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Abstract

A sequential importance sampling algorithm is developed for the distribution that
results when a matrix of independent, but not identically distributed, Bernoulli random
variables is conditioned on a given sequence of row and column sums. This conditional
distribution arises in a variety of applications and includes as a special case the uniform
distribution over zero-one tables with specified margins. The algorithm uses dynamic
programming to combine hard margin constraints, combinatorial approximations, and
additional non-uniform weighting in a principled way to give state-of-the-art results.

Keywords: bipartite graph, conditional inference, permanent, Rasch model, uniform dis-
tribution

1 Introduction

Let Ω∗ denote the set of m×n binary matrices with row sums r = (r1, . . . , rm) and column
sums c = (c1, . . . , cn), and let w = (wij) ∈ [0,∞)m×n be a given nonnegative matrix. Define
the distribution P ∗ on {0, 1}m×n via

P ∗(z) =
1

κ

∏

ij

w
zij
ij 1{z ∈ Ω∗}, κ =

∑

z∈Ω∗

∏

ij

w
zij
ij , (1)

where 1 is the indicator function and where we assume κ > 0. P ∗ is the conditional dis-
tribution of an m × n array of independent Bernoulli random variables, say B = (Bij),
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with P(Bij = 1) = wij/(1 + wij) given the margins r and c, where P denotes probability.
This paper describes an importance sampling algorithm that can be used for Monte Carlo
approximation of probabilities and expectations under P ∗ and also for Monte Carlo approx-
imation of κ. After a preprocessing step, sampling from our proposal distribution requires
O(md) operations per matrix, where d =

∑
j cj =

∑
i ri is the total number of ones in the

matrix.
We are not aware of any existing importance sampling algorithms that permit practical

inference under P ∗, although many special cases have been studied in the literature. For
example, if w ≡ 1 then P ∗ is the uniform distribution over zero-one tables with specified
margins, or equivalently, the uniform distribution over bipartite graphs with specified degree
sequence. For square matrices, if w is identically one except with a zero diagonal, then P ∗

corresponds to the uniform distribution over directed graphs with specified degrees. And
if r = c ≡ 1, then P ∗ is a distribution over weighted permutation matrices and κ is the
permanent of w. Empirically, our algorithm outperforms all existing importance sampling
algorithms in these special cases. Although our algorithm works well for most examples
arising in practice, performance depends on r, c, and w. Highly irregular margins or highly
variable w, particularly many zero entries in w, tend to cause poor performance.

P ∗ factors in such a way that we need only focus on the distribution, say P , of the first
column. The columns are sampled sequentially, with each successive column viewed as the
first column of a smaller matrix with updated margins based on the previously sampled
columns. We decompose the structure of P into margin constraints, combinatorial factors,
and non-uniform weighting terms, combine approximations of these terms in a principled
way, and then use a dynamic programming algorithm to exactly and efficiently sample from
the resulting proposal distribution Q for the first column. Sequentially sampling columns
in this way defines a proposal distribution Q∗ for the whole matrix. This strategy for
algorithm design works well for many similar problems, including symmetric matrices and
nonnegative integer-valued matrices, each of which will be described elsewhere owing to
space constraints. It seems likely that the design principles used for our approach are
applicable much more broadly.

2 Motivating applications

2.1 Conditional inference for graphs and tables

Let B ∈ {0, 1}m×n be a matrix of independent Bernoulli random variables with

logit P(Bij = 1) = αi + βj +
∑

k θkξkij, (2)

where α, β, and θ are parameters, perhaps with constraints to ensure identifiability, and ξ

is a collection of observed covariates. Models of this form arise, for example, in educational
testing, where Bij indicates whether or not subject i responded correctly to question j. If
θ ≡ 0, then the model reduces to the classical Rasch model (Rasch, 1960, 1961). Otherwise,
it is an extension of the Rasch model to include item-specific covariate effects, such as each
subject’s prior exposure to the content being tested in each question. This model is also a
simple version of models used for the analysis of network data (c.f., Holland & Leinhardt,
1981; Fienberg et al., 1985; Goldenberg et al., 2010) where B is the adjacency matrix of a
directed graph, α and β allow for degree heterogeneity, and ξ is a collection of edge-specific
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covariates. For example, for social network data we might have that Bij indicates whether
subject i reported subject j as a friend, αi controls the relative propensity for subject i to
report friends, βj controls the relative propensity for subject j to be reported as a friend,
and ξkij indicates whether the relationship between subject i and j is of type k.

In both of these examples, if θ is the only parameter of interest, then the nuisance
parameters α and β complicate inference and can be removed by conditioning on the row
and column sums of B (e.g., Cox, 1958; Holland & Leinhardt, 1981; Mehta & Patel, 1995;
Harrison, 2012). Conditioning also results in inferential procedures that are robust to
modeling assumptions, implicit in (2), about the distribution of the margins. The resulting
conditional model that drives inference is exactly P ∗ = P ∗

θ with wij = exp(
∑

k θkξkij),
perhaps with the additional constraint that wii = 0 in the case of network data. The
conditional model is a natural exponential family in θ with no nuisance parameters, but
with an intractable normalization constant κ = κθ. Harrison (2012, Example 4.2) provides
details about an importance sampling approach to exact conditional inference for this model.
The example there is based on a preliminary version of the algorithm presented here.

Other approaches to conditional inference in this setting include exhaustive enumeration,
such as the algorithms for conditional logistic regression in Stata (StataCorp, 2009) and
LogXact (Cytel, 2010), Markov chain Monte Carlo approaches, such as the elrm R package
(Zamar et al., 2007), and analytic approximations, such as the cond R package (Brazzale,
2005; Brazzale & Davison, 2008), none of which are practical for larger matrices and/or
multivariate θ. Approximation of κ was considered in Barvinok (2010b).

2.2 The uniform distribution and model validation

If w ≡ 1, or more generally, if wij = exp(αi+βj) for real-valued α and β, then P ∗ is the uni-
form distribution on Ω∗. The uniform distribution can be used for testing if θ ≡ 0 in model
(2), or equivalently, for model validation of (2) specialized to the case of θ ≡ 0. Prominent
examples include goodness-of-fit tests for the Rasch model (e.g., Rasch, 1960, 1961; Ponocny,
2001; Chen & Small, 2005; Chen et al., 2005) and for random bipartite graphs and directed
graphs without reciprocity (e.g., Wasserman, 1977; Holland & Leinhardt, 1981; Snijders,
1991).

The uniform distribution over Ω∗ also plays a central role in testing for the presence
of interactions in co-occurrence tables, particularly co-occurrence tables arising in ecology,
where Bij indicates the existence of species i in location j (e.g., Connor & Simberloff, 1979;
Snijders, 1991; Gotelli, 2000; Chen et al., 2005). In these contexts, the uniform distribution
subject to the margin totals is taken as a null hypothesis of no interaction among species
(without necessarily assuming model (2)). Our original motivation for developing these
algorithms came from a similar problem in neuroscience where Bij indicated whether neuron
i produced an action potential in time bin j, and the uniform distribution was taken as a null
hypothesis of a lack of interaction among the neurons. This can be viewed as an example
of conditional testing for multivariate binary time series. In that example, mn ≈ 108 and
existing algorithms in the literature were not practical.

Besides the many statistical applications, when w ≡ 1, the normalization constant κ is
the number of binary matrices with specified margins, a topic of enduring interest in theoret-
ical computer science (e.g., Kannan et al., 1999; Jerrum et al., 2004; Bezáková et al., 2007)
and combinatorial approximation (e.g., Békéssy et al., 1972; McKay, 1984; Greenhill et al.,
2006; Canfield et al., 2008; Barvinok, 2010a). Importance sampling algorithms for P ∗ can
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be used to provide efficient approximations of κ (Blanchet, 2009).
Monte Carlo sampling algorithms for the uniform distribution have been developed

by many authors (e.g., Besag & Clifford, 1989; McKay & Wormald, 1990; Snijders, 1991;
Rao et al., 1996; Chen et al., 2005; Blanchet, 2009; Bezáková et al., 2007; Chen, 2007; Verhelst,
2008; Bayati et al., 2010). The approach here was inspired by the importance sampling al-
gorithm in Chen et al. (2005), but provides a more principled method for algorithm design
that leads to substantial improvements in the uniform case and that also extends to the
non-uniform case.

2.3 Permanents and permanental processes

If w is square and r = c ≡ 1, that is, if Ω∗ is the set of permutation matrices, then κ is
the permanent of w, also of enduring interest in theoretical computer science (e.g., Valiant,
1979; Jerrum et al., 2004). A variety of generalizations of permanents and determinants
can be expressed as κµ, where µ = E(h(Z)) for some function h, where E denotes expected
value, and where Z has distribution P ∗ (e.g., Littlewood, 1950; Vere-Jones, 1988, 1997;
Diaconis & Evans, 2000). In principle, the algorithms here could be used to approximate
the value of any of these objects, but the practicality of this approach depends heavily on
h. For example, the α-permanent (Vere-Jones, 1988, 1997) is

perα(w) = κE(αcyc(Z)), (3)

where α ∈ R and cyc(z) is the number of disjoint cycles in the permutation correspond-
ing to z. The case α = 1 corresponds to the permanent of w, and the case α = −1
corresponds to (−1)n times the determinant of w. Permanents and α-permanents arise
in probability, statistics, and statistical physics in connection to permanental processes
and random fields (e.g., Macchi, 1975; Diaconis & Evans, 2000; Shirai & Takahashi, 2003;
McCullagh & Møller, 2006; Kou & McCullagh, 2009) and the distribution of order statis-
tics (Vaughan & Venables, 1972; Bapat & Beg, 1989). Our approach is often effective for
approximating (3) when α > 0 and | log α| is small.

3 Algorithm design

3.1 The target distribution for the first column

For a matrix z = (zij) we use zj to denote the jth column of z, we use zj:k to denote
the submatrix formed from columns j, . . . , k, we use R(z) = (Ri(z)) to denote the column
vector of row sums defined by Ri =

∑
j zij , and we use C(z) = (Cj(z)) to denote the row

vector of column sums defined by Cj =
∑

i zij . Fix the size of the matrix, m × n, the
weights w, and the margins, r and c, and let Z have distribution P ∗ defined in (1) with
Ω∗ = {z ∈ {0, 1}m×n : R(z) = r, C(z) = c}.

To sample from P ∗ we need only design a generic algorithm (generic in m,n, r, c,w) for
sampling from the distribution P of the first column, namely,

P (x) = P(Z1 = x).

The reason is that the conditional distribution of Z2:n given Z1 has the same form as P ∗ in
(1), but with different parameters. The size of the matrix is now m× (n− 1), the row sums
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are updated to r −R(Z1), the column sums are updated to c2:n, and the weight matrix
is updated to w2:n. Once we have sampled Z1, then we can update these parameters and
effectively start over, treating the second column of Z like it was the first column of the new,
updated problem, and then continuing sequentially until we have sampled the entire matrix.
This is the same sequential strategy suggested by Chen et al. (2005). The supplementary
material (located at the end of this document) contains a more detailed description of this
column-wise factorization.

Henceforth, our target distribution is P , the distribution of Z1. Let Y be a random
matrix chosen uniformly over Ω∗, let Ω denote the support of Y 1, namely,

Ω = {x ∈ {0, 1}m×1 : x = z1,z ∈ Ω∗},

and for x ∈ Ω define

U(x) = P(Y 1 = x), V (x) = E

(∏

ij

w
Yij

ij

∣∣∣Y 1 = x
)
.

It is straightforward to verify that

P (x) ∝ U(x)V (x)1{x ∈ Ω} (4)

for x ∈ {0, 1}m×1. This factorization conceptually isolates the hard margin constraints, Ω,
the combinatorics, U , and the non-uniform weighting, V . Although the separation is clearly
artificial, it is useful to treat each of these factors separately when developing a proposal
distribution.

