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Summary
Goodness-of-fit (GoF) tests are a fundamental component of statistical practice, essential for

checking model assumptions and testing scientific hypotheses. Despite their widespread use,
popular GoF tests exhibit surprisingly low statistical power against substantial departures from
the null hypothesis. To address this, we introduce PITOS, a novel GoF test based on applying the
probability integral transform (PIT) to the 𝑗 th order statistic (OS) given the 𝑖th order statistic for
selected pairs 𝑖, 𝑗 . Under the null, for any pair 𝑖, 𝑗 , this yields a Uniform(0, 1) random variable,
which we map to a p-value via 𝑢 ↦→ 2 min(𝑢, 1 − 𝑢). We compute these p-values for a structured
collection of pairs 𝑖, 𝑗 generated via a discretized transformed Halton sequence, and aggregate
them using the Cauchy combination technique to obtain the PITOS p-value. Our method maintains
approximately valid Type I error control, has an efficient 𝑂 (𝑛 log 𝑛) runtime, and can be used
with any null distribution via the Rosenblatt transform. In empirical demonstrations, we find that
PITOS has much higher power than popular GoF tests on distributions characterized by local
departures from the null, while maintaining competitive power across all distributions tested.

Some key words: goodness-of-fit; hypothesis test; nonparametric test; test of normality; test of uniformity

1. Introduction
Goodness-of-fit (GoF) testing is a key part of the statistical toolkit, widely used for validating

modeling assumptions and testing scientific hypotheses. By design, GoF tests typically assess
the fit of observed data to a null distribution without requiring a pre-specified alternative. This
generality makes GoF tests very flexible, but also means that they are often applied with minimal
regard to the types of deviations from the null that might occur. As such, ideally a GoF test would
have high power to detect a wide range of deviations from the null (D’Agostino & Stephens, 1986;
Lehmann & Romano, 2005).

However, the most popular GoF tests often have surprisingly low statistical power, even on
distributions that are conspicuously different from the null. To illustrate, we compute the power of
four popular GoF tests on data from the six distributions shown in Figure 1, taking Uniform(0, 1)
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Fig. 1: Examples of data distributions on which popular GoF tests have low power. For each, the
true density is shown in red, and a histogram of one simulated data set is shown in blue.

Test Bump (Edges) Gap (Edges) Bump (Middle) Gap (Middle) Bump (Sides) Gap (Sides)
Anderson–Darling 0.843 0.529 0.387 0.205 0.392 0.256
Neyman–Barton 0.765 0.810 0.540 0.327 0.114 0.152
Kolmogorov–Smirnov 0.189 0.114 0.593 0.376 0.516 0.387
Cramér–von Mises 0.216 0.152 0.428 0.197 0.257 0.154
LRT (Oracle) 1.0 1.0 1.0 1.0 1.0 1.0

Table 1: Power of commonly used GoF tests on data from the distributions in Figure 1. We
approximate the power at the 𝛼 = 0.05 level by averaging over 100,000 simulated data sets with
a sample size of 𝑛 = 200. Red text indicates power ≤ 0.25.

to be the null hypothesis. Specifically, we consider the Anderson–Darling (AD), Neyman–Barton
(NB), Kolmogorov–Smirnov (KS), and Cramér–von Mises (CvM) tests; see Section S1.

In Table 1, we see that each of these tests exhibits low power on most of these distributions.
In particular, KS has very low power in the tails, AD has very low power around the median,
NB has very low power around the first and third quartiles, and CvM has very low power across
the board. This poor performance is not because these departures from the null are intrinsically
hard to detect. Indeed, power very close to 1 is obtained by an oracle benchmark based on the
likelihood ratio test (LRT) using the true distribution as the alternative hypothesis (Table 1); see
Section S1 for details.

We introduce a novel GoF test, referred to as the Probability Integral Transform of Order
Statistics (PITOS), that has high power in many cases where these popular tests fail and has
competitive power across all cases that we have explored. PITOS takes a sequence of pairs of
indices 𝑖, 𝑗 ∈ {1, . . . , 𝑛}, uses the conditional distribution of the order statistics 𝑋( 𝑗 ) | 𝑋(𝑖) under
the null to calculate a p-value 𝑝𝑖 𝑗 for each pair (𝑖, 𝑗), and combines these p-values via Cauchy
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combination to get a single combined p-value. This approach admits a large class of tests via the
choice of pairs (𝑖, 𝑗), so we propose a default which generates pairs of indices via a discretized
transformed Halton sequence. We show that PITOS maintains approximately valid Type I error
control and has an 𝑂 (𝑛 log 𝑛) runtime. We perform simulation studies comparing the power of
PITOS and other GoF tests on a range of distributions.

