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Standard Bayesian inference is known to be sensitive to model misspec-
ification, leading to unreliable uncertainty quantification and poor predic-
tive performance. However, finding generally applicable and computation-
ally feasible methods for robust Bayesian inference under misspecification
has proven to be a difficult challenge. An intriguing, easy-to-use, and widely
applicable approach is to use bagging on the Bayesian posterior (“Bayes-
Bag”); that is, to use the average of posterior distributions conditioned on
bootstrapped datasets. In this paper, we comprehensively develop the asymp-
totic theory of BayesBag, propose a model–data mismatch index for model
criticism using BayesBag, and empirically validate our theory and methodol-
ogy on synthetic and real-world data in linear regression (both feature selec-
tion and parameter inference), sparse logistic regression, a hierarchical mixed
effects model, and phylogenetic tree reconstruction. We find that in the pres-
ence of significant misspecification, BayesBag yields more reproducible in-
ferences, has better predictive accuracy, and selects correct models more often
than the standard Bayesian posterior; meanwhile, when the model is correctly
specified, BayesBag produces superior or equally good results for parameter
inference and prediction, while being slightly more conservative for model
selection. Overall, our results demonstrate that BayesBag combines the at-
tractive modeling features of standard Bayesian inference with the distribu-
tional robustness properties of frequentist methods, providing benefits over
both Bayes alone and the bootstrap alone.

1. Introduction. Bayesian inference is premised on the data being generated from the
assumed model. In practice, however, it is widely recognized that models are (sometimes
gross) approximations to reality (Box, 1979, 1980; Cox, 1990; Lehmann, 1990). More-
over, even when the model is nearly correct, the optimal parameter (in terms of log loss
or Kullback–Leibler divergence) may be extremely unlikely under the prior distribution,
which can bias the posterior distribution and lead to poor predictive performance. Thus, in
order to effectively use Bayesian methods, it is crucial to be able to both diagnose and cor-
rect for mismatch between the model and the data during the model building process (Blei,
2014; Gelman et al., 2013). The task of diagnosing mismatch/misspecification is often
termed “model criticism” or “model assessment” (Gelman and Shalizi, 2011; Vehtari and
Ojanen, 2012). Yet, eventually model building must cease due either to resource limitations
(e.g., the data analyst’s time, knowledge about the phenomena under study, or computa-
tional capacity) or norms within a field limiting the set of models the analyst can consider.
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Therefore, whatever model is ultimately used, the analyst may still need to rely on robust
inference methods to correct for any remaining model–data mismatch.

This article develops the theory and practice of BayesBag, a simple and widely appli-
cable approach to robust Bayesian inference that also provides diagnostics for model criti-
cism. Originally developed by Waddell, Kishino and Ota (2002) and Douady et al. (2003)
in the context of phylogenetic inference and then independently proposed by Bühlmann
(2014) (where the name was coined), the idea of BayesBag is to apply bagging (Breiman,
1996) to the Bayesian posterior. (As we show in Appendix A, it can also be interpreted as
an approximation to Jeffrey conditionalization.) The bagged posterior π∗(θ |x) is defined
by taking bootstrapped copies x∗ := (x∗1, . . . , x

∗
M ) of the original dataset x := (x1, . . . , xN )

and averaging over the posteriors obtained by treating each bootstrap dataset as the ob-
served data:

π∗(θ |x) :=
1

NM

∑
x∗

π(θ |x∗),(1)

where π(θ |x∗)∝ π0(θ)
∏M
m=1 pθ(x

∗
m) is the standard posterior density given data x∗ and

the sum is over all possible NM bootstrap datasets of M samples drawn with replacement
from the original dataset. In practice, we can approximate π∗(θ |x) by generating B boot-
strap datasets x∗(1), . . . , x

∗
(B), where x∗(b) consists of M samples drawn with replacement

from x, yielding the approximation

π∗(θ |x)≈ 1

B

B∑
b=1

π(θ |x∗(b)).(2)