3.2 The proposal distribution for the first column

Motivated by the factorization in (4), we consider proposal distributions for the first column
of the form

Q(x) ∝ Ũ(x)Ṽ (x)1{x ∈ Ω̃},
where Ũ and Ṽ are approximations of U and V , respectively, that factor according to

Ũ(x) ∝
m∏

i=1

uxi

i , Ṽ (x) ∝
m∏

i=1

vxi

i

for some u,v ∈ [0,∞)m×1, and where Ω̃ is of the form

Ω̃ =
{
x ∈ {0, 1}m×1 : xπi

∈ Ai,
∑i

ℓ=1 xπℓ
∈ Bi, i = 1, . . . ,m

}
(5)

for some permutation π = (π1, . . . , πm) of (1, . . . ,m) and some subsetsA = A1×· · ·×Am ⊆
{0, 1}m and B = B1 × · · · × Bm ⊆ {0, 1, . . . , c1}m. Combining these approximations creates
a proposal distribution of the form

Q(x) ∝
m∏

i=1

uxi

i vxi

i 1
{
xπi
∈ Ai,

∑i
ℓ=1 xπℓ

∈ Bi
}

(x ∈ {0, 1}m×1). (6)

Any proposal distribution of this form permits fast, exact sampling and evaluation using
O(mc1) operations; see Section 3.3. The challenge is to find easily computable choices of
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u, v, π, A, and B such that Q is a good approximation to the target P . Fortunately, this
seems to be possible in many cases; see Section 4.

For importance sampling to work, the support of Q, which is a subset of Ω̃, must contain
the support of P , which is a subset of Ω. When w has no zero entries, we require u and
v to be positive and we engineer Ω̃ to exactly coincide with Ω so that P and Q both have
support Ω; see Section 4.1. When w does have zero entries, we modify v and Ω̃ to exclude
certain elements in Ω, but only elements that are not in the support of P . This ensures that
the support of Q contains the support of P , but the supports may no longer be identical.
In this case, if the importance sampling algorithm generates a column that is not in the
support of P , then as it sequentially generates additional columns it will eventually try to
create a Q that is identically zero, indicating that no assignment of the current column
simultaneously satisfies the margin constraints and has positive weight. At this point the
algorithm can assign an importance weight of zero and terminate. Certain patterns of zero
weights make the algorithm highly inefficient because the algorithm rarely terminates with
a nonzero importance weight. In the supplementary material we discuss alternative choices
of v and Ω̃ that are more efficient for certain patterns of particular interest, including the
special case of zeros only on the diagonal.

3.3 Efficient sampling and evaluation of the proposal

Let X ∈ {0, 1}m×1 have a distribution Q that factors according to (6) above for some
u, v, π, A, and B. Define the permuted partial sums S ∈ {0, . . . , c1}m×1 according to
Si =

∑i
ℓ=1 Xπℓ

for each i, and note that X and S are in bijective correspondence. The
distribution of S factors according to

P(S = s) ∝
m∏

i=1

hi(si−1, si) (7)

for hi(si−1, si) = u
si−si−1

πi v
si−si−1

πi 1{si−si−1 ∈ Ai, si ∈ Bi}, where here and below we define
S0 = s0 = 0 for notational convenience.

The factorization in (7) implies that S is a Markov chain. If we were given the standard
Markov chain representation

P(S = s) =
m∏

i=1

P(Si = si
∣∣Si−1 = si−1), (8)

then generating a random observation of S would be trivial. It is known that dynamic
programming can be used to convert from Gibbs random field representations like (7) into
Bayesian network representations like (8); see, e.g., Frey (1998). The next theorem, which is
straightforward to verify (cf. Harrison & Geman, 2009), summarizes dynamic programming
in this context.

Theorem 1. Let (S0, S1, . . . , Sm) be a sequence of random variables where each Si takes
values in the finite set Di and where D0 = {0}. Suppose there exists a sequence of functions
hi : Di−1 ×Di 7→ [0,∞) for i = 1, . . . ,m such that the distribution of (S1, . . . , Sm) can be
expressed as

P
(
S1 = s1, . . . , Sm = sm

)
∝

m∏

i=1

hi(si−1, si).
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Recursively define gm(sm−1, sm) = hm(sm−1, sm) and

gi(si−1, si) = hi(si−1, si)
∑

si+1∈Di+1

gi+1(si, si+1) (i = 1, . . . ,m− 1),

where each gi is defined over Di−1 ×Di. Then S0, . . . , Sm is a Markov chain and

P
(
Si = si

∣∣Si−1 = si−1

)
=

gi(si−1, si)∑
t∈Di

gi(si−1, t)
(i = 1, . . . ,m).

In the present context, Si ∈ Bi ⊆ {0, . . . , c1} for each i, so the algorithm described in
Theorem 1 for converting from (7) to (8) requires at most O(mc21) operations. In fact, since
in the present situation we have hi(si−1, si) = 0 for si − si−1 6∈ {0, 1}, implying the same
for gi, this yields an algorithm that requires O(mc1) operations. Instead of representing
all (c1 + 1)2 combinations of (si−1, si), we represent only the 2c1 + 1 feasible combinations.
Once the representation in (8) is computed, generating a random observation X from Q or
evaluating Q(x) at any x takes O(m) operations.

4 Specification of components

4.1 Margin constraints

Here we discuss the construction of Ω̃. In particular, the next theorem shows how to ensure
that Ω̃ = Ω for easily computable choices of π, A, and B.

Theorem 2. (Chen et al., 2005) Assume Ω∗ 6= ∅. Choose π so that rπ1
≥ · · · ≥ rπm . For

each i = 1, . . . ,m, define

Ai =





{0} (rπi
= 0);

{0, 1} (0 < rπi
< n);

{1} (rπi
= n),

Bi =
{
{max{0, bi}, . . . , c1} (i < m);

{c1} (i = m),

for bi =
∑i

ℓ=1(rπℓ
−∑n

j=2 1{cj ≥ ℓ}). Define Ω̃ according to (5). Then Ω̃ = Ω.

It is instructive to see how these choices of π, A, and B ensure that Ω̃ ⊇ Ω, which
is the primary requirement for importance sampling. The Gale–Ryser conditions (Gale,
1957; Ryser, 1957) state that there is a binary matrix with margins r ∈ {0, . . . , n}m×1 and
c ∈ {0, . . . ,m}1×n if and only if

∑
i ri =

∑
j cj and

i∑

ℓ=1

rπℓ
≤

i∑

ℓ=1

∑

j

1{cj ≥ ℓ} for all i = 1, . . . ,m− 1,

where the permutation π is chosen so that rπ1
≥ · · · ≥ rπm. It is straightforward to see

that x ∈ {0, 1}m×1 will be in Ω exactly when there is a way to fill out the remaining n− 1
columns of the binary matrix that obey the updated margins after accounting for x. In
other words, x ∈ Ω exactly when r − x and c2:n satisfy the Gale–Ryser conditions for the
margins of an m× (n− 1) binary matrix.

The set A is chosen so that x ∈ A if and only if r − x ∈ {0, . . . , n − 1}m×1. The
set Bm is chosen so that

∑m
i=1 xi ∈ Bm if and only if

∑m
i=1 ri − xi =

∑n
j=2 cj. This is
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equivalent to enforcing the column sum
∑m

i=1 xi = c1. Choosing the permutation φ so that
rφ1
− xφ1

≥ · · · ≥ rφm
− xφm

, the remaining Gale–Ryser conditions are that

i∑

ℓ=1

(rφℓ
− xφℓ

) ≤
i∑

ℓ=1

∑

j≥2

1{cj ≥ ℓ} for all i = 1, . . . ,m− 1, (9)

which implies that

i∑

ℓ=1

(rπℓ
− xπℓ

) ≤
i∑

ℓ=1

∑

j≥2

1{cj ≥ ℓ} for all i = 1, . . . ,m− 1, (10)

since the permutation φ makes the left side as large as possible. Solving (10) for
∑i

ℓ=1 xπℓ

gives the bounds encoded in the Bi and shows that Ω̃ ⊇ Ω.
We cannot use the permutation φ in the construction of Q because φ depends on x,

however, Chen et al. (2005) further prove that (9) and (10) are in fact equivalent, which
means we are in the ideal situation where Ω = Ω̃. (Although they made use of the factor-
ization in Theorem 2, their proposal distributions were not of the form in (6), except in the
special case where Ω = {x ∈ {0, 1}m×1 :

∑
i xi = c1}.) Furthermore, Chen (2007) provides

an extension of Theorem 2 for the case where, in addition to the margin constraints, Ω∗ also
enforces a fixed pattern of structural zeros for which there is at most one structural zero
in each row and column. This includes the important special case of adjacency matrices of
directed graphs; see supplementary material.

4.2 Combinatorial approximations

Here we discuss approximation of U by Ũ . Define

Nm,n(r, c) =
∣∣{z ∈ {0, 1}m×n : R(z) = r, C(z) = c}

∣∣

to be the number of m× n binary matrices with row sums r and column sums c. We have

U(x) = P(Y 1 = x) =
Nm,n−1(r − x, c2:n)

Nm,n(r, c)
,

(where as before, Y is uniform over Ω∗) and we desire an approximation of the form

U(x) =
Nm,n−1(r − x, c2:n)

Nm,n(r, c)
≈ γ

m∏

i=1

uxi

i , (11)

where γ is an irrelevant positive constant.
Temporarily pretending that (11) is accurate for any x ∈ {0, 1}m×1, we have

ui ≈
U(I i)

U(0)
=

Nm,n−1(r − Ii, c2:n)

Nm,n−1(r, c2:n)
,

where Ii is the ith column of the m ×m identity matrix I. We cannot use this directly,
since it is trying to evaluate U outside of Ω, and, furthermore, computationally efficient
procedures for evaluating Nm,n−1 are not available. Nevertheless, it suggests using

ui = Ñm,n−1(r − I i, c2:n)/Ñm,n−1(r, c
2:n) (i = 1, . . . ,m) (12)
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for an approximation Ñ of N that extends smoothly to invalid margins.
Several asymptotic approximations for N have appeared in the literature and could be

used for Ñ . For example, Canfield et al. (2008, Theorem 1) suggest the following, which we
write asymmetrically with respect to r and c in order to simplify (13) below:

Ñm,n(r, c) =

(
mn∑n
k=1 ck

)−1 m∏

i=1

(
n

ri

) n∏

j=1

(
m

cj

)
exp
(
−1

2

(
1− µm,n(r, c)

)(
1− νm,n(c)

))
,

µm,n(r, c) = ηm,n(c)

m∑

i=1

(
ri −

1

m

n∑

k=1

ck

)2

, νm,n(c) = ηm,n(c)

n∑

j=1

(
cj −

1

n

n∑

k=1

ck

)2

,

ηm,n(c) =
mn

(
∑n

k=1 ck)(mn −∑n
k=1 ck)

.

Substituting this into (12) and simplifying gives

ui =
ri

n− ri
exp

[
ηm,n−1(c

2:n)
(
1− νm,n−1(c

2:n)
)(1

2
− ri +

1

m

n∑

k=2

ck

)]
. (13)

If ri = 0 or ri = n, then the value of Xi is determined by Ω̃, and any choice of ui > 0 gives
the same Q; we use ui = 1 in these cases. We find that (13) works well over a large range of
margins when P ∗ is uniform. It is excellent if the margins are approximately semi-regular,
that is, if the row and column sums do not deviate substantially from their respective mean
values.

For certain pathological cases with wildly varying margins, such as those in Bezáková et al.
(2006), (13) does not work well. However, if the margins are such that the resulting ma-
trices have a very low density of ones, even if the margins are highly irregular, then good
performance can be obtained by instead using the asymptotic approximation of N from
Greenhill et al. (2006, Theorem 1.3). Details are provided in the supplementary material.
In fact, for the specific pathological cases in Bezáková et al. (2006) using this alternative
approximation gives Q∗ ≡ P ∗ in the uniform case. None of the computationally efficient
combinatorial approximations that we have found in literature work well when the margins
are both highly irregular and lead to a moderate density of ones, but we are hopeful that
advances in asymptotic enumeration techniques will eventually lead to approximations that
work well in almost all cases.

Chen et al. (2005) observed that combinatorial approximations could be used to find
a good choice of u and they mentioned an early asymptotic approximation from O’Neil
(1969), which was explored further by Blanchet (2009) in an asymptotic analysis of the
algorithm. The examples in Chen et al. (2005), however, use ui = ri/(n − ri), which is
motivated by considering only the row margin constraints. Although there are several
substantial differences between their proposal distribution and ours for the special case of
the uniform distribution of Ω∗, we suspect that much of the improved performance of our
algorithm results from using more accurate combinatorial approximations.