2. Methodology
In this section, we introduce our proposed goodness-of-fit test, the Probability Integral Trans-

form of Order Statistics (PITOS). Given independent and identically distributed (i.i.d.) data
𝑋1, . . . , 𝑋𝑛, we are interested in testing whether we can reject a point null hypothesis, which we
take to be that 𝑋1, . . . , 𝑋𝑛 ∼ Uniform(0, 1). The choice of Uniform(0, 1) is made without loss
of generality since for any null with a continuous cumulative distribution function (CDF) 𝐹, if
𝑌𝑖 ∼ 𝐹 then 𝐹 (𝑌𝑖) ∼ Uniform(0, 1); thus, we can first map the data through 𝐹 and then apply a
test based on a uniform null. More generally, any random vector (𝑌1, . . . , 𝑌𝑛) with a known joint
distribution can be mapped to a vector of i.i.d. Uniform(0, 1) random variables via the generalized
Rosenblatt transform (Brockwell, 2007); see Section S2 for details.

2.1. PITOS goodness-of-fit test
Let 𝑋1, . . . , 𝑋𝑛 i.i.d. ∼ Uniform(0, 1). The order statistics 𝑋(1) , . . . , 𝑋(𝑛) are defined by

arranging 𝑋1, . . . , 𝑋𝑛 in non-decreasing order. It is well-known that the CDF of 𝑋( 𝑗 ) is
𝐹𝑋( 𝑗) (𝑦) = 𝐺 (𝑦, 𝑗 , 𝑛 − 𝑗 + 1), where 𝐺 (𝑥, 𝑎, 𝑏) is the CDF of the Beta(𝑎, 𝑏) distribution evalu-
ated at 𝑥, also known as the regularized incomplete beta function, 𝐼𝑥 (𝑎, 𝑏). Furthermore, for any
distinct 𝑖, 𝑗 ∈ {1, . . . , 𝑛}, the CDF of the conditional distribution of 𝑋( 𝑗 ) given 𝑋(𝑖) is

𝐹𝑋( 𝑗) |𝑋(𝑖)=𝑥 (𝑦) =
{
𝐺 ((𝑦 − 𝑥)/(1 − 𝑥), 𝑗 − 𝑖, 𝑛 − 𝑗 + 1) if 𝑖 < 𝑗 ,

𝐺 (𝑦/𝑥, 𝑗 , 𝑖 − 𝑗) if 𝑖 > 𝑗 ; (1)

see Theorems 2.4.1 and 2.4.2 of Arnold et al. (2008) for reference. We apply the probability
integral transform to these marginal and conditional distributions. Specifically, defining

ℎ𝑖 𝑗 (𝑥, 𝑦) =
{
𝐹𝑋( 𝑗) (𝑦) if 𝑖 = 𝑗 ,

𝐹𝑋( 𝑗) |𝑋(𝑖)=𝑥 (𝑦) if 𝑖 ≠ 𝑗 ,

and letting 𝑈𝑖 𝑗 := ℎ𝑖 𝑗 (𝑋(𝑖) , 𝑋( 𝑗 ) ), it follows that 𝑈𝑖 𝑗 ∼ Uniform(0, 1). Values of 𝑈𝑖 𝑗 close to 0 or
1 indicate that 𝑋( 𝑗 ) is smaller or larger than expected, given 𝑋(𝑖) when 𝑖 ≠ 𝑗 or marginally when
𝑖 = 𝑗 . Thus, we construct a p-value 𝑝𝑖 𝑗 := 2 min(𝑈𝑖 𝑗 , 1 −𝑈𝑖 𝑗), which is small whenever 𝑋( 𝑗 ) is
unusually small or large, relative to 𝑋(𝑖) .