BayesBag is easy to use since the bagged posterior is simply an average over standard
Bayesian posteriors, which means no additional algorithmic tools are needed beyond what
a data analyst would use for posterior inference in the original model. While BayesBag
does require more computational resources since one must approximate B posteriors (each
conditioned on a bootstrap dataset) where typically B ≈ 50–100, each posterior can be
approximated in parallel, which is ideal for modern cluster-based high-performance com-
puting environments. Surprisingly, despite these attractive features, there has been little
practical or theoretical investigation of BayesBag. In the only previous work of which we
are aware, Bühlmann (2014) (which is a short discussion paper) presented only a few simu-
lation results in a simple Gaussian location model, while Waddell, Kishino and Ota (2002)
and Douady et al. (2003) undertook limited investigations in the setting of phylogenetic
tree inference in papers focused primarily on speeding up model selection (in the former)
and comparing Bayesian inference and the bootstrap (in the latter).

In this paper, we show that the bagged posterior has appealing statistical properties in
the presence of model misspecification, while also being easy to use and computationally
tractable on a range of practical problems. The bagged posterior integrates the attractive
features of Bayesian inference—such as flexible hierarchical modeling and the use of prior
information—with the distributional robustness of frequentist methods, nonparametrically
accounting for sampling variability and model misspecification. Moreover, rather than just
providing robustness to misspecification, our BayesBag methodology can simultaneously
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diagnose the degree of misspecification, or more generally, the degree of model–data mis-
match.

The organization and main contributions of the paper are as follows. In Section 2, we
begin by briefly providing representative examples of the superior empirical performance
of the bagged posterior compared to the standard posterior for both estimating the opti-
mal parameter and selecting the optimal model, where optimality is in terms of log loss.
Next, we introduce our BayesBag methodology in more detail and describe our model–
data mismatch index for performing model criticism. This mismatch index is based on how
much the standard and bagged posterior variances differ, compared to what would be ex-
pected if the model were correctly specified. In order to explain the empirical performance
of BayesBag and justify our mismatch index, we sketch out our statistical theory for the
bagged posterior.

We then proceed to fully develop our asymptotic theory of the bagged posterior in both
the parameter inference and model selection settings. For parameter inference (Section 3),
we prove that the bagged posterior is asymptotically normal (that is, it satisfies a Bernstein–
Von Mises theorem) and that bagged posterior credible intervals for the optimal parameter
are asymptotically conservative when the bootstrapped datasets are the same size as the
original dataset. Moreover, we show that if the size of the bootstrapped datasets is appropri-
ately selected, then the credible intervals have asymptotically correct frequentist coverage.
For model selection (Section 4), we show that when multiple models have the same or very
similar explanatory power for the true data-generating distribution, bagged model selec-
tion assigns more stable and appropriate posterior probabilities to each model. In short, we
show that when used for parameter inference, the bagged posterior improves upon the stan-
dard posterior by accounting for sampling variance, as in traditional bootstrapping (Efron,
1979), while when used for model selection, the bagged posterior stabilizes model proba-
bilities, in the spirit of bagging (Breiman, 1996; Bühlmann and Yu, 2002).