In the next section we use V and Ṽ to account for the effects of w, including the effects
of zeros in w. Since these zeros affect the size of the support of P ∗, an alternative, perhaps
more natural approach is to allow U and Ũ to capture the effects of zeros in w. The
supplementary material contains more details.
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4.3 Non-uniform weighting

Here we discuss approximation of V by Ṽ . To develop an approximation, we will ignore the
column margins and consider only the row margins. This is similar to the approach used
by Chen et al. (2005) to develop combinatorial approximations for the uniform case. Let
B ∈ {0, 1}m×n be a matrix of independent Bernoulli(1/2) random variables, so that

V (x) = E

(∏

ij

w
Yij

ij

∣∣∣Y 1 = x
)
= E

(∏

ij

w
Bij

ij

∣∣∣B1 = x,R(B) = r,C(B) = c
)

≈ E

(∏

ij

w
Bij

ij

∣∣∣B1 = x,R(B) = r
)
=

m∏

i=1

E

( n∏

j=1

w
Bij

ij

∣∣∣Bi1 = xi, Ri(B) = ri

)

∝
m∏

i=1

vxi

i , (14)

where

vi =
E
(∏n

j=1w
Bij

ij

∣∣Bi1 = 1, Ri(B) = ri
)

E
(∏n

j=1w
Bij

ij

∣∣Bi1 = 0, Ri(B) = ri
) (ri = 1, . . . , n− 1; i = 1, . . . ,m)

=
wi1

(
n−1
ri−1

)−1∑
b∈{0,1}n−1 1{

∑n−1
j=1 bj = ri − 1}∏n

j=2w
bj−1

ij
(
n−1
ri

)−1∑
b∈{0,1}n−1 1{

∑n−1
j=1 bj = ri}

∏n
j=2w

bj−1

ij

. (15)

In the supplementary material we describe how to compute all possible v for all columns
using O(nd) operations (where d =

∑
i ri =

∑
j cj) in a one-time preprocessing step that

can be done prior to sampling. As with ui, we always define vi = 1 if ri = 0 or ri = n.
For cases where w has zeros, we can sometimes have a zero in the denominator of (15) for
ri > 0. This happens when fewer than ri of the n − 1 remaining weights in the row are
nonzero. Consequently, we need to force Xi = 1, which we do by setting the corresponding
Aℓ = {1} in Section 4.1.

An important observation that we have thus far neglected is that many different choices
of w give rise to the same P ∗. Define

Λ(w) = {t ∈ [0,∞)m×n : t = αβt ◦w, α ∈ (0,∞)m×1, β ∈ (0,∞)n×1},

where t denotes transpose and y ◦ z is the Hadamard product, that is, element-wise mul-
tiplication of matrices of the same size, defined by (y ◦ z)ij = yijzij. Then for every
t ∈ Λ(w) it is straightforward to verify that the P ∗ defined with the weight matrix w and
the P ∗ defined with the weight matrix t are identical. Similarly, the two versions of V
differ only by an inconsequential constant of proportionality. Unfortunately, our approxi-
mation Ṽ (x) ∝∏i v

xi

i defined above does not share this invariance. Consequently, proposal
distributions constructed with w and t, respectively, could differ, even though the target
distribution does not differ. We find this unappealing and remedy it in a preprocessing
step prior to the construction of Q∗ by first transforming w into an equivalent, canonical
w̄ ∈ Λ(w). In particular, w̄ is the unique element of Λ(w) with the property that its
average nonzero entry over any row or column is one, namely,

m∑

i=1

w̄ij =

m∑

i=1

1{w̄ij > 0},
n∑

j=1

w̄ij =

n∑

j=1

1{w̄ij > 0} (i = 1, . . . ,m; j = 1, . . . , n). (16)
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The solution to (16) over Λ(w) exists, is unique, and is easy to find numerically (Rothblum & Schneider,
1989); see supplementary material for details and more discussion. In the examples below,
we always define v in terms of w̄, not w. Not only does this ensure that Q∗ has the same
invariance property as P ∗, but we find that performance of the algorithm tends to improve.

If we know that P ∗ is uniform over Ω∗, for example, if w ≡ 1 or w̄ ≡ 1, then V is
constant over Ω, and we can ignore v in the construction of Q.

5 Importance sampling

5.1 Algorithm summary

1. Preprocessing: Compute w̄ from (16) and precompute all possible v using (15) with
w̄ in place of w; see supplementary material for details. Compute π, A, and B

according to Theorem 2 and u according to (13) for the first column.

2. Generating a single observation, Z̃, from Q∗: The matrix Z̃ is generated column-by-
column as follows. Set q = 1. Sequentially, for each column:

(a) For the current m,n, r, c, compute π,A,B,u as above. After the preprocessing,
updating these quantities based on the previously sampled column requires O(m)
operations.

(b) Use Theorem 1 to compute the Markov chain representation for Q. For the jth
column, this takes O(mcj) operations. If Q ≡ 0, then Z̃ will not be in the
support of P ∗; assign a final importance weight of zero and go to step 3.

(c) Generate a random observation X from Q and evaluate Q(X). This takes O(m)
operations.

(d) Assign the current column of Z̃ to be X. Update q ← qQ(X), c ← c2:n,
n ← n− 1, r ← r −X. If n > 0, continue looping over columns; go to step 2a.
If n = 0, the final matrix is Z̃, and we have Q∗(Z̃) = q; go to step 3.

3. To generate additional independent observations from Q∗, reset all variables to their
original values after step 1 and repeat step 2.

The same algorithm can be used to evaluate Q∗(z) for any z ∈ Ω∗. Simply assign X to be
the current column of z in step 2c, instead of sampling a new column. (The algorithm can
be applied for any ordering of the columns, and Q∗ will depend on the chosen ordering. The
supplementary material describes the heuristics that we use to choose a column ordering.)

5.2 Monte Carlo approximation and diagnostics

Let Z have distribution P ∗, let Z1, . . . ,ZT be random sample from Q∗ generated as above,
and let h be a function over Ω∗. Define the unnormalized importance weights

f(z) =
κP ∗(z)

Q∗(z)
=

∏
ij w

zij
ij 1{z ∈ Ω∗}
Q∗(z)

(z ∈ {0, 1}m×n),

which we can efficiently evaluate for any z as described above. In the formula for f(z)
it is important that we use w, not w̄, particularly if we are approximating κ. We can
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approximate κ and µ = E(h(Z)) via importance sampling in the usual way, namely,

µ̂T =

∑T
t=1 f(Zt)h(Z t)∑T

t=1 f(Zt)
→ µ, κ̂T =

1

T

T∑

t=1

f(Zt)→ κ (T →∞). (17)

Besides being consistent, κ̂T and κ̂T µ̂T are also unbiased approximations of κ and κµ,
respectively. See Liu (2001) for details about importance sampling. See Harrison (2012) for
modifications when (17) is used to approximate a p-value.

In this context, importance sampling algorithms are usually evaluated empirically by
diagnostics related to the variability of the importance weights. The less variable the
importance weights, the better the algorithm is judged to be performing. For the numerical
illustrations below, we report

ĉv
2
T =

1

(T − 1)κ̂2T

T∑

t=1

(f(Zt)− κ̂T )
2, ∆̂T =

maxt=1,...,T f(Zt)

mint=1,...,T f(Zt)
− 1.

As T → ∞, the approximate squared coefficient of variation, ĉv
2
T , converges to the true

squared coefficient of variation, cv2 = V(f(Z1))/E(f(Z1))
2 = V(P ∗(Z1)/Q

∗(Z1)), where
V denotes variance. T̃ = T/(1+ cv

2) has been suggested as a rough diagnostic for effective
sample size, meaning that a sample size of T from Q∗ behaves roughly like a sample size of
T̃ from P ∗ for the purposes of Monte Carlo approximating µ for well-behaved functions h
(Kong et al., 1994; Liu, 2001). For many but not all examples we find ĉv

2
T < 1, suggesting

that Q∗ is appropriate for efficient importance sampling. The relative range of importance
weights reported by ∆̂T is an especially stringent diagnostic. For nearly constant mar-
gins and P ∗ close to uniform, we often find ∆̂T ≈ 0, suggesting that Q∗ is an excellent
approximation of P ∗; see Table 1.

6 Numerical illustrations

We experiment with four different classes of weights based on a canonical matrix y whose
entries are independently sampled from the uniform(0, 1) distribution: (I) wij = 1, which
is the uniform distribution over Ω∗, (II) wij = yij + 1, (III) wij = yij, and (IV) wij =
−1(yij < 0.99) log(yij), for all i, j. The specific entries of y for different sized matrices are
in the supplementary material. The resulting P ∗ is increasingly non-uniform in each of the
latter three cases and has 1% structural zeros in case (IV). Recall that each w corresponds
to a family of weights of the form αβt ◦w that give the same P ∗ and Q∗; see Section 4.3.
In all cases we report results with T = 1000.

We begin with 500 × 500 r1-regular matrices, i.e., ri = cj = r1 for all i, j = 1, . . . , 500.
Results are summarized in Table 1 for r1 = 1, 2, 4, 8, . . . , 256. The diagnostics are striking,
especially in the uniform case, for which the importance weights are essentially constant.
Performance degrades slightly as P ∗ becomes strongly non-uniform, but in all cases the
estimated cv

2 is less than one. Low variability in importance weights corresponds to high
precision in estimates of κ. For example, in the uniform case, where κ = |Ω∗|, for r1 = 256 we
obtain κ̂ = (1.478301±0.000044)×1073781, where the errors are approximate standard errors
estimated from the same importance samples, and for r1 = 2 we obtain κ̂T = (2.27653 ±
0.00017)×102266, the latter of which is close to the true value of κ = 2.27658 . . .×102266; see
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supplementary material. To our knowledge the exact value of κ in these examples can only
be efficiently computed for the special case of the uniform distribution over either 1-regular
or 2-regular matrices (Anand et al., 1966). Sampling from the uniform distribution over
1-regular matrices is trivial, κ = m!, and there is no need to use our algorithm, although it
is comforting that Q∗ = P ∗ in this case.

We remark that the distributions corresponding to different weight classes in Table 1
are almost singular with respect to each other. For example, in the 1-regular case, if we use
the Q∗ for weight class I as a proposal distribution for the P ∗ corresponding to one of the
other weight classes, then we obtain, for weight class II, ∆̂T = 2×1013 and ĉv

2
T = 8×102,

for weight class III, ∆̂T = 2×1067 and ĉv
2
T = 1×103, and for weight class IV, only 6 of the

1000 observations from Q∗ were even in the support of P ∗, owing to the structural zeros.
Results are similar for other combinations and become even more extreme as r1 increases.

Table 1: 500× 500 r1-regular matrices
uniform w class II w class III w class IV

r1 ∆̂T ĉv
2

T ∆̂T ĉv
2

T ∆̂T ĉv
2

T ∆̂T ĉv
2

T

1 0 0 2×10−1 5×10−4 4×100 4×10−2 5×101 3×10−1

2 4×10−2 5×10−6 2×10−1 4×10−4 6×100 4×10−2 8×101 2×10−1

4 1×10−2 1×10−6 1×10−1 4×10−4 5×100 3×10−2 2×102 2×10−1

8 2×10−2 1×10−6 2×10−1 3×10−4 3×100 3×10−2 4×101 2×10−1

16 1×10−2 1×10−6 2×10−1 3×10−4 3×100 3×10−2 4×101 1×10−1

32 8×10−3 8×10−7 1×10−1 2×10−4 2×100 2×10−2 1×101 1×10−1

64 9×10−3 9×10−7 1×10−1 2×10−4 3×100 2×10−2 2×101 9×10−2

128 1×10−2 9×10−7 1×10−1 9×10−5 1×100 1×10−2 5×100 5×10−2

256 9×10−3 9×10−7 5×10−2 5×10−5 1×100 1×10−2 9×100 7×10−2

For the special case of 1-regular matrices, corresponding to the first row in Table 1, κ is
the permanent of w and various generalizations of the permanent correspond to expecta-
tions under P ∗. The current state-of-the-art algorithm for approximating permanents and
α-permanents of general matrices, see (3) above, seems to be the importance sampling al-
gorithm of Kou & McCullagh (2009), which has about the same computational complexity
as our algorithm. For the case α = 1, their algorithm is nearly identical to ours, the main
differences being the choice of column order and our use of w̄, which seems to give our algo-
rithm slightly better performance. Their algorithm is generally preferable for α 6= 1, since
it is tailored to the specific choice of α, although in many cases performance is comparable.
The supplementary materials have numerical comparisons for each of the w used in Table
1 and for all of the examples in Kou & McCullagh (2009), which include cases with α = 1
and α = 1/2. It is interesting that in many cases our generic approach is competitive with
specialized software.

In Table 2 we repeat the simulations of Table 1 for 50 × 100 irregular matrices with
margins r = kr̃ and c = kc̃, for the cases k = 1, . . . , 4, where r̃t = (241, 222, 174, 133,
122, 113, 102, 93, 86, 71, 64, 54, 45, 36, 24) and c̃ = (122, 102, 95, 84, 76, 611, 510, 418, 39,
213, 120) using ij to denote j copies of i. Performance degrades in the irregular case as the
matrices become more dense. In most, but not all cases, the diagnostics suggest Q∗ could
be used for efficient importance sampling.