Now, suppose I = ((𝑖1, 𝑗1), . . . , (𝑖𝑚, 𝑗𝑚)) is a sequence of 𝑚 pairs (𝑖, 𝑗). We propose to
compute the p-values 𝑝𝑖 𝑗 as defined above for all (𝑖, 𝑗) in I and then aggregate them using the
Cauchy combination technique (Liu & Xie, 2020) to obtain a combined p-value,

𝑝 := 1 − 𝐹Cauchy

(
1
𝑚

∑︁
(𝑖, 𝑗 ) ∈I

𝐹−1
Cauchy(1 − 𝑝𝑖 𝑗)

)
(2)

where 𝐹Cauchy is the CDF of the Cauchy(0, 1) distribution. Finally, to adjust for the fact that the
Cauchy combination does not exactly control Type I error due to the dependence among the 𝑝𝑖 𝑗
values, we use a simple multiplicative correction, 𝑝∗ := min(1, 1.15𝑝). Empirically, we find that
𝑝∗ approximately controls Type I error at any level 𝛼 ∈ (0, 1), while attaining Type I error rates
close to 𝛼 when 𝛼 ≤ 0.05; see Figure S3.

In Section S4, we provide a step-by-step algorithm for computing the PITOS p-value 𝑝∗.
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2.2. Choosing a sequence of pairs
The PITOS test requires specification of a sequence of pairs I, and the choice of I affects the

power to detect different alternative hypotheses. Based on simulation studies, we find that any
given pair (𝑖, 𝑗) may be powerful for detecting certain alternatives, but not others. Furthermore,
the power of (𝑖, 𝑗) is not equal to the power of ( 𝑗 , 𝑖), in general. Roughly speaking, the power
of a pair (𝑖, 𝑗) is higher for departures from the null between the 𝑖/𝑛 and 𝑗/𝑛 quantiles. In other
words, (𝑖, 𝑗) tends to have good power to detect an alternative with density higher or lower than
1 in the interval from 𝑖/𝑛 to 𝑗/𝑛. In particular, values of 𝑗/𝑛 close to 0 or 1 tend to be useful for
detecting departures in the left or right tail, respectively.

Thus, to obtain good power across a wide range of alternatives, we aim to choose a sequence of
points (𝑖, 𝑗) such that (𝑖/𝑛, 𝑗/𝑛) is well-distributed throughout the unit square [0, 1]2, with heavier
coverage near the boundaries, since detecting tail deviations is of particular importance in many
practical applications. It is also desirable to include additional points (𝑖, 𝑖) on the diagonal, since
the marginal order statistics tend to have good power for distributions close to Uniform(0, 1). Note
that a given point (𝑖, 𝑗) may appear more than once in I, and this has the effect of upweighting
the contribution of that pair in the Cauchy combination of p-values in Equation 2.

Based on these considerations, we propose to generate I as follows. For 𝑘 = 1, . . . , 𝑚 − 𝑛,
generate (𝑢𝑘 , 𝑣𝑘) from the two-dimensional Halton sequence on [0, 1]2 with bases 2 and 3 (Hal-
ton, 1964). Transform to 𝑥𝑘 = 𝐹−1

Beta(0.7,0.7) (𝑢𝑘) and 𝑦𝑘 = 𝐹−1
Beta(0.7,0.7) (𝑣𝑘), that is, map 𝑢𝑘 and 𝑣𝑘

through the inverse CDF of the Beta(0.7, 0.7) distribution, and set 𝑖𝑘 = ⌈𝑛𝑥𝑘⌉ and 𝑗𝑘 = ⌈𝑛𝑦𝑘⌉.
Finally, set 𝑖𝑚−𝑛+𝑟 = 𝑟 and 𝑗𝑚−𝑛+𝑟 = 𝑟 for 𝑟 = 1, . . . , 𝑛, and define I = ((𝑖1, 𝑗1), . . . , (𝑖𝑚, 𝑗𝑚)).
To keep the algorithm as computationally efficient as possible, it makes sense to choose
𝑚 = 𝑂 (𝑛 log 𝑛) since computing the order statistics 𝑋(1) , . . . , 𝑋(𝑛) already takes 𝑂 (𝑛 log 𝑛) time.
We recommend using 𝑚 = ⌈10 𝑛 log 𝑛⌉ + 𝑛 since we find that this provides good empirical per-
formance. See Section S4 for a step-by-step algorithm.