Next, we validate our theory and model–data mismatch index through simulation ex-
periments in the setting of parameter inference and feature selection for linear regression
(Section 5.1). Our results show that the mismatch index is useful for both (a) diagnosing
misspecification in the likelihood as well as (b) detecting poorly chosen priors that either
make the true parameter extremely unlikely or lead to poorly identified model parameters.
Remarkably, we find that BayesBag often produces superior results compared to standard
Bayesian inference even when the likelihood model is correct. We then explore the benefits
of BayesBag over alternative robust approaches in a hierarchical mixed effects model (Sec-
tion 5.2). Finally, we apply BayesBag and the mismatch index to real-world data using a
variety of models: linear regression model selection, sparse logistic regression, and phylo-
genetic tree reconstruction (Section 6). On the real-world data, the mismatch index appears
to accurately reflect the expected amount of misspecification. Overall, our empirical re-
sults demonstrate that in the presence of significant misspecification, the bagged posterior
produces more stable inferences, has better predictive accuracy, and selects correct models
more often than the standard posterior; meanwhile, when the model is correctly specified,
the bagged posterior produces equally good or better results for parameter inference and
prediction, while being slightly more conservative for model selection, when compared to
the standard posterior. We conclude in Section 7 with a more detailed discussion of related
work and possible extensions.
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Fig 1: Predictive performance comparison of the standard posterior (Bayes), the bagged
posterior (BayesBag), and four other methods based on maximum likelihood estimation
(MLE). We show the mean log predictive density (MLPD) of each method on held-out data
and 95% confidence intervals. The differences between Bayes, BayesBag, and the MLE-
based methods are all statistically significant (p < 0.0001, paired t-test)

2. Methodology and motivation. In this section, we highlight the empirical bene-
fits of the bagged posterior compared to the standard posterior, introduce our BayesBag
methodology, and provide an overview of the statistical theory that justifies our method-
ology. Readers wishing to skip the technical details of our theoretical developments can
safely proceed to Section 5 after reading this section.

2.1. Two motivating examples.

2.1.1. Parameter inference and prediction. The bagged posterior tends to more accu-
rately reflect uncertainty given the observed data. As an example in the parameter inference
setting, consider a three-level mixed effects logistic regression model inspired by Browne
and Draper (2006). We simulated a misspecified data scenario where the data was gener-
ated to have correlations among the second-level effects, violating the assumption that they
were independent in the model (see Section 5.2 for details). We compared the predictive
performance of the standard posterior, the bagged posterior, and a variety of methods based
on the maximum likelihood estimation (with the random effects integrated out): the stan-
dard MLE, the bootstrapped MLE, the weighted likelihood bootstrap (Newton and Raftery,
1994), and the posterior bootstrap (Lyddon, Walker and Holmes, 2018). The MLE-based
methods performed substantially worse than the fully Bayesian methods, and the bagged
posterior provided the best predictive performance (Fig. 1).

2.1.2. Model selection. As an example in the model selection setting, we applied lin-
ear regression to data generated from a nonlinear regression model with D = 10 correlated
regressors, one of which (component 5) was “causal” (see Section 5.1.3 for details). For
N = 5× 103 and 5× 104, we generated 50 datasets of size N and computed the posterior
inclusion probabilities (pips) of each regressor component, allowing at most two regression
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Fig 2: Posterior inclusion probabilities (pips) for the standard posterior and the bagged
posterior.

coefficients to be nonzero. Figure 2 summarizes the results. Due to the misspecification and
correlated regressors, it does not hold in general (as it does in the well-specified case) that
the causal components will be selected. We have set things up so that, by symmetry, com-
ponents 5 − i and 5 + i (i = 0, . . . ,4) are equivalent. As N →∞, it is optimal to use
component 3 (and/or component 7) and component 2 (and/or component 8). The standard
pip for either component 3 or 7 is ≈ 1 (with the other ≈ 0) depending on the dataset, and
likewise for components 2 and 8, demonstrating that the standard posterior is highly unsta-
ble. Meanwhile, the BayesBag pips for components 2, 3, 7, and 8 are roughly uniformly
distributed between 0 and 1, thus avoiding false confidence that a particular component will
be included or excluded. The standard posterior is also highly unstable as N increases: as
more data is added, components with pip ≈ 1 will often flip to ≈ 0, and vice versa. This is
illustrated by the pips ≈ 1 for components 4, 5, and 6 when N = 5× 103 that eventually
go to zero when N = 5× 104. The BayesBag pips do not exhibit this instability. In Sec-
tion 6.3, we observe similar behavior on the important real-world problem of phylogenetic
tree inference.