For the special case of the uniform distribution, corresponding to the far left category
of weights in Tables 1 and 2, the sequential importance sampling algorithm of Chen et al.
(2005), as implemented in the publicly available R package networksis (Admiraal & Handcock,
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Table 2: 50× 100 irregular matrices with r = kr̃, c = kc̃
uniform w class II w class III w class IV

k ∆̂T ĉv
2

T ∆̂T ĉv
2

T ∆̂T ĉv
2

T ∆̂T ĉv
2

T

1 4×10−1 1×10−3 3×100 5×10−2 8×101 5×10−1 5×103 3×100

2 3×100 3×10−2 7×100 1×10−1 7×102 2×100 6×104 7×100

3 2×102 7×10−1 2×102 6×10−1 2×104 6×100 3×106 4×101

4 3×106 3×101 3×106 2×101 4×109 2×102 2×1013 8×102

2008), appears to be the current state-of-the-art algorithm for practical Monte Carlo ap-
proximation. Our algorithm is a substantial improvement, especially for dense or irreg-
ular margins. Using networksis gives ∆̂T = (1×101, 1×102, 2×105, 1×1011) and ĉv

2
T =

(2×10−1, 6×10−1, 1×101, 4×102) for the first pair of columns in Table 2. The networksis

implementation is several orders of magnitude slower than our implementation, and is too
slow for most of the examples in Table 1.

Supplementary Material

Supplementary material includes (i) a more detailed description of the column-wise factor-
ization described in Section 3.1, (ii) details about the solution to (16) and other prepro-
cessing of the weights and margins, (iii) alternative combinatorial approximations for sparse
matrices with irregular margins, (iv) extensions to Theorem 2 for the case of structural zeros
with at most one structural zero in each row and column, including the case of structural
zeros along the diagonal, (v) more principled treatments of structural zeros in the approx-
imations to U and V , (vi) details for the numerical simulations, (vii) additional numerical
illustrations, including examples using real data, and (viii) a Matlab implementation of the
algorithm.

A Column-wise factorization

Define the set of binary matrices with margins r ∈ N
m×1 and c ∈ N

1×n to be

Ω∗
m,n(r, c) = {z ∈ {0, 1}m×n : R(z) = r,C(z) = c},

and let
Nm,n(r, c) = |Ω∗

m,n(r, c)|
denote the number of such matrices, where N = {0, 1, . . . } denotes the nonnegative integers.
For an m× n matrix w ∈ [0,∞)m×n define the function

P ∗
m,n(z | r, c,w) =

1{z ∈ Ω∗
m,n(r, c)}

κm,n(r, c,w)

m∏

i=1

n∏

j=1

w
zij
ij (z ∈ {0, 1}m×n)

with normalization constant

κm,n(r, c,w) =
∑

z∈Ω∗
m,n(r,c)

m∏

i=1

n∏

j=1

w
zij
ij
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using the convention that 0/0 = 0. If κm,n(r, c,w) > 0, then P ∗
m,n is a probability mass

function and we use Z to denote a random binary matrix with this distribution. We use
Z1 to denote the first column of Z, which has probability mass function

Pm,n(x | r, c,w) = P(Z1 = x) =
∑

z∈Ω∗
m,n(r,c)

P ∗
m,n(z | r, c,w)1{z1 = x} (x ∈ {0, 1}m×1),

the support of which is a subset of

Ωm,n(r, c) = {x ∈ {0, 1}m×1 : x = z1, z ∈ Ω∗
m,n(r, c)}.

If the entries of w are strictly positive, then the support is all of Ωm,n(r, c).
The algorithmic challenge of sampling the entire matrix Z reduces to the challenge of

sampling from the first column Z1, because once we have the first column, then we can
update the margins and proceed sequentially, treating successive columns like the first.
Indeed, it is straightforward to verify that

P(Zj = x | Z1:j−1 = y) = Pm,n−j+1(x | r −R(y), cj:n,wj:n),

so that the generic decomposition P(Z) = P(Z1)
∏n

j=2 P(Z
j | Z1:j−1) gives

P ∗
m,n(z | r, c,w) = Pm,n(z

1 | r, c,w)
n∏

j=2

Pm,n−j+1(z
j | r −R(z1:j−1), cj:n,wj:n).

(In the main text, we primarily focus on sampling the first column Z1, we suppress
m,n, r, c,w in the notation as much as possible, and we assume that κ > 0.) To summarize,
our target distribution is the binary random vector Z1 ∈ {0, 1}m×1 with probability mass
function

P (x) ∝
∑

z∈{0,1}m×n

1{R(z) = r,C(z) = c,z1 = x}
m∏

i=1

n∏

j=1

w
zij
ij .

B Preprocessing the weights and margins

The preprocessing that affects the definition of Q∗ consists of transforming w into w̄ and
choosing an ordering of the columns. Other elements of the preprocessing are merely for
computational efficiency. All of the preprocessing of w, but not reordering the columns,
can be skipped when it is known that P ∗ is uniform over Ω∗, e.g., when w̄ ≡ 1.

B.1 Computing w̄, the solution to equation (16) in the main text

Fix w ∈ [0,∞)m×n. Define

ni =

n∑

j=1

1{wij > 0}, mj =

m∑

i=1

1{wij > 0} (i = 1, . . . ,m; j = 1, . . . , n).

We are looking for the w̄ ∈ [0,∞)m×n with the following properties:

w̄ij = αiβjwij ,

n∑

j=1

w̄ij = ni,

m∑

i=1

w̄ij = mj (αi, βj > 0; i = 1, . . . ,m; j = 1, . . . , n).
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Initializing w̄(0) = w and t = 1, we iterate the following fixed point equations until conver-
gence:

w̄
(2t−1)
ij =

niw̄
(2t−2)
ij

∑n
ℓ=1 w̄

(2t−2)
iℓ

(i = 1, . . . ,m; j = 1, . . . , n)

w̄
(2t)
ij =

mjw̄
(2t−1)
ij

∑m
ℓ=1 w̄

(2t−1)
ℓj

(i = 1, . . . ,m; j = 1, . . . , n),

where superscripts are indices, and where we take 0/0 = 0. If we iterate this for T steps, then
we use w̄ = w̄(2T ). In our experience, a small T is usually adequate to reach convergence.
Since each w̄(T ) ∈ Λ(w), iterating to convergence is not important for validity of the
algorithm. Rothblum & Schneider (1989) prove existence and uniqueness of w̄. They also
show that the solution can also be found using a convex programming algorithm, but we
have not experimented with this approach.

The computational cost of computing w̄ takes at least O(mn) operations, but we do
not have theoretical bounds on the computational complexity. In our experience, it can
be treated as a negligible preprocessing step. Although this choice of w̄ outperforms
many alternatives, we have found no theoretical justification for its use. It is closely
related to Sinkhorn balancing of w (Sinkhorn, 1964, 1967), which has appeared in the
literature in both algorithmic and theoretical treatments of permanents (e.g., Ando, 1989;
Beichl & Sullivan, 1999), and it has the nice property that w̄ ≡ 1 whenever w = αβt. In
any case, P ∗

m,n(· | r, c, w̄) = P ∗
m,n(· | r, c,w), so switching from w to w̄ does not change

the target distribution.

B.2 Choosing a column ordering

Our algorithm is not invariant to the ordering of the columns, nor to the pattern of zeros in
w̄. We use the following heuristic ordering of the columns. First, if w̄ is banded, then we
leave the columns in their original order. The special case of banded weights arises frequently
in some applications and we find that the banded ordering works best for accommodating so
many zero weights. In other cases, we reorder the columns first by decreasing column sum
and then by decreasing variance of the entries of w̄ within each column. These preprocessing
steps, and the accompanying postprocessing steps of returning the columns to their original
orders, all require negligible additional computation. In practice, if one is interested in a
specific matrix for which these heuristics do not work well, then it can often be advantageous
to experiment with different column orders or perhaps swapping the roles of rows and
columns. For the description of the algorithm, when referring to the jth column, we mean
the jth column after any reordering of the columns.

B.3 Precomputing the constants v for all columns

Define the symmetric polynomials

Gn(y, k) =
∑

b∈{0,1}n

1{∑n
j=1 bj = k}

n∏

j=1

y
bj
j (y ∈ R

n, k = 0, . . . , n), (18)
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and let w̄j:k
i = (w̄ij , . . . , w̄ik) denote the ith row of w̄j:k. Before sampling we also precom-

pute and store
G(i, j, k) = Gn−j+1(w̄

j:n
i , k) (19)

for all i = 1, . . . ,m, j = 1, . . . , n, and k = 0, . . . ,min(ri, n − j + 1). The entire collection
can be computed in O(nd) operations (where d =

∑
i ri =

∑
j cj), by initializing with

G(i, j, 0) = 1, G(i, n, 1) = w̄in, and G(i, j, k) = 0 for all i, j and k > n − j + 1, and then
using the recursive formula

G(i, j, k) = G(i, j + 1, k) + w̄ijG(i, j + 1, k − 1).

In particular, in equation (15) in the main text we see that for the first column

vi =
w̄i1

(
n−1
ri−1

)−1
G(i, 2, ri − 1)

(
n−1
ri

)−1
G(i, 2, ri)

.

(Recall that we use w̄, not w, in our implementation of the algorithm.) For the jth column
(1 < j < n) we will have

vi =
w̄ij

(
n−j

ri−Ri(z1:j−1)−1

)−1
G(i, j + 1, ri −Ri(z

1:j−1)− 1)
(

n−j

ri−Ri(z1:j−1)

)−1
G(i, j + 1, ri −Ri(z1:j−1))

,

where z1:j−1 are the previously sampled columns so that r−R(z1:j−1) are the updated row
sums when preparing to sample the jth column.

C Alternative combinatorial approximations

For each positive integer ℓ and any nonnegative integer a we define

[a]ℓ = a(a− 1) · · · (a− ℓ+ 1),

and for a k-vector t of nonnegative integers we define

[t]ℓ =

k∑

i=1

[ti]ℓ.

In Section 4.2 of the main text we used a combinatorial approximation due to Canfield et al.
(2008), however, other approximations can also be used and may give better performance
for some problems. For instance, Greenhill et al. (2006, Theorem 1.3) provide an alterna-
tive combinatorial approximation for Nm,n(r, c) that is accurate, asymptotically, for sparse
matrices, except perhaps when the margins are extremely variable:

Ñm,n(r, c) =
[c]1!∏m

i=1 ri!
∏n

j=1 cj !
exp
(
−α1(c)[r]2 − α2(c)[r]3 − α3(c)[r]

2
2

)
,

α1(c) =
[c]2
2[c]21

+
[c]2
2[c]31

+
[c]22
4[c]41

, α2(c) = −
[c]3
3[c]31

+
[c]22
2[c]41

, α3(c) =
[c]2
4[c]41

+
[c]3
2[c]41

− [c]22
2[c]51

,
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where we take 0/0 = 0. Following Section 4.2 in the main text, a straightforward calculation
gives

ui = ri exp
[
(ri − 1)

(
2α1(c

2:n) + 3α2(c
2:n)(ri − 2) + 4α3(c

2:n)([r]2 − ri + 1)
)]
.

This combinatorial approximation is an improvement of an approximation in O’Neil (1969),
which was mentioned in Chen et al. (2005) and studied by Blanchet (2009). Both are exactly
uniform for the pathological cases in Bezáková et al. (2006); see Supplementary Section E.5.

D Structural zeros and ones

D.1 Remarks

The algorithm can be improved to better accommodate structural zeros. We avoided this in
the main text to simplify the exposition, but the complexity of the algorithm does not change
significantly. The numerical experiments in the main text do not use these improvements,
even though some of the examples have structural zeros.

We use the term structural zeros to denote positions (i, j) such that wij = 0, which
allows the investigator to explicitly force the binary matrix to zeros at those positions. It
is possible that the row and column sums also force some entries to be zero, but we are not
referring to those types of implicit structural zeros.

Sometimes it is desirable to force an entry to be one. These structural ones can be
accommodated using structural zeros. In a preprocessing step, we replace structural ones
with structural zeros and decrement the row and column sums appropriately. Then we
sample as usual. In a postprocessing step, we reinsert the structural ones. Henceforth, we
only discuss structural zeros.