Alternatively, one could use random samples of (𝑢𝑘 , 𝑣𝑘) ∼ Uniform( [0, 1]2), but the Halton
sequence has the advantage of producing points that are more evenly distributed than a random
sequence, and has the added benefit of being deterministic. The procedure above could also be
customized by replacing the Beta(0.7, 0.7) CDF with any other CDF on [0, 1], in order to try to
increase power for a specific collection of alternative distributions of interest.

3. Experiments
In this section, we compare the performance of PITOS (our method) and several benchmark

GoF tests in simulation studies. As benchmarks, we compare with the Anderson–Darling (AD),
Neyman–Barton (NB), Kolmogorov–Smirnov (KS), and Cramér–von Mises (CvM) tests; see
Section S1 for details. To quantify the highest power possible, we also compare with an oracle
benchmark based on the likelihood ratio test (LRT) using the true distribution as a point alternative;
see Section S1. This represents the optimal power since the LRT is the most powerful test for
a specific null/alternative pair, by the Neyman–Pearson lemma (Neyman & Pearson, 1933), but
this test cannot be used in practice because it requires knowing the true distribution to compute
the test statistic.

First, we consider the power of each test on the distributions from Figure 1, which represent
motivating examples where the commonly used tests generally have low power. For a given
sample size 𝑛, we compute the power to reject the null at the 𝛼 = 0.05 level by generating
100,000 simulated i.i.d. data sets from the true distribution and calculating the proportion of
times that the p-value is less than 𝛼 = 0.05. Figure 2 shows the power of each test as a function of
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Fig. 2: Power of each method versus sample size 𝑛 for the distributions in Figure 1.

𝑛. We see that PITOS outperforms the other tests by a wide margin on all of these distributions.
The value of these curves at 𝑛 = 200 corresponds to the values of the power shown in Table 1.

Next, we consider the set of six distributions shown in Figure 3 (top), chosen to represent a range
of behaviors. Figure 3 (bottom) shows the power at level 𝛼 = 0.05 versus 𝑛 for each distribution,
again using 100,000 simulated i.i.d. data sets for each 𝑛. On Uniform(0, 1) data—that is, when
the null hypothesis is true—all methods have power close to 0.05, indicating that they correctly
control Type I error. (The LRT power is 0 here because the test statistic is identically constant.)
The Beta(1.2, 0.8) distribution is moderately close to uniform, and here we see that PITOS has
the lowest power, although the differences between methods are relatively small. Meanwhile,
PITOS is best or second-best on Beta(0.6, 0.6) and Beta(1.6, 1.6), which represent cases with
somewhat higher or lower density, respectively, in the tails. PITOS excels when there are outliers
or heavy tails, such as in the case of Φ(Laplace(0, 1)), which is the distribution of Φ(𝑌 ) where
𝑌 ∼ Laplace(0, 1) and Φ(·) is the standard normal CDF. Furthermore, PITOS tends to have
high power to detect discreteness, such as in the case of Uniform({0.01, 0.02, . . . , 0.99}), the
discrete uniform distribution on {0.01, 0.02, . . . , 0.99}. The other methods have power essentially
at 𝛼 = 0.05 on this discrete example, meaning that they completely fail to detect this departure
from the null of Uniform(0, 1).

Finally, we consider eight scenarios in which we randomly select a distribution 𝑃𝜃 from a given
parametric family, and then approximate the power of each test on data from 𝑃𝜃 by simulating
multiple i.i.d. data sets from 𝑃𝜃 . The scenarios considered are (1) Symmetric Heavy-Tailed, (2)
Symmetric Light-tailed, (3) Asymmetric Heavy-tailed, (4) Asymmetric Light-tailed, (5) Outliers,
(6) Nearly Uniform, (7) Random Bump, and (8) Random Gap; see Section S3 for details. For each
scenario, we randomly select 1,000 distributions and, for each distribution, we approximate the
power of each test by simulating 1,000 i.i.d. data sets of size 𝑛 = 100. We summarize the results
by aggregating in two ways. First, for each 𝑃𝜃 , we rank the tests according to their power, and
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Fig. 3: Power of GoF tests across various data distributions.

compute the proportion of times that test 𝑡 has rank 𝑟 across distributions 𝑃𝜃 . Second, we simply
compute the average power of each test across distributions 𝑃𝜃 .