2.2. BayesBag methodology. Recall from Eq. (2) that we can approximate the bagged
posterior by averaging standard posteriors conditioned on each of B bootstrap datasets
x∗(1), . . . , x

∗
(B), where x∗(b) := (x∗(b)1, . . . , x

∗
(b)M ) consists of M samples drawn with replace-

ment from the original dataset x = (x1, . . . , xN ). For each b, expectations with respect
to π(θ |x∗(b)) can be computed by whatever method is most appropriate—for example, a
closed-form solution, Markov chain Monte Carlo, or quadrature. In this section, we first
discuss the choice of the bootstrap size M and the number of bootstrap datasets B and then
we describe how to use BayesBag for model criticism.

2.2.1. Choosing the bootstrap size for the bagged posterior. A crucial question for the
practical application of BayesBag is how to select the bootstrap dataset size M . We recom-
mend M = N as a good default choice because, as we describe in more detail shortly, it
yields asymptotically conservative credible intervals in the parameter inference setting and
stabilizes the posterior probabilities of each model in the model selection setting. Alterna-
tively, our theory indicates an optimal choice of M that can be estimated as follows. For
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a real-valued function of interest f , let vN and v∗N denote, respectively, the standard and
bagged posterior variances of f(θ), where the bagged posterior is computed with M =N .
Then an estimator for the asymptotically optimal bootstrap sample size for f(θ) is

M̂∞,opt(f) :=
v∗N

v∗N − vN
N.(3)

If M̂∞,opt(f) differs significantly from N , then we suggest recomputing the bagged pos-
terior with M = M̂∞,opt(f). Note that since vN and v∗N are nonnegative, it follows that
M̂∞,opt(f) ∈ (−∞,0) ∪ [N,∞]. If M̂∞,opt(f) < 0, then vN > v∗N , which indicates that
using the asymptotically optimal estimate of bootstrap size is not appropriate in this case.

For a set of functions of interest F , we suggest taking the most conservative sample
size: M̂∞,opt(F) := inff∈F M̂∞,opt(f). In general, F can be chosen to reflect the quan-
tity or quantities of interest to the ultimate statistical analysis. When θ ∈ RD , two natural
choices for the function class are F1 := {θ 7→ w>θ : ‖w‖2 = 1} and Fproj = {θ 7→ θd : d=
1, . . . ,D}. In our experiments we use the latter, hence, we will use the shorthand notation
M̂∞,opt := M̂∞,opt(Fproj).

2.2.2. Choosing the number of bootstrap datasets for BayesBag. In addition to choos-
ing M , the other key question for the practical application of BayesBag is how to select
the number of bootstrap datasets B. Assume that we can approximate π(θ |x∗(b)) to high
accuracy. Then evaluating the accuracy of the BayesBag approximation given by Eq. (2)
reduces to the well-studied problem of estimating the accuracy of a simple Monte Carlo
approximation (e.g., Koehler, Brown and Haneuse, 2009). In practice, we have found it
sufficient to take B = 50 or 100 since the quantities we wish to estimate seem to be fairly
low-variance. Thus, we suggest starting with B = 50, estimating the Monte Carlo error of
any quantities of interest such as parameter means and variances, and then increasing B if
the estimated error is unacceptably large. On the other hand, in some scenarios there may
be a question of how best to balance the accuracy of a moderate-quality approximation to
π(θ |x∗(b)) (e.g., from a short Markov chain Monte Carlo run) with the number of bootstrap
samples B. See Appendix D for a discussion of this computational trade-off.