D.2 Extensions to Theorem 2 in the main text for zero diagonal

Here we report an extension of Theorem 2 in the main text to the case where w has at most
one zero entry in each row and column. This includes the special case of a zero diagonal,
which arises frequently when the binary matrices of interest are adjacency matrices of
directed graphs. Unlike the main text, the order of the columns is important for the
validity of the algorithm. The columns must be reordered during preprocessing so that
c1 ≥ · · · ≥ cn.

Theorem 3. (Chen, 2006, 2007) Assume that c1 ≥ · · · ≥ cn, fix w ∈ [0,∞)m×n, define
aij = 1{wij > 0} for each i, j, assume Ri(a) ≥ n− 1 and Cj(a) ≥ m− 1 for each i, j, and
assume that κm,n(r, c,w) > 0. Choose π so that rπ1

≥ · · · ≥ rπm and so that whenever
rπi

= rπi+1
we also have yπi

≤ yπi+1
, where

yi =

{
the unique j such that wij = 0 if there exists such a j;

n+ 1 otherwise.

For each i = 1, . . . ,m, define

Ai =





{0} (aπi1rπi
= 0);

{0, 1} (0 < aπi1rπi
< Rπi

(a));

{1} (aπi1rπi
= Rπi

(a)),

Bi =
{
{max(0, bi), . . . , c1} (i < m);

{c1} (i = m),
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for
bi = (

∑i
ℓ=1 rπℓ

)−minj=1,...,n{
∑n

k=j+1 ck +
∑i

ℓ=1

∑j
k=2 aπℓk}.

Define Ω̃ according to (5) in the main text. Then Ω̃ is the support of Pm,n(· | r, c,w).

D.3 Alternative treatments of structural zeros

Here we redefine A, U , and V from the main text to account for structural zeros differently.
We define A according to Supplementary Theorem 3 above, which allows trivial cases to
be handled by Ω̃.

Let Y be a random matrix chosen uniformly over the support of P ∗ and define

U(x) = P(Y 1 = x) =
Nm,n−1(r − x, c2:n)

Nm,n(r, c)
, V (x) = E

(∏

ij

w
Yij

ij

∣∣∣Y 1 = x
)
,

so that, for any x, P (x) ∝ U(x)V (x)1{x ∈ Ω}. In the main text, these definition were the
same except that Y was chosen uniformly over Ω∗. If w forces structural zeros, then the
support of P ∗ may be smaller than Ω∗. We proceed exactly as in the main text to develop
approximations of the new U and V .

For the new U , we follow section 4.2 and note that Nm,n(r, c) needs to be replaced
by the size of the support of P ∗

m,n(· | r, c,w), say Nm,n(r, c,w), and, consequently, Ñ
needs to be replaced by a combinatorial approximation of the size of the support of P ∗.
Greenhill & McKay (2009) provide the modified asymptotic enumeration results corre-
sponding to those that led to equation (13) in the main text. Define aij = 1{wij > 0}
for all i, j. Note that Nm,n(r, c,w) = Nm,n(r, c,a). For an approximation of Ñm,n(r, c,w),
Greenhill & McKay (2009, Theorem 2.1) suggest

Ñm,n(r, c,a) =

(∑m
ℓ=1

∑n
k=1 aℓk∑n

k=1 ck

)−1 m∏

i=1

(
Ri(a)

ri

) n∏

j=1

(
Cj(a)

cj

)

× exp
[
−1

2

(
1− µm,n(r, c)

)(
1− νm,n(c)

)
− δm,n(r, c,a)

]
,

δm,n(r, c,a) = ηm,n(c)

m∑

i=1

n∑

j=1

(
(1− aij)

(
ri −

Ri(a)

mn

n∑

k=1

ck

)(
cj −

Cj(a)

mn

n∑

k=1

ck

))
,

which reduces to the formula in the main text when a ≡ 1. The functions µ, ν, η are defined
in the main text. This approximation leads to

ui =
ri

Ri(a2:n)− ri + 1
exp

(
ηm,n−1(c

2:n)

[(
1− νm,n−1(c

2:n)
)(1

2
− ri +

1

m

n∑

k=2

ck

)

+

n∑

j=2

(1− aij)

(
cj −

Cj(a)

m(n− 1)

n∑

k=2

ck

)])
,

where, as before, we set ui = 1 whenever ri = 0 or ri = Ri(a
2:n) + 1.

For the new V , we follow section 4.3 in the main text, but define B to be a matrix of
independent Bernoulli random variables where Bij is Bernoulli(aij/2) for aij = 1{wij > 0}.
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Following equations (14) and (15) from the main text, the first change comes after the
second equality in (15), giving

vi =
wi1

(
Ri(a2:n)
ri−1

)−1∑
b∈{0,1}n−1 1{

∑n−1
j=1 bj = ri − 1}∏n

j=2w
bj−1

ij

(
Ri(a2:n)

ri

)−1∑
b∈{0,1}n−1 1{

∑n−1
j=1 bj = ri}

∏n
j=2w

bj−1

ij

=
wi1(Ri(a

2:n)− ri + 1)Gn−1(w
2:n
i , ri − 1)

riGn−1(w2:n
i , ri)

=
wi1(Ri(a

2:n)− ri + 1)G(i, 2, ri − 1)

riG(i, 2, ri)
,

where we have made use of the fact that terms inside the summations in the first expression
are zero whenever b has an entry of one in a place where there is a structural zero. The
functions Gn and G are defined above in supplementary section B.3. For zeros in the numer-
ator or denominator of the expression for vi we set vi = 1 and allow Ai to deterministically
choose the appropriate value of the ith entry. As in the main text, we suggest replacing w

with w̄ throughout.

E Numerical illustrations

E.1 Pseudorandom number generator

The pseudorandom number generator used by the importance sampling algorithm for the
numerical illustrations is the default pseudorandom number generator in Matlab version
7.14, which is the Mersenne twister algorithm mt19937ar (c.f. Matsumoto & Nishimura,
1998) described at
http://www.math.sci.hiroshima-u.ac.jp/∼m-mat/MT/emt.html .

E.2 Canonical weight matrices

The weight matrices w used in Section 6 of the main text are built from a canonical matrix
y. The m× n canonical matrix y is constructed as follows:

yij =
R((j − 1)m+ i)

231 − 1
(i = 1, . . . ,m; j = 1, . . . , n),

where R(0) = 1 and

R(k) = 75R(k − 1) mod (231 − 1) (k = 1, . . . ,mn).

The sequence R(1), R(2), . . . is a simple, well-known multiplicative congruential pseudo-
random number generator, known as MINSTD, for the discrete uniform distribution over
{1, . . . , 231 − 2} (Park & Miller, 1988). It was the default pseudorandom number generator
in Matlab for many years and is fine for our purpose of creating a matrix y with independent
uniform(0, 1) entries whose values are easy to communicate to others.

E.3 The number of n× n two-regular binary matrices

Anand et al. (1966, Eq. (27)) give a simple recursive formula for the number of n × n
two-regular binary matrices, say Hn. Initialize H1 = 0, H2 = 1, H3 = 6, and then

Hk =
1

2
k(k − 1)2

(
(2k − 3)Hk−2 + (k − 2)2Hk−3

)
(k = 4, 5, . . . ).
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The exact value of H500 can be found in the appendix of this supplement. As noted in
Section 6 of the main text, our algorithm provides an extremely accurate approximation.

Chen et al. (2005) used their importance sampling algorithm to approximate H100 as
(2.96 ± 0.03)×10314 based on a sample size of 100. For comparison, using a sample of size
100 from our algorithm gives an approximation of (2.969± 0.001)×10314, which appears to
be almost 1000 times more efficient for the purposes of approximate enumeration. The true
value is 2.9692 . . .×10314. The full number can be found in the appendix of this supplement.
We should also note that the importance sampling approximations are much more accurate
than the combinatorial approximations upon which the importance sampling algorithm is
based. For instance, using the approximation Ñ from Section 4.2 of the main text gives
2.957×10314.

E.4 Approximating α-permanents

Here we report comparisons between using our algorithm for approximating α-permanents
and using the custom importance sampling algorithm of Kou & McCullagh (2009). We
thank Sam Kou for sharing his code with us. The α-permanent of w can be expressed as

perα(w) = κE(αcyc(Z)),

where Z has distribution P ∗ with the same w and all row and column sums equal to
one; see equation (3) in the main text. We approximate it using the consistent, unbiased
approximation

p̂erα,T (w) = κ̂T µ̂T =
1

T

T∑

t=1

f(Zt)h(Z t)

for h(z) = αcyc(z); see Section 5.2 and equation (17) in the main text.
The Kou & McCullagh algorithm does not attempt to generate Z from a distribution

that is close to P ∗, like ours does, but rather from a distribution proportional to h(z)P ∗(z).
In the case where α = 1 so that h ≡ 1, the two approaches agree and the empirical results
are quite similar. But when α 6= 1, their algorithm is generally better, because is it tailored
for the choice of α. Nevertheless, our algorithm might be useful in cases where perα(w) is
needed for many α simultaneously, or in cases where α is very close to one.

Supplementary Table 3 reports p̂erα,T (w) along with approximate standard errors de-

fined as σ̂T /
√
T , where

σ̂2
T =

1

T − 1

T∑

t=1

(
f(Zt)h(Zt)− κ̂T µ̂T

)2
.

It also reports an approximate relative standard error defined as

r̂elT =
σ̂T /
√
T

κ̂T µ̂T

× 100%.

We use T = 1000 for the examples with n = 500 to match Table 1 in the main text.
The other w are taken from Kou & McCullagh (2009) and we use T = 20000 to facilitate
comparison with their results. In some cases the true value of perα(w) is known and this
is shown in the final column of the table; see the supplementary appendix. Except for the
n = 500 examples and the results from our algorithm, the entries of Supplementary Table
3 come directly from Table 1 in Kou & McCullagh (2009).
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Table 3: Approximating α-permanents
parameters our algorithm Kou & McCullagh true value

w n α p̂erα,T (w) r̂elT% p̂erα,T (w) r̂elT% perα(w)
I 500 1 (1.220± 0.000)×101134 0.00 (1.220± 0.000)×101134 0.00 1.220×101134
II 500 1 (1.437± 0.001)×101222 0.08 (1.441± 0.001)×101222 0.08 ?
III 500 1 (3.998± 0.028)×10983 0.69 (3.975± 0.033)×10983 0.82 ?
IV 500 1 (3.523± 0.056)×101133 1.60 (3.546± 0.066)×101133 1.85 ?
I 500 1/2 (2.963± 0.167)×101132 5.62 (3.078± 0.000)×101132 0.00 3.078×101132
II 500 1/2 (3.296± 0.174)×101220 5.28 (3.662± 0.012)×101220 0.32 ?
III 500 1/2 (8.889± 0.459)×10981 5.16 (1.021± 0.012)×10982 1.21 ?
IV 500 1/2 (9.759± 0.650)×101131 6.66 (9.228± 0.228)×101131 2.47 ?
A1 20 1 (9.800± 0.008)×1032 0.08 (9.787± 0.014)×1032 0.14 9.784×1032
A2 20 1 (3.513± 0.004)×1032 0.10 (3.506± 0.007)×1032 0.21 3.514×1032
A3 15 1/2 (1.456± 0.009)×1022 0.60 (1.437± 0.003)×1022 0.22 1.439×1022
A4 15 1/2 (7.049± 0.044)×1021 0.63 (7.043± 0.022)×1021 0.32 7.034×1021
A5 20 1 (3.290± 0.003)×1049 0.09 (3.294± 0.012)×1049 0.38 3.290×1049
A6 20 1 (5.928± 0.024)×1040 0.40 (5.782± 0.103)×1040 1.72 5.946×1040
A7 15 1/2 (2.069± 0.013)×1031 0.63 (2.092± 0.008)×1031 0.37 2.095×1031
A8 15 1/2 (1.579± 0.020)×1025 1.27 (1.549± 0.027)×1025 1.68 1.579×1025

K(x)9 9 1/2 (4.524± 0.036)×100 0.79 (4.504± 0.020)×100 0.43 4.505×100
K(x)11 11 1/2 (1.634± 0.014)×102 0.86 (1.622± 0.009)×102 0.56 1.623×102
K(x)13 13 1/2 (5.815± 0.050)×103 0.86 (5.844± 0.026)×103 0.45 5.816×103
K(x)15 15 1/2 (2.134± 0.019)×105 0.89 (2.117± 0.011)×105 0.53 2.114×105
K(x)Tr

100
100 1/2 (1.876± 0.118)×10−16 6.28 (1.928± 0.037)×10−16 1.90 1.911×10−16

E.5 Additional numerical illustrations for the uniform distribution

Our original interest in these problems was motivated by the uniform distribution over Ω∗

and we have a variety of simulations investigating this special case. This section is largely
reproduced from one of our 2009 unpublished preprints, arXiv:0906.1004v1, which focused
on comparing different combinatorial approximations and was the basis for our emphasis on
the Canfield et al. (2008) approximation in the main text. The simulations from this section
were carried out in 2009 on a MacBook laptop with 2 GB of RAM and a 2.16 GHz dual
core processor using Matlab. Everything in this section refers to the uniform distribution
with w ≡ 1.