Figure 4 shows the results. We see a similar pattern of performance as in Figures 2 and 3. In
the Nearly Uniform scenario, PITOS performs worse than AD, NB, and CvM; however, all of the
tests exhibit average power between 0.28 and 0.34, so the difference in performance is relatively
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Fig. 4: Power of GoF tests across families of data distributions.

small. PITOS is usually outperformed by NB in the light-tailed scenarios, but it typically ranks
first or second in these scenarios. In all of the other scenarios, PITOS dominates the rankings,
particularly in the Outliers, Random Bump, and Random Gap scenarios.
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4. Discussion
We have introduced the PITOS test, and demonstrated that it is competitive with existing

GoF tests across a wide range of data distributions. Moreover, for distributions characterized by
large local deviations from uniformity, PITOS is often substantially more powerful than existing
methods. While we recommend running PITOS using our proposed sequence of pairs based on a
transformed Halton sequence, the test can be customized by using different sequences in order to
target certain types of alternative distributions. Optimizing the choice of sequence to maximize
power for a given set of alternative distributions is a potentially interesting direction for future
work. A related direction for future work would be to establish theoretical results on the power
of the PITOS test.
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Supplementary Material for “A powerful goodness-of-fit test using the
probability integral transform of order statistics”

S1. Standard Goodness-of-Fit Tests
In Table S1, we summarize the commonly used goodness-of-fit (GoF) tests that serve as

benchmarks in our comparisons. For each of these tests, the data 𝑋1, . . . , 𝑋𝑛 are assumed to
be i.i.d. and the null hypothesis is that 𝑋1, . . . , 𝑋𝑛 ∼ Uniform(0, 1). In the Neyman–Barton test,
𝜋1(𝑥) and 𝜋2(𝑥) are the first two orthogonal Legendre polynomials on [0, 1].

Table S1: Common GoF Tests for Uniform(0, 1) null hypothesis.

Test Test statistic 𝑇 (𝑋1, . . . , 𝑋𝑛)
Anderson–Darling (AD)
(Anderson & Darling, 1952)

−𝑛 − 𝑛−1 ∑𝑛
𝑖=1(2𝑖 − 1) (log 𝑋(𝑖) + log(1 − 𝑋(𝑛−𝑖+1) ))

2nd-order Neyman–Barton (NB)
(Neyman, 1937)

∑2
𝑗=1(𝑛−1/2 ∑𝑛

𝑖=1 𝜋𝑗 (𝑋𝑖))2

where 𝜋1(𝑥) = 2
√

3𝑥 and 𝜋2(𝑥) =
√

5(6𝑥2 − 0.5)
Kolmogorov–Smirnov (KS)
(Kolmogorov, 1933)

sup𝑡∈[0,1] |𝐹𝑛 (𝑡) − 𝑡 |
where 𝐹𝑛 (𝑡) = 1

𝑛

∑𝑛
𝑖=1 1(𝑋𝑖 ≤ 𝑡)

Cramér–von Mises (CvM)
(Cramér, 1928; Von Mises, 1936)

1/(12𝑛) +∑𝑛
𝑖=1

( 2𝑖−1
2𝑛 − 𝑋(𝑖)

)2

Likelihood ratio test (LRT)
(Neyman & Pearson, 1933)

∑𝑛
𝑖=1 log 𝑓1(𝑋𝑖)

where 𝑓1(𝑥) is the density of the alternative distribution

For the Neyman-Barton, Cramér–von Mises, and likelihood ratio tests, we implement the
test statistic in the Julia programming language (Bezanson et al., 2017) and compute p-values
using empirical null distributions computed based on 100,000 simulated i.i.d. data sets from the
Uniform(0, 1) distribution, for any given 𝑛. For Anderson–Darling and Kolmogorov–Smirnov,
we use existing implementations from HypothesisTests.jl library in Julia (Kornblith et al., 2018).

