Mutational signatures inferred by signeR on the 21 breast cancer dataset.
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Figure S8: Mutational signatures inferred by PoissonCUSP on the 21 breast cancer dataset.
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Figure S9: Mutational signatures inferred by CompNMF on the 21 breast cancer dataset.
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Figure S10: Mutational signatures inferred by CompNMF+cosmic on the 21 breast cancer dataset.
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Figure S11: Loading of each signature (as a percentage of the total loading) for each patient, for
PoissonCUSP, signeR, SignatureAnalyzer, and SigProfiler on the 21 breast cancer dataset.
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