Supplementary Table 4 details the speed of the algorithm on 1000×1000 binary matrices
with all row and column sums identical. These run-times are merely meant to provide a
feel for how the algorithm behaves — no attempt was made to control the other processes
operating simultaneously on the laptop. Presumably a careful C or assembly language
implementation would run much faster. The observed runtime scales closely with the com-
putational complexity of O(md). So, for example, 100 × 100 r1-regular matrices can be
sampled about 100 times faster than 1000× 1000 r1-regular matrices, and 10× 10 matrices
can be sampled about 10000 times faster.

Table 4: Sampling time per 1000 × 1000 r1-regular matrix
r1 2 4 8 16 32 64 128 256 512

time (s) 1.2 1.6 2.4 4.0 6.7 12.4 24.4 39.2 46.6

Supplementary Table 5 reports diagnostics on these examples using T = 1000. We
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note that the true number of 1000 × 1000 two-regular matrices is 1.75147 · · · ×105133; see
Supplementary Section E.3. The approximation from the first row of Supplementary Table
5 is quite accurate.

Table 5: Performance for the uniform distribution over 1000 × 1000 r1-regular binary ma-
trices

r1 ∆̂T ĉv
2

T κ̂T

2 0.049 4.2×10−6 (1.75148± 0.00011)× 105133

4 0.075 6.4×10−6 (7.64296± 0.00061)× 109910

8 0.041 2.1×10−6 (1.01879± 0.00005)× 1018531

16 0.008 3.9×10−7 (2.31580± 0.00005)× 1033629

32 0.005 2.3×10−7 (6.50167± 0.00010)× 1059218

64 0.004 2.2×10−7 (1.22048± 0.00002)× 10100716

128 0.004 1.8×10−7 (9.38861± 0.00013)× 10163302

256 0.004 2.2×10−7 (6.70630± 0.00010)× 10243964

512 0.004 2.2×10−7 (5.02208± 0.00007)× 10297711

Bezáková et al. (2006) investigates the performance of the Chen et al. (2005) algorithm
on pathological margins with very large r1 and c1, but with all other row and column sums
exactly 1. They prove that the Chen et al. (2005) proposal distribution is extremely far
from uniform for such margins, too far for importance sampling to be practical. It seems
likely that our Q∗ suffers from the same problem, because of the similarities between the
combinatorial approximations in each approach. The empirical performance of the Q∗ from
the main text is quite bad in these cases; see below. On the other hand, it is straightforward
to show that using the combinatorial approximations in Supplementary Section C gives
Q∗ = P ∗ for these types of margins.

Following Bezáková et al. (2006), we experiment with the margins rt = (240, 1, . . . , 1)
and c = (179, 1, . . . , 1) for a 240× 301 matrix. By conditioning on the entry in the first row
and the first column and then using symmetry, one can see that

Nm,n(r, c) =

(
300

240

)(
239

179

)
60! +

(
300

239

)(
239

178

)
61! = 9.6843 . . .×10205.

Generating a single observation takes about 0.077 s. Using T = 105 gives ∆̂T = 4.1×1011,
ĉv

2
T = 1.7×103, and κ̂T = (2.2 ± 0.3)×10205, which is quite bad and highly misleading:

approximate 95% confidence intervals created by doubling the standard errors would not
come close to covering the true value of κ. Alternatively, using the algorithm with ui from
Supplementary Section C gives ∆̂T = ĉv

2 = 0 and κ̂T = κ = 9.6843 · · · ×10205, since
Q∗ = P ∗ in this case. In most practical examples, however, the algorithm presented in the
main text is superior.

Finally, consider Darwin’s finch data (c.f. Chen et al., 2005) which is a 13×17 occurrence
matrix with rt = (14, 13, 14, 10, 12, 2, 10, 1, 10, 11, 6, 2, 17) and c = (4, 4, 11, 10, 10, 8, 9, 10, 8, 9,
3, 10, 4, 7, 9, 3, 3). A single sample takes about 0.001 s. With T = 106, we find ∆̂T = 2.8×103
and ĉv

2
T = 0.44 with κ̂T = (6.722±0.004)×1016. Chen et al. (2005) report the true value of

κ = 67149106137567626, and they also report a ĉv
2
T of “around one” for their algorithm

on this problem. Generally speaking, these importance sampling algorithms tend to be less
uniform for small irregular problems like this one, than for the larger and/or more regular
examples above.
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The previous experiments are based primarily on the internal diagnostics of samples from
the proposal distribution Q∗. Other than the asymptotic analysis in Blanchet (2009) con-
cerning approximate enumeration using a variation of the algorithm of Chen et al. (2005),
there are no external checks on the uniformity of Q∗. Using a complicated, high dimen-
sional proposal distribution without external checks can be dangerous. Indeed, consider the
following worst-case scenario. Suppose that Ω∗ = E ∪ Ec, where E is much smaller than
Ec, and suppose that Q∗ is uniform over each of E and Ec, but far from uniform over Ω∗,
namely,

Q∗(z) =
1− ǫ

|E| 1{z ∈ E}+ ǫ

|Ec|1{z ∈ Ec} (|E|/|Ec| ≪ ǫ≪ 1).

If ǫ is extremely tiny, say ǫ = 10−100, then Monte Carlo samples from Q∗ will, practically
speaking, always lie in E, which itself is a tiny fraction of Ω∗. Furthermore, all internal
diagnostics will report that Q∗ is exactly uniform, since it is uniform over E. But, of
course, statistical inferences based on samples from Q∗ will tend to be completely wrong.
This section describes two types of experiments designed to provide external checks on the
uniformity of Q∗.

For the first set of experiments we generate a binary matrix Z from the uniform dis-
tribution over all binary matrices with row sums r. This is easy to do by independently
and uniformly choosing each row of Z from one of the

(
n
ri

)
possible configurations. Since

the conditional distribution of Z given its columns sums C is uniform over Ω∗
m,n(r,C),

we can view Z as a single observation from the uniform distribution over Ω∗
m,n(r,C). Of

course, there is no practical way to uniformly and independently generate another such
Z with the same C. Notice that the importance weight f(Z) gives external information
about the uniformity of Q∗ for these margins, since it gives the value of 1/Q∗ at a uniformly
chosen location in Ω∗

m,n(r,C). Indeed, in the pathological thought experiment described
above, Z would almost certainly be in Ec and f(Z) would be substantially larger than
any of the importance weights. Alternatively, if Q∗ is nearly uniform, then f(Z) should be
indistinguishable from the other importance weights. In summary, we can compare Q∗ to
P ∗ by comparing the importance weights to f(Z). This observation can also be used to
give valid Monte Carlo p-values with importance sampling, even if the importance sampling
distribution is far from the target distribution (Harrison, 2012).

Each experiment of this type proceeds identically. We fix m, n, and r. Then we

generate L iid observations, say Z
(1)
0 , . . . ,Z

(L)
0 , from the uniform distribution over all m×n

binary matrices with row sums r. The column sums of these matrices are C(1), . . . ,C(L).

Then, for each ℓ = 1, . . . , L, we generate T iid observations, say Z
(ℓ)
1 , . . . ,Z

(ℓ)
T , from the

proposal distributionQ∗ over Ω∗
m,n(r,C

(ℓ)). We compute the ratio of maximum to minimum
importance weights including the original observation for each ℓ, namely,

∆̂
(ℓ)
T =

maxt=0,...,T f(Z
(ℓ)
t )

mint=0,...,T f(Z
(ℓ)
t )
− 1,

and we report the final summary ∆̂max
T = maxℓ=1,...,L ∆̂

(ℓ)
T . If ∆̂max

T is close to zero, then this

provides evidence that Q∗ is approximately uniform over a large part of each Ω∗
m,n(r,C

(ℓ)).
We begin with 1000 × 1000 matrices with regular row sums r1 = · · · = rm, but the

column sums will not be regular, since they are generated randomly. We use L = 10 and
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T = 10 for the cases r1 = 2, 8, 32, finding ∆̂max
T = 0.0002, 0.0023, 0.0051, respectively. For

another example, take the row sums for the irregular 50× 100 case that was used for Table
2 in the main text and take k = 1, i.e., r = r̃. We use L = 100 and T = 1000 and find
that ∆̂max

T = 1.264. These preliminary experiments are encouraging, and suggest that Q∗

is indeed a good approximation of uniform P ∗ in many cases.
For the second type of experiment, we try to design an extreme z′ ∈ Ω∗ and compare

the importance weights to f(z′). Again, if Q∗ is approximately uniform over all of Ω∗ then
f(z′) should be indistinguishable from the other importance weights. For these experiments
we report

∆̂′
T =

max {f(z′), f(Z1), . . . , f(ZT )}
min {f(z′), f(Z1), . . . , f(ZT )}

− 1,

which should be close to zero if the region in Ω∗ where Q∗ is approximately uniform includes
z′.

Consider the regular case where m = n = 1000 and r1 = ri = cj for all i, j. Suppose
that r1 evenly divides 1000 and let z′ be comprised only of disjoint r1×r1 blocks of ones. In
particular, take z′

ij = 1 for (k−1)r1+1 ≤ i, j ≤ kr1 and for k = 1, . . . , 1000/r1. For the cases
r1 = 2, 4, 8 we compute f(z′) and compare it to the data that generated the corresponding
parts of table 5, obtaining ∆̂′

T = 0.741, 26.24, 6.25×104, respectively. Clearly, Q∗ is not
a uniformly accurate approximation of P ∗ over all of Ω∗ and is unlikely to be useful as a
proposal distribution for rejection sampling to get exact samples from P ∗. Nevertheless, Q∗

seems to be extremely well-suited as a proposal distribution for importance sampling. For
another example, consider the irregular 50× 100 case that was used for Table 2 in the main
text and take k = 1, i.e., r = r̃ and c = c̃. We construct a pathological z′ as follows. Place
c1 ones in the last c1 rows, corresponding to the smallest row sums, of the first column.
Place c2 ones in the last available c2 rows of the second column, where a row is available
if placing a one in that row will not exceed the row sum for that row. Continue in this
manner until all the columns are assigned or until a column cannot be assigned successfully.
In general, this procedure is not guaranteed to terminate successfully, but it does for this
choice of margins. The resulting z′ is unusual because rows and columns with large sums
tend to have zeros at the intersecting entry. Using the data from the corresponding part of
Table 2 in the main text gives ∆̂′

T = 14.37.