S2. Generalized Rosenblatt Transform
For a random vector 𝑌1:𝑛 = (𝑌1, . . . , 𝑌𝑛) ∈ R𝑛, define the conditional CDFs 𝐹1, . . . , 𝐹𝑛

as 𝐹1(𝑦1) = 𝑃(𝑌1 ≤ 𝑦1) and 𝐹𝑘 (𝑦𝑘 | 𝑦1:(𝑘−1) ) = 𝑃(𝑌𝑘 ≤ 𝑦𝑘 | 𝑌1:(𝑘−1) = 𝑦1:(𝑘−1) ) for 𝑘 ∈
{2, 3, . . . , 𝑛}. Likewise, define 𝐹−1 (𝑦1) = 𝑃(𝑌1 < 𝑦1) and 𝐹−

𝑘
(𝑦𝑘 | 𝑦1:(𝑘−1) ) = 𝑃(𝑌𝑘 < 𝑦𝑘 |

𝑌1:(𝑘−1) = 𝑦1:(𝑘−1) ) for 𝑘 ∈ {2, 3, . . . , 𝑛}.
For 𝑦1, . . . , 𝑦𝑛 ∈ R and 𝑢1, . . . , 𝑢𝑛 ∈ (0, 1), define the function ℎ(𝑦1:𝑛, 𝑢1:𝑛) ∈ R𝑛 such that

ℎ1(𝑦1:𝑛, 𝑢1:𝑛) = 𝑢1𝐹1(𝑦1) + (1 − 𝑢1)𝐹−1 (𝑦1)
ℎ𝑘 (𝑦1:𝑛, 𝑢1:𝑛) = 𝑢𝑘𝐹𝑘 (𝑦𝑘 | 𝑦1:(𝑘−1) ) + (1 − 𝑢𝑘)𝐹−𝑘 (𝑦𝑘 | 𝑦1:(𝑘−1) )

for 𝑘 ∈ {2, 3, . . . , 𝑛}. If 𝑈1, . . . ,𝑈𝑛 i.i.d. ∼ Uniform(0, 1) and 𝑋1:𝑛 = ℎ(𝑌1:𝑛,𝑈1:𝑛) then
𝑋1, . . . , 𝑋𝑛 are i.i.d. Uniform(0, 1) random variables. A proof is provided by Brockwell (2007).

S1
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S3. Randomly Generated Distributions in Simulation Study
Table S2 describes the sampling process used to generate randomized distributions for each

scenario in Figure 4. Here, 𝛿𝑥 denotes the unit point mass at 𝑥, 𝑈 (𝑎, 𝑏) denotes the uniform
distribution on the interval (𝑎, 𝑏), and Gamma(𝛼, 𝛽) denotes the Gamma distribution with den-
sity 𝑓 (𝑥) = 𝑥𝛼−1 exp(−𝑥/𝛽)/(𝛽𝛼Γ(𝛼)) for 𝑥 > 0. Visualizations of several randomly sampled
densities for each scenario are shown in Figure S1.

Table S2: Procedures for randomly sampling distributions for each scenario in Figure 4.

Scenario Parametric family Random generation of parameters

Symmetric Heavy-tailed Beta(𝜇𝜎, (1 − 𝜇)𝜎) 𝜇 ∼ 𝛿1/2, 𝜎 ∼ Gamma(3, 1/2)
Draw (𝜇, 𝜎) until min(𝜇𝜎, (1 − 𝜇)𝜎) ≤ 1

Symmetric Light-tailed Beta(𝜇𝜎, (1 − 𝜇)𝜎) 𝜇 ∼ 𝛿1/2, 𝜎 ∼ Gamma(5, 1/2)
Draw (𝜇, 𝜎) until min(𝜇𝜎, (1 − 𝜇)𝜎) > 1

Asymmetric Heavy-tailed Beta(𝜇𝜎, (1 − 𝜇)𝜎) 𝜇 ∼ Beta(2, 2), 𝜎 ∼ Gamma(3, 1/2)
Draw (𝜇, 𝜎) until min(𝜇𝜎, (1 − 𝜇)𝜎) ≤ 1

Asymmetric Light-tailed Beta(𝜇𝜎, (1 − 𝜇)𝜎) 𝜇 ∼ Beta(2, 2), 𝜎 ∼ Gamma(5, 1/2)
Draw (𝜇, 𝜎) until min(𝜇𝜎, (1 − 𝜇)𝜎) > 1