2.2.3. Model criticism with BayesBag. We can also use M̂∞,opt(f) for model criticism,
which is the task of diagnosing any mismatch between the assumed model and the observed
data. Specifically, we define the model–data mismatch index

I(f) :=

{
2N/M̂∞,opt(f)− 1 if M̂∞,opt(f) ∈ [N,∞)

NA otherwise.
(4)

This provides a simple, intuitive, and theoretically well-grounded method for measuring
the fit of the model to the data. The interpretation of the mismatch index is as follows:
I(f)≈ 0 indicates no evidence of mismatch; I(f) > 0 (respectively, I(f) < 0) indicates
the standard posterior is overconfident (respectively, under-confident); I(f) = NA indicates
either that the assumptions required to use M̂∞,opt(f) do not hold (e.g., due to multimodal-
ity in the posterior or small sample size) or there is a severe model–data mismatch. For a
function class F , we define I(F) by replacing M̂∞,opt(f) with M̂∞,opt(F) in Eq. (4) and
we let I := I(Fproj).
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2.3. Justification for BayesBag in the parameter inference setting. In order to better
understand the good empirical performance of BayesBag observed in Section 2.1, to ex-
plain why it makes sense to use M =N as a default choice, and to justify the definitions of
M̂∞,opt(f) and I(f), we next provide an informal sketch of the asymptotic behavior of the
bagged posterior compared to the standard posterior. We cover parameter inference first,
then model selection.

2.3.1. Sketch of statistical theory for parameter inference. To elucidate the behavior
of the bagged posterior, we begin by deriving its mean and covariance in the case where
θ ∈RD . Given data x, let X∗ be a random bootstrap dataset and let ϑ∗ |X∗ ∼ π(θ |X∗) be
distributed according to the standard posterior given data X∗. (We denote random variables
with capital Latin letters, e.g., X rather than x, or “curly” Greek letters, e.g., ϑ rather
than θ.) Marginalizing out X∗, we have ϑ∗ |x ∼ π∗(θ |x). Let ϑ |x ∼ π(θ |x) and define
µ(x) := E(ϑ |x) =

∫
θ π(θ |x)dθ to be the standard posterior mean given x. By the law of

total expectation, the mean of the bagged posterior is

E(ϑ∗ |x) = E
{
E(ϑ∗ |X∗) |x

}
= E{µ(X∗) | x}=

1

NM

∑
x∗

µ(x∗).

By the law of total covariance, the covariance matrix of the bagged posterior is

Cov(ϑ∗ |x) = E
{

Cov(ϑ∗ |X∗) |x
}

+ Cov
{
E(ϑ∗ |X∗) |x

}
(5)

= E{Σ(X∗) | x}+ Cov{µ(X∗) | x}

where Σ(x) := Cov(ϑ |x) =
∫
{θ− µ(x)}{θ− µ(x)}>π(θ |x)dθ is the standard posterior

covariance. In this decomposition of Cov(ϑ∗ |x), the first term approximates the mean
of the posterior covariance matrix under the sampling distribution, and the second term
approximates the covariance of the posterior mean under the sampling distribution. Thus,
the first term reflects Bayesian model-based uncertainty averaged with respect to frequentist
sampling variability, and the second term reflects frequentist sampling-based uncertainty of
the Bayesian model-based estimate. To make these concepts more concrete, we consider a
simple Gaussian location model.

EXAMPLE 2.1 (BayesBag for the Gaussian location model). Consider an i.i.d. Gaus-
sian location model xn ∼ N (θ,V ) with known covariance matrix V , and assume a con-
jugate prior on the mean: θ ∼N (0, V0). Given data x= (x1, . . . , xN ), the posterior distri-
bution is θ |x∼N (RN x̄N , VN ), where x̄N := N−1

∑N
n=1 xn, RN := (V −1

0 V/N + I)−1,
and VN := (V −1

0 +NV −1)−1. For intuition, one can think of RN ≈ I since ‖RN − I‖=
O(N−1). Meanwhile, the bagged posterior mean and covariance are

E(ϑ∗ |x) = E(RMX̄
∗
M |x) =RM x̄N

Cov(ϑ∗ |x) = E(VM |x) + Cov(RMX̄
∗
M |x) = VM +M−1RM Σ̂NRM ,(6)

where Σ̂N := N−1
∑N

n=1(xn − x̄N )(xn − x̄N )> is the sample covariance. In particu-
lar, when M = N , these expressions simplify to E(ϑ∗ |x) = E(ϑ |x) and Cov(ϑ∗ |x) =