Supplementary Appendix

The number of 100× 100 two-regular binary matrices

2969298425 4879211020 5463258948 9046531125 6932010720 0899043082 6661472985 5602957737
5386603250 7914169840 3947972542 0803105057 9494091210 8196163985 3132939771 8223074880
1582489734 4113002630 0345104451 5505567811 8301236764 6670284335 5753266570 2919415207
2361422613 1731302283 4023510256 2089359423 4174989926 4000000000 0000000000 00000
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The number of 500× 500 two-regular binary matrices

2276586004 3872645654 7163822917 6140246378 6529219189 6007058852 1885701633 9308224336
7024859918 5873168947 8428993358 7710991052 6831024823 1020957186 1359882527 3634597638
7751901014 9459428637 5300752209 6236400145 2272455600 2450498447 6886449802 2657577100
8803085437 1426603063 9060350752 5676829379 2441654640 4384402364 9178512515 5701834312
5382285704 7911170936 9213162976 1124369611 0263144354 2492660647 6317501009 4702298551
3783877264 5366936440 0850289755 0247749665 4582496735 4778933695 9359401807 4728987947
4052084791 8351006525 6516882276 6819426986 4276522770 8754690714 8153703130 7689579335
5313886817 9879619523 6757312609 9563935644 5860973860 5720751902 8525628015 1655464790
3607836217 2202522127 9381851238 5339132917 8663772909 4697618230 9562268584 1389355037
4200343275 4426328049 4429348983 4734923700 0635594018 1200043308 9996436581 2082429967
1420144526 3238392163 0625410465 1147246306 0267066287 2838455102 1984436331 4795820153
4878729606 4682614593 4828351763 2549610945 2823414530 6966187549 3636469942 1582542169
0511243887 9654470644 8952801709 4100687806 1803581920 0502635810 6084543151 8196763100
9226192052 8186323173 8128828855 7307283447 5486503911 0996089630 7969624574 8668199425
1430690842 9240854111 3288457886 5068062328 1130147009 2410850737 0194640624 5215023611
0105313331 5631006370 7547904555 8541951209 3762970404 4299114208 6898539174 1261578007
5271576323 7806458898 5197173413 2333790169 8450503603 6175432120 4646913329 9283772618
0789892314 7885014128 9831206980 1470933069 2885920165 3886059912 3547627990 2473766270
0084914243 1261925800 3966112818 5515090740 2869173796 5265773700 6653705150 0776999823
6682749949 6649629337 6729065663 7740220752 0069908832 1026134189 8109544591 4141299020
9944691129 8101632276 5735759559 3131678694 4342947732 7389063830 1146871076 6098180223
5086650691 0193318778 3650834389 5788540935 3233656140 3425148468 8948999361 5539721393
2767810044 6245991329 5809908199 9005968612 6446584189 0334076925 7082772956 3377889631
0446650398 8183375905 5124117054 7434261832 8900372657 5745038153 2952534928 4112016395
9467531245 7165626500 2517876951 1088955612 4288697963 9375087520 6487400471 4382991165
8206541306 8546637026 9648941941 8803223917 8589969888 6361729999 1147924387 2385375087
0828596942 2197021633 2700563010 0820849326 1167561772 1388697124 8640000000 0000000000
0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000
0000000000 0000000000 0000000

Exactly computing the α-permanent of a constant matrix

If π = (π1, . . . , πn) is a permutation chosen uniformly at random and C is the number of disjoint
cycles in π, then C has the same distribution as B1 + · · · + Bn, where each Bi is independent
Bernoulli(1/i) (Durrett, 2010, Lemma 2.2.5). If w is an n× n constant matrix with common entry
b, then

perα(w) = n!bn E(αC) = n!bn
n∏

i=1

E(αBi) = n!bn
n∏

i=1

(α
i
+
(
1− 1

i

))
= n!bn

n∏

i=1

i+ α− 1

i
.

We used this formula with n = 500 and b = 1 to get the true value of perα(w) for w in class I in
Supplementary Table 3.

Matlab implementation of the algorithm

This is a place-holder for cleaner, shorter code that will be inserted prior to publication. Software
will also be available on the author’s website.

function [logQ,logP,alist] = BernoulliMarginsRnd(SampN,rN,cN,wN,pflag,wflag,cflag,bIN)

%function [logQ,logP,alist] = BernoulliMarginsRnd(N,r,c,w,pflag,wflag,cflag,Binput)

%

% Approximate sampling from independent Bernoulli random variables B(i,j)

% arranged as an m x n matrix B given the m-vector of row sums r and the
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% n-vector of column sums c, i.e., given that sum(B,2)=r and sum(B,1)=c.

%

% An error is generated if no binary matrix agrees with r and c.

%

% B(i,j) is Bernoulli(p(i,j)) where p(i,j)=w(i,j)/(1+w(i,j)), i.e.,

% w(i,j)=p(i,j)/(1-p(i,j)). [The case p(i,j)=1 must be handled by the user

% in a preprocessing step, by converting to p(i,j)=0 and decrementing the

% row and column sums appropriately.]

%

% Use w=[] for w identically 1, i.e., approximate uniform sampling over

% binary matrices with margins r and c.

%

% N is the sample size. Because of pre-processing, it is more efficient

% per matrix to use larger sample sizes.

%

% alist stores the locations of the ones in the samples.

% If d = sum(r) = sum(c), then alist is 2 x d x N.

%

% The 1-entries of the kth matrix are stored as alist(:,:,k). The

% (row,column) indices are (alist(1,t,k),alist(2,t,k)) for t=1:d.

%

% If B is the kth matrix, then B can be created from alist via:

%

% B = false(m,n); for t = 1:size(alist,2), B(alist(1,t,k),alist(2,t,k)) = true; end

%

% logQ(k)=log(probability that algorithm generates B)

% logP(k)=log(prod(w(B)))

%

% If the algorithm is used for importance sampling, then the kth

% unnormalized importance weight is exp(logP(k)-logQ(k)).

%

% NOTE for w(i,j)=0:

%

% If the entries of w are not strictly positive, then the algorithm can

% sometimes generate matrices with logP(k)=-inf. In these cases, some of

% the entries of alist(:,:,k) may be zero and logQ(k) corresponds to the

% probability of generating that particular alist(:,:,k).

%

% OPTIONS:

%

% pflag: ’canfield’ or ’’ (default, works best in most cases)

% ’greenhill’ (perhaps useful for sparse and highly irregular margins)

% pflag controls which combinatorial approximations are used

%

% wflag: ’sinkhorn’ or ’’ (default)

% wflag controls the initial balancing of w; it is passed to canonical.m

%

% cflag: ’descend’ or ’’ (default)

% ’none’ (sample columns in original order)

% cflag controls the order in which the columns are sampled

%

% Binput is a m x n binary matrix. If it is provided, then the algorithm

% computes the probability of generating this matrix.

if nargin < 8 || isempty(bIN)

doIN = false;

else

doIN = true;

end

if nargin < 7 || isempty(cflag)

cflag = ’descend’;

end

if nargin < 6 || isempty(wflag)

wflag = ’sinkhorn’;

end

if nargin < 5 || isempty(pflag)

pflag = ’canfield’;

end

if nargin < 4

wN = [];

end

doW = true;

if isempty(wN), doW = false; end

doA = true;

if nargout < 2, doA = false; end

if ~isscalar(SampN) || SampN < 1 || SampN ~= round(SampN), error(’SampN must be a positive integer’), end

ptype = 0;

switch lower(pflag)

case ’canfield’

ptype = 1;

case ’greenhill’

ptype = 2;

otherwise

error(’unknown pflag’)

end
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%------------------------------------------------------%

%--------------- START: PREPROCESSING -----------------%

%------------------------------------------------------%

% sizing

mT = numel(rN);

nT = numel(cN);

% sort the marginals (descending)

rT = rN(:);

[rsort,rndxT] = sort(rT,’descend’);

if doW

% balance the weights

[~,~,wopt] = canonical(wN,wflag);

% reorder the columns

switch lower(cflag)

case ’none’

cndx = 1:nT;

case ’descend’

[~,cndx] = sortrows(-[cN(:) var(wopt,0,1).’]);

otherwise

error(’unknown cflag’)

end

csort = cN(cndx);

wopt = wopt(:,cndx);

% precompute log weights

logw = log(wN);

% ----------------------------------------------------

% precompute G

logwopt = log(wopt);

rmax = max(rT);

G = -inf(rmax+1,mT,nT-1);

G(1,:,:) = 0;

G(2,:,nT-1) = logwopt(:,nT);

for i = 1:mT

ri = rT(i);

for j = nT-1:-1:2

wij = logwopt(i,j);

for k = 2:ri+1

b = G(k-1,i,j)+wij;

a = G(k,i,j);

if a > -inf || b > -inf

if a > b

G(k,i,j-1) = a + log(1+exp(b-a));

else

G(k,i,j-1) = b + log(1+exp(a-b));

end

end

end

end

for j = 1:nT-1

for k = 1:rmax

Gknum = G(k,i,j);

Gkden = G(k+1,i,j);

if isinf(Gkden)

G(k,i,j) = -1;

else

G(k,i,j) = wopt(i,j)*exp(Gknum-Gkden)*((nT-j-k+1)/k);

end

end

if isinf(Gkden)

G(rmax+1,i,j) = -1;

end

end

end

% ----------------------------------------------------

else

switch lower(cflag)

case ’none’

cndx = 1:numel(cN);

case ’descend’

[csort,cndx] = sort(cN(:),’descend’);

otherwise

error(’unknown cflag’)

end

end

% generate the inverse index for the row orders to facilitate fast

% sorting during the updating

irndxT = (1:mT).’; irndxT(rndxT) = irndxT;

% basic input checking

if rsort(1) > nT || rsort(mT) < 0 || csort(1) > mT || csort(nT) < 0 || any(rsort ~= round(rsort)) || any(csort ~= round(csort))

error(’marginal entries invalid’)
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end

% compute the conjugate of c

cconjT = conjugate_local(csort,mT);

% get the running total of number of ones to assign

countT = sum(rsort);

% get the running total of sum of c squared

ccount2T = sum(csort.^2);

% get the running total of (2 times the) column marginals choose 2

ccount2cT = sum(csort.*(csort-1));

% get the running total of (6 times the) column marginals choose 3

ccount3cT = sum(csort.*(csort-1).*(csort-2));

% get the running total of sum of r squared

rcount2T = sum(rsort.^2);

% get the running total of (2 times the) row marginals choose 2

rcount2cT = sum(rsort.*(rsort-1));

% get the running total of (6 times the) row marginals choose 3

rcount3cT = sum(rsort.*(rsort-1).*(rsort-2));

% check for compatible marginals

if countT ~= sum(csort) || any(cumsum(rsort) > cumsum(cconjT)), error(’marginal sums invalid’), end

% initialize the memory

logQ = zeros(SampN,1);

logP = zeros(SampN,1);

if doA, AN = SampN; else AN = 1; end

alist = zeros(2,countT,AN);

% initialize the memory

M = csort(1)+3; % index 1 corresponds to -1; index 2 corresponds to 0, index 3 corresponds to 1, ..., index M corresponds to c(1)+1

S = zeros(M,nT);

SS = zeros(M,1);

eps0 = eps(0); % used to prevent divide by zero

%------------------------------------------------------%

%--------------- END: PREPROCESSING -------------------%

%------------------------------------------------------%

% loop over the number of samples

for SampLoop = 1:SampN

%--------------- INITIALIZATION -----------------------%

if doA, ALoop = SampLoop; else ALoop = 1; end

% copy in initialization

r = rT;

rndx = rndxT;

irndx = irndxT;

cconj = cconjT;

count = countT;

ccount2 = ccount2T;

ccount2c = ccount2cT;

ccount3c = ccount3cT;

rcount2 = rcount2T;

rcount2c = rcount2cT;

rcount3c = rcount3cT;

m = mT;

n = nT;

% initialize

place = 0; % most recent assigned column in alist

logq = 0; % running log probability

logp = 0;

%------------------------------------------------------%

%--------------- START: COLUMN-WISE SAMPLING ----------%

%------------------------------------------------------%

%-------- loop over columns ------------%

for c1 = 1:nT

%-----------------------------------------------------------------%

%------------- START: SAMPLE THE NEXT "COLUMN" -------------------%

%-----------------------------------------------------------------%

% remember the starting point for this columns

placestart = place + 1;

%--------------------------------

% sample a col

%--------------------------------

label = cndx(c1); % current column label

colval = csort(c1); % current column value
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if colval == 0 || count == 0, break, end

% update the conjugate

for i = 1:colval

cconj(i) = cconj(i)-1;

end

% update the number of columns remaining

n = n - 1;

%------------ DP initialization -----------

smin = colval;

smax = colval;

cumsums = count;

% update the count

count = count - colval;

% update running total of sum of c squared

ccount2 = ccount2 - colval^2;

% update the remaining (two times the) sum of column sums choose 2

ccount2c = ccount2c - colval*(colval-1);

% update the remaining (six times the) sum of column sums choose 3

ccount3c = ccount3c - colval*(colval-1)*(colval-2);

cumconj = count;

SS(colval+3) = 0;

SS(colval+2) = 1;

SS(colval+1) = 0;

% get the constants for computing the probabilities

% it is faster to compute them all, than to check pflag

d = ccount2c/count^2;

if (count == 0) || (m*n == count)

weightA = 0;

else

weightA = m*n/(count*(m*n-count));

weightA = weightA*(1-weightA*(ccount2-count^2/n))/2;

end

d2 = ccount2c/(2*count^2+eps0) + ccount2c/(2*count^3+eps0) + ccount2c^2/(4*count^4+eps0);

d3 = -ccount3c/(3*count^3+eps0) + ccount2c^2/(2*count^4+eps0);

d22 = ccount2c/(4*count^4+eps0) + ccount3c/(2*count^4+eps0) - ccount2c^2/(2*count^5+eps0);

%----------- dynamic programming ----------

SSS = 0;