Outliers 𝜋𝑈 (0, 𝑏) + (1 − 𝜋)𝑈 (0, 1) 𝜋 ∼ 𝑈 (0, 0.1), 𝑏 ∼ 𝑈 (0, 0.01)

Nearly Uniform Beta(𝜇𝜎, (1 − 𝜇)𝜎) 𝜇 ∼ Beta(50, 50), 𝜎 ∼ Gamma(100, 1/50)

Random Bump 𝜋𝑈 (𝑚 − 0.001, 𝑚 + 0.001) + (1 − 𝜋)𝑈 (0, 1) 𝑚 ∼ 𝑈 (0.001, 0.999), 𝜋 ∼ 𝑈 (0, 0.1)

Random Gap
(
𝑚−𝑤
1−2𝑤

)
𝑈 (0, 𝑚 − 𝑤) +

(
1−(𝑚+𝑤)

1−2𝑤

)
𝑈 (𝑚 + 𝑤, 1) 𝑚 ∼ 𝑈 (0.1, 0.9), 𝑤 ∼ 𝑈 (0.025, 0.1)

Fig. S1: Examples of randomly sampled densities for each scenario in Figure 4.
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S4. Algorithms for Implementing the PITOS Goodness-of-Fit Test
In this section, we provide step-by-step algorithms for computing the PITOS p-value 𝑝∗

(Algorithm S1), generating Halton sequences (Algorithm S2), and our proposed method of
generating the sequence of pairs to be used in the PITOS algorithm (Algorithm S3).

S4.1. Main PITOS algorithm
The algorithm takes 𝑂 (𝑛 log 𝑛) time for any collection of pairs I of size 𝑂 (𝑛 log 𝑛). We write

𝐺 (𝑥, 𝑎, 𝑏) to denote the CDF of Beta(𝑎, 𝑏) at 𝑥, that is, 𝐺 (𝑥, 𝑎, 𝑏) =
∫ 𝑥

0
1

B(𝑎,𝑏) 𝑡
𝑎−1(1 − 𝑡)𝑏−1𝑑𝑡.

Algorithm S1 PITOS goodness-of-fit test for Uniform(0, 1) null distribution
Input: Data 𝑥1, . . . , 𝑥𝑛 ∈ [0, 1] and pairs I = ((𝑖1, 𝑗1), . . . , (𝑖𝑚, 𝑗𝑚)) where 𝑖𝑘 , 𝑗𝑘 ∈ {1, . . . , 𝑛}
Output: Approximate p-value 𝑝∗

1. Sort 𝑥1, . . . , 𝑥𝑛 to obtain the order statistics 𝑥 (1) ≤ · · · ≤ 𝑥 (𝑛)
2. for (𝑖, 𝑗) ∈ I do

if 𝑖 = 𝑗 then
𝑢𝑖 𝑗 ← 𝐺 (𝑥 ( 𝑗 ) , 𝑗 , 𝑛 − 𝑗 + 1)

elseif 𝑖 < 𝑗 then
𝑢𝑖 𝑗 ← 𝐺 ((𝑥 ( 𝑗 ) − 𝑥 (𝑖) )/(1 − 𝑥 (𝑖) ), 𝑗 − 𝑖, 𝑛 − 𝑗 + 1)

else
𝑢𝑖 𝑗 ← 𝐺 (𝑥 ( 𝑗 )/𝑥 (𝑖) , 𝑗 , 𝑖 − 𝑗)

end
𝑝𝑖 𝑗 ← 2 min(𝑢𝑖 𝑗 , 1 − 𝑢𝑖 𝑗)

end
3. 𝑝 ← 1 − 𝐹Cauchy

(
1
𝑚

∑
(𝑖, 𝑗 ) ∈I 𝐹

−1
Cauchy(1 − 𝑝𝑖 𝑗)