Cov(ϑ |x) + N−1RN Σ̂NRN . Unlike the standard posterior, which simply assumes the
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data have covariance V , the bagged posterior accounts for the true covariance of the data
through the inclusion of the term involving Σ̂N . Thus, we see that the bagged posterior co-
variance is the sum of the Bayesian model-based uncertainty plus the frequentist sampling
uncertainty. �

The decomposition of the bagged posterior covariance also gives insight into when we
can expect the bagged posterior to be advantageous compared to the standard posterior.
Again, the case of the Gaussian location model is instructive.

EXAMPLE 2.2 (Uncertainty calibration in the Gaussian location model). Suppose the
data areX1, . . . ,XN i.i.d.∼ P◦, and denote the mean and covariance of a single observation
by µ◦ := E(X1) and Σ◦ := Cov(X1), respectively. Assume µ◦ and Σ◦ are finite. Then the
optimal parameter (in terms of log loss) is θ◦ = µ◦ and θ |X1:N converges in distribution
to a point mass at µ◦ (see Section 3 for details). For quantifying uncertainty about θ◦, the
posterior is appropriately calibrated if the posterior covariance is equal to

E[(RNX̄N − µ◦)(RNX̄N − µ◦)>]

=N−1RNΣ◦RN + (RN − I)µ◦µ
>
◦ (RN − I)

=N−1Σ◦ +O(N−2).

If the model is correctly specified, then Σ◦ = V . Hence, in this case the posterior is cor-
rectly calibrated, as expected. If we choose M = 2N then BayesBag is also correctly cali-
brated since the covariance of the bagged posterior is then approximatelyN−1V =N−1Σ◦.
On the other hand, if we use the default choice ofM =N then the covariance of the bagged
posterior is approximately 2N−1V = 2N−1Σ◦, overestimating the true uncertainty by only
a factor of 2.

If the model is misspecified, the posterior covariance underestimates the true uncertainty
unless Σ◦ �NVN = V RN (that is, unless V RN −Σ◦ is positive semidefinite). More gen-
erally, when N is sufficiently large, the posterior covariance will underestimate (respec-
tively, overestimate) the true uncertainty about θ>v for some v ∈ RD if any eigenvalue of
V − Σ◦ is negative (respectively, positive). Meanwhile, the bagged posterior covariance
with M =N is

VN +N−1RN Σ̂NRN ≈N−1(V + Σ◦),

so it provides an (asymptotically) conservative uncertainty estimate. In the worst-case sce-
nario of V � Σ◦, the standard posterior dramatically underestimates the true uncertainty
about θ◦ while the bagged posterior is correctly calibrated. �

Returning to the generic decomposition given by Eq. (5), we show in Section 3 that
for any sufficiently smooth finite-dimensional parametric model, the covariance of the
bagged posterior behaves (qualitatively) similarly to Examples 2.1 and 2.2. In particular, if
X1, . . . ,XN i.i.d. ∼ P◦, then for N →∞,

Cov(ϑ∗ |x)≈M−1J−1
◦ +M−1J−1

◦ I◦J
−1
◦ ,(7)
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where J−1
◦ is the “model” covariance (analogous to V ) and J−1

◦ I◦J
−1
◦ is the “sand-

wich” covariance (analogous to Σ◦). Behavior analogous to that of the Gaussian location
model case hold: (1) the (rescaled) sandwich covariance N−1J−1

◦ I◦J
−1
◦ correctly quan-

tifies the (asymptotic) uncertainty about the optimal parameter θ◦; (2) when the model is
correctly specified, J−1

◦ = J−1
◦ I◦J

−1
◦ ; and (3) when the model is misspecified, typically

J−1
◦ 6= J−1

◦ I◦J
−1
◦ .