% loop over (remaining and sorted descending) rows in reverse

for i = m:-1:1

% get the value of this row and use it to compute the

% probability of a 1 for this row/column pair

rlabel = rndx(i);

val = r(rlabel);

if ptype == 1

% canfield

p = val*exp(weightA*(1-2*(val-count/m)));

p = p./(n+1-val+p);

q = 1-p;

elseif ptype == 2

% greenhill

q = 1/(1+val*exp((2*d2+3*d3*(val-2)+4*d22*(rcount2c-val+1))*(val-1)));

p = 1-q;

else

% never get here

p = 0; q = 0; % helps compiler

end

% incorporate weights

if doW && n > 0 && val > 0

Gk = G(val,rlabel,c1);

if Gk < 0

q = 0;

else

p = p*Gk;

end

end

% update the feasibility constraints

cumsums = cumsums - val;

cumconj = cumconj - cconj(i);

sminold = smin;

smaxold = smax;

% incorporate the feasibility constraints into bounds on the

% running column sum

smin = max(0,max(cumsums-cumconj,sminold-1));

smax = min(smaxold,i-1);

% DP iteration

SSS = 0;
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SS(smin+1) = 0; % no need to set S(1:smin) = 0, since it is not accessed

for j = smin+2:smax+2

a = SS(j)*q;

b = SS(j+1)*p;

apb = a + b;

SSS = SSS + apb;

SS(j) = apb;

S(j,i) = b/(apb+eps0);

end

SS(smax+3) = 0; % no need to set S(smax+4:end) = 0, since it is not accessed

% check for impossible

if SSS <= 0, break, end

% normalize to prevent overflow/underflow

for j = smin+2:smax+2

SS(j) = SS(j) / SSS;

end

end

% check for impossible

if SSS <= 0, logp = -inf; break, end

%----------- sampling ----------

j = 2; % running total (offset to match indexing offset)

jmax = colval + 2;

if j < jmax % skip assigning anything when colval == 0

if doIN

for i = 1:m

% get the transition probability of generating a one

p = S(j,i);

% get the current row

rlabel = rndx(i);

if bIN(rlabel,label)

% if we have a generated a one, then decrement the current

% row total

val = r(rlabel);

r(rlabel) = val-1;

rcount2 = rcount2 - 2*val + 1;

rcount2c = rcount2c - 2*val + 2;

rcount3c = rcount3c - 3*(val-1)*(val-2);

% record the entry and update the log probability

place = place + 1;

logq = logq + log(p);

if doW, logp = logp + logw(rlabel,label); end

alist(1,place,ALoop) = rlabel;

alist(2,place,ALoop) = label;

j = j + 1;

% the next test is not necessary, but seems more efficient

% since all the remaining p’s must be 0

if j == jmax, break, end

else

logq = logq + log(1-p);

end

end

else

for i = 1:m

% get the transition probability of generating a one

p = S(j,i);

if rand <= p

% if we have a generated a one, then decrement the current row total

rlabel = rndx(i);

val = r(rlabel);

r(rlabel) = val-1;

rcount2 = rcount2 - 2*val + 1;

rcount2c = rcount2c - 2*val + 2;

rcount3c = rcount3c - 3*(val-1)*(val-2);

% record the entry and update the log probability

place = place + 1;

logq = logq + log(p);

if doW, logp = logp + logw(rlabel,label); end

alist(1,place,ALoop) = rlabel;

alist(2,place,ALoop) = label;

j = j + 1;

% the next test is not necessary, but seems more efficient

% since all the remaining p’s must be 0

if j == jmax, break, end

else

logq = logq + log(1-p);

end

end

end
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end

%-----------------------------------------------------------------%

%------------- END: SAMPLE THE NEXT "COLUMN" ---------------------%

%-----------------------------------------------------------------%

if count == 0, break, end

%-----------------------------------------------

% everything is updated except the sorting

%-----------------------------------------------

%-----------------------------------------------------------------%

%------------- START: RESORT THE NEW ROW SUMS --------------------%

%-----------------------------------------------------------------%

% re-sort the assigned rows

% this code block takes each row that was assigned to the list

% and either leaves it in place or swaps it with the last row

% that matches its value; this leaves the rows sorted (descending)

% since each row was decremented by only 1

% looping in reverse ensures that least rows are swapped first

for j = place:-1:placestart

% get the row label and its new value (old value -1)

k = alist(1,j,ALoop);

val = r(k);

% find its entry in the sorting index

irndxk = irndx(k);

% look to see if the list is still sorted

irndxk1 = irndxk + 1;

if irndxk1 > m || r(rndx(irndxk1)) <= val

% no need to re-sort

continue;

end

% find the first place where k can be inserted

irndxk1 = irndxk1 + 1;

while irndxk1 <= m && r(rndx(irndxk1)) > val

irndxk1 = irndxk1 + 1;

end

irndxk1 = irndxk1 - 1;

% now swap irndxk and irndxk1

rndxk1 = rndx(irndxk1);

rndx(irndxk) = rndxk1;

rndx(irndxk1) = k;

irndx(k) = irndxk1;

irndx(rndxk1) = irndxk;

end

%-----------------------------------------------------------------%

%------------- END: RESORT THE NEW ROW SUMS ----------------------%

%-----------------------------------------------------------------%

% r(rndx(rndx1:rndxm)) is sorted descending and has exactly those

% unassigned rows

% rndx(rndx1:rndxm) still gives the labels of those rows

% rndx(irndx(k)) = k

%

% c(c1+1:cn) is sorted descending and has exactly those unassigned columns

% cndx(c1+1:cn) still gives the labels of those columns

%

% m, n, count, ccount2, ccount2c are valid for the remaining rows, cols

end

logQ(SampLoop) = logq;

logP(SampLoop) = logp;

end

%-------------------------------------------------------------------------%

%-------------------------------------------------------------------------%

%-------------------------------------------------------------------------%

%------------------ END OF MAIN FUNCTION ---------------------------------%

%-------------------------------------------------------------------------%

%-------------------------------------------------------------------------%

%-------------------------------------------------------------------------%

% helper function (just to keep everything together... not for efficiency,

% since it is only called once)

function cc = conjugate_local(c,n)

% function cc = conjugate(c,n)

%

% let c(:) be nonnegative integers

% cc(k) = sum(c >== k) for k = 1:n

cc = zeros(n,1);
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%c = min(c,n);

for j = 1:numel(c)

k = c(j);

if k >= n

cc(n) = cc(n) + 1;

elseif k >= 1

cc(k) = cc(k) + 1;

end

end

s = cc(n);

for j = n-1:-1:1

s = s + cc(j);

cc(j) = s;

end

%-----------------------------------

function [a,b,abw,k] = canonical(w,flag,tol,maxiter,r,c)

[m,n] = size(w);

if nargin <6 || isempty(c)

c = ones(1,n);

elseif size(c,1) ~= 1

c = c(:).’;

end

if nargin <5 || isempty(r)

r = ones(m,1);

elseif size(r,2) ~= 1

r = r(:);

end

if nargin <4 || isempty(maxiter)

maxiter = 10^5;

end

if nargin <3 || isempty(tol)

tol = 1e-8;

end

if nargin <2 || isempty(flag)

flag = ’sinkhorn’;

end

switch lower(flag)

case ’sinkhorn’

M = sum(w>0,1); N = sum(w>0,2);

a = N./sum(w,2); a = a/mean(a);

b = M./sum(bsxfun(@times,a,w),1);

if tol >= 0, a0 = a; b0 = b; end

k = 0;

tolcheck = inf;

while k < maxiter && tolcheck > tol

k = k + 1;

a = N./sum(bsxfun(@times,b,w),2); a = a/mean(a);

b = M./sum(bsxfun(@times,a,w),1);

if tol >= 0

tolcheck = sum(abs(a-a0))+sum(abs(b-b0));

a0 = a; b0 = b;

end

end

case ’sinkhorn-col’

w = fliplr(w);

M = sum(w>0,1); N = cumsum(w>0,2);

aa = N./cumsum(w,2);

b = M./sum(w.*aa,1); b = b / mean(b);

a = aa(:,n);

if tol >= 0, a0 = a; b0 = b; end

k = 0;

tolcheck = inf;

while k < maxiter && tolcheck > tol

k = k + 1;

aa = N./cumsum(bsxfun(@times,b,w),2);

b = M./sum(w.*aa,1); b / mean(b);

a = aa(:,n);

if tol >= 0

tolcheck = sum(abs(a-a0))+sum(abs(b-b0));

a0 = a; b0 = b;
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end

end

w = fliplr(w);

b = fliplr(b);

case ’log’

w0 = w > 0;

M = sum(w0,1); N = sum(w0,2);

logw = log(w+~w0);

a = exp(-sum(logw,2)./N);

b = exp(-sum(logw,1)./M);

case ’entropy’

w1 = (w > 0)./max(w,eps(0));

a = sqrt(sum(w1,2)./sum(w,2)); a = a/mean(a);

b = sqrt(sum(bsxfun(@rdivide,w1,a),1)./sum(bsxfun(@times,a,w),1));

if tol >= 0, a0 = a; b0 = b; end

k = 0;

tolcheck = inf;

while k < maxiter && tolcheck > tol

k = k + 1;

a = sqrt(sum(bsxfun(@rdivide,w1,b),2)./sum(bsxfun(@times,b,w),2)); a = a/mean(a);

b = sqrt(sum(bsxfun(@rdivide,w1,a),1)./sum(bsxfun(@times,a,w),1));

if tol >= 0

tolcheck = sum(abs(a-a0))+sum(abs(b-b0));

a0 = a; b0 = b;

end

end

case ’l2’

w2 = w.^2;

a = sum(w,2)./sum(w2,2); a = a/mean(a);

b = sum(bsxfun(@times,a,w),1)./sum(bsxfun(@times,a.^2,w2),1);

if tol >= 0, a0 = a; b0 = b; end

k = 0;

tolcheck = inf;

while k < maxiter && tolcheck > tol

k = k + 1;

a = sum(bsxfun(@times,b,w),2)./sum(bsxfun(@times,b.^2,w2),2); a = a/mean(a);

b = sum(bsxfun(@times,a,w),1)./sum(bsxfun(@times,a.^2,w2),1);

if tol >= 0

tolcheck = sum(abs(a-a0))+sum(abs(b-b0));

a0 = a; b0 = b;

end

end

case ’l2p’

w2 = w.^2;

c = (1+w).^3;

a = sum(w./c,2)./sum(w2./c,2); a = a/mean(a);

c = (1+bsxfun(@times,a,w)).^3;

b = sum(bsxfun(@times,a,w)./c,1)./sum(bsxfun(@times,a.^2,w2)./c,1);

if tol >= 0, a0 = a; b0 = b; end

k = 0;

tolcheck = inf;

while k < maxiter && tolcheck > tol

k = k + 1;

c = (1+a*b.*w).^3;

a = sum(bsxfun(@times,b,w)./c,2)./sum(bsxfun(@times,b.^2,w2)./c,2); a = a/mean(a);

c = (1+a*b.*w).^3;

b = sum(bsxfun(@times,a,w)./c,1)./sum(bsxfun(@times,a.^2,w2)./c,1);

if tol >= 0

tolcheck = sum(abs(a-a0))+sum(abs(b-b0));

a0 = a; b0 = b;

end

end

case ’ratio’

wz = w > 0;

w(~wz) = eps(0);
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a = sqrt(sum(wz./w,2)./sum(w,2)); a = a/mean(a);

b = sqrt(sum(wz./(bsxfun(@times,a,w)),1)./sum(bsxfun(@times,a,w),1));

if tol >= 0, a0 = a; b0 = b; end

k = 0;

tolcheck = inf;

while k < maxiter && tolcheck > tol

k = k + 1;

a = sqrt(sum(wz./(bsxfun(@times,b,w)),2)./sum(bsxfun(@times,b,w),2)); a = a/mean(a);

b = sqrt(sum(wz./(bsxfun(@times,a,w)),1)./sum(bsxfun(@times,a,w),1));

if tol >= 0

tolcheck = sum(abs(a-a0))+sum(abs(b-b0));

a0 = a; b0 = b;

end

end

case ’barvinok’

s = log(r/n);

t = log(c/m);

M = w.*(exp(s)*exp(t));

M = M ./ (1+M);

sMr = sum(M,2)-r;

sMc = sum(M,1)-c;

tolcheck = sum(abs(sMr))+sum(abs(sMc));

alpha = .01;

while tolcheck > tol

s = s - alpha*sMr;

t = t - alpha*sMc;

M = w.*(exp(s)*exp(t));

M = M ./ (1+M);

sMr = sum(M,2)-r;

sMc = sum(M,1)-c;

tolcheck = sum(abs(sMr))+sum(abs(sMc));

end

a = exp(s);

b = exp(t);

otherwise

error(’unknown flag’)

end

if nargout > 2, abw = a*b.*w; end
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