)
4. 𝑝∗ ← min(1, 1.15𝑝)
5. return 𝑝∗

Since a given pair (𝑖, 𝑗) may occur more than once in I, this algorithm could potentially be
sped up further by caching the value of 𝑝𝑖 𝑗 for each (𝑖, 𝑗) as it is computed, and re-using the
previously computed value of 𝑝𝑖 𝑗 instead of re-computing it if (𝑖, 𝑗) is encountered again.
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S4.2. Generating PITOS pairs using a discretized transformed Halton sequence
For completeness, we next provide a procedure for generating Halton sequences (Halton, 1964)

in Algorithm S2, which is used as a subroutine in Algorithm S3. In Algorithm S2, we write 𝑖 mod 𝑏

to denote the remainder when dividing 𝑖 by 𝑏, where 𝑖 and 𝑏 are positive integers.
Algorithm S3 details how we compute the sequence I to be used in Algorithm S1. To visualize

the sequence of pairs I = ((𝑖1, 𝑗1), . . . , (𝑖𝑚, 𝑗𝑚)) produced by Algorithm S3, we plot heatmaps
in Figure S2 showing the number of times each (𝑖, 𝑗) is included in I, for a range of sample sizes
𝑛 ∈ {25, 50, 100, 200}.

Algorithm S2 Halton: Generate one-dimensional element of Halton sequence
Input: Index 𝑖 ∈ {1, 2, . . .} and base 𝑏 ∈ {1, 2, . . .}
Output: The 𝑖th element of the one-dimensional Halton sequence with base 𝑏

1. 𝑓 ← 1
2. 𝑥 ← 0
3. while 𝑖 > 0 do

𝑓 ← 𝑓 /𝑏
𝑥 ← 𝑥 + (𝑖 mod 𝑏) · 𝑓
𝑖 ← ⌊𝑖/𝑏⌋

end
4. return 𝑥

Algorithm S3 GeneratePairs: Generate sequence of pairs for PITOS test in Algorithm S1
Input: Sample size 𝑛 ∈ {1, 2, . . .}
Output: Sequence of pairs I = ((𝑖1, 𝑗1), . . . , (𝑖𝑚, 𝑗𝑚)) for input to PITOS test

1. 𝑚 ← ⌈10 𝑛 log 𝑛⌉ + 𝑛
2. for 𝑘 = 1, . . . , 𝑚 − 𝑛 do

𝑢 ← Halton(𝑘, 2)
𝑣 ← Halton(𝑘, 3)
𝑥 ← 𝐹−1

Beta(0.7,0.7) (𝑢)
𝑦 ← 𝐹−1

Beta(0.7,0.7) (𝑣)
𝑖𝑘 ← ⌈𝑛𝑥⌉
𝑗𝑘 ← ⌈𝑛𝑦⌉

end
3. for 𝑟 = 1, . . . , 𝑛 do

𝑖𝑚−𝑛+𝑟 ← 𝑟

𝑗𝑚−𝑛+𝑟 ← 𝑟

end
4. return ((𝑖1, 𝑗1), . . . , (𝑖𝑚, 𝑗𝑚))
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Fig. S2: Number of times each pair of indices (𝑖, 𝑗) is included in GeneratePairs(n).
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S5. Approximately correct control of Type I error
Figure S3 shows the CDF of PITOS p-values with and without the 1.15× correction (that

is, 𝑝∗ and 𝑝, respectively), for i.i.d. data generated under the null hypothesis of 𝑋1, . . . , 𝑋𝑛 ∼
Uniform(0, 1) with 𝑛 = 30. A p-value CDF above the Uniform(0, 1) CDF (shown as a black
dashed line) is too liberal, meaning that Type I error is larger than 𝛼 when rejecting the null at
level 𝛼. Meanwhile, a p-value CDF below the Uniform(0, 1) CDF is conservative, meaning that
Type I error is smaller than 𝛼 when rejecting at level 𝛼.

While the CDFs of both 𝑝 and 𝑝∗ are overly conservative for values greater than 0.2, they are
fairly close to the Uniform(0, 1) CDF for values between 0 and 0.1, which is the range of values
that matters in practice. In the range [0, 0.01], the CDF of the uncorrected p-values 𝑝 is slightly
liberal. Meanwhile, the CDF of the corrected p-values 𝑝∗ is very close to the Uniform(0, 1) CDF
between 0 and 0.05, and is slightly conservative between 0.05 and 0.1.

Fig. S3: CDFs of PITOS p-values with and without the 1.15× correction, under the null hypothesis,
for a sample size of 𝑛 = 30. Top plots show CDF over the full support of [0, 1]. Bottom plots are
zoomed in to [0, 0.1]; in practice, it is common to reject the null at levels 𝛼 ∈ (0, 0.05].
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