2.3.2. Justification of recommended bootstrap size. Using the results from the previous
section, we can fully justify our default recommendation of M =N and our definitions for
M̂∞,opt(f) and I(f). Let id : θ 7→ θ denote the identity function. Since we can redefine θ
to be f(θ), without any loss of generality, we assume that θ ∈ R and consider M̂∞,opt =

M̂∞,opt({id}) = M̂∞,opt(id). Let σ2
◦ := J−1

◦ denote the model-based asymptotic variance
and s2

◦ := J−1
◦ I◦J

−1
◦ denote the sampling-based (sandwich) variance.

Conceptually, the situation is as follows. Bootstrapping with M =N typically increases
the variance, and as M grows the variance decreases. We are trying to balance these two
tendencies in order to match the frequentist sandwich (co)variance. In particular, the bagged
posterior variance needs to be approximately s2

◦/N in order to be well-calibrated. If follows
from Eq. (7) that the bagged posterior variance when using a bootstrap sample size M is
v∗M ≈ (σ2

◦+s2
◦)/M . Setting (σ2

◦+s2
◦)/M = s2

◦/N and solving forM shows that we should
choose

M =M∞,opt := (1 + σ2
◦/s

2
◦)N.(8)

Thus, if s2
◦ = σ2

◦ (i.e., the model variance is correctly specified), then we should choose
M = 2N ; this is in agreement with Example 2.2. If s2

◦ > σ2
◦ , then the sampling-based term

is larger, and we should choose M ∈ [N,2N). If s2
◦ < σ2

◦ , then M > 2N is preferred.
A conservative default would be to choose M = N since this protects against having

an over-confident posterior in the presence of misspecification and only over-inflates the
posterior variance by a factor of 2 when the model is correct. Alternatively, we can estimate
M∞,opt using Eq. (8) by plugging in an estimate of σ2

◦/s
2
◦. To obtain such an estimate,

we use the fact that the posterior variance satisfies vN ≈ σ2
◦/N and the bagged posterior

variance satisfies v∗N ≈ (σ2
◦ + s2

◦)/N . Combining these two equations and solving, we find
that σ2

◦/s
2
◦ ≈ vN/(v∗N − vN ). Plugging this into Eq. (8) yields Eq. (3).

Using the finite-sample covariance expression in Eq. (6) for the bagged posterior under
the Gaussian location model, we can also define a finite-sample version of M∞,opt, denoted
Mfs,opt. To construct an estimator for Mfs,opt, let v0 denote the prior variance and define the
estimators σ̂2

◦ :=Nv0vN/(v0 − vN ) and

ŝ2
◦ :=

v2
0

(v0 − vN )2
(v∗N − vN )N.

The estimator for Mfs,opt is given by

M̂fs,opt :=
N

2
+
Nσ̂2
◦

2ŝ2
◦
− σ̂2

◦
v0

+

{(
N

2
+
Nσ̂2
◦

2ŝ2
◦

)2

− Nσ̂2
◦

v0

}1/2

(9)

when the right hand side of Eq. (9) is well-defined and positive; otherwise, we set M̂fs,opt =
N and I = NA. See Appendix F for the derivation of Eq. (9).
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REMARK. Fundamentally, we construct M̂∞,opt and M̂fs,opt using an estimator for the
sandwich variance s2

◦, which may be difficult to accurately estimate. However, note that
we can always default to the conservative choice M = N when it is hard to estimate the
optimal choice of M . Further, the optimal bootstrap sample size estimators will tend to be
effective when f(θ) is roughly Gaussian-distributed, and since we only need to estimate the
sandwich variance for the univariate quantity f(θ), it is plausible to find roughly Gaussian
behavior even with relatively small samples sizes and even if θ is high-dimensional. Thus,
the applicability of M̂∞,opt and M̂fs,opt is greater it might first appear.

2.3.3. Justification of the model–data mismatch index. We can now explain our defini-
tion of the mismatch index I . Let M̂opt denote either M̂∞,opt or M̂fs,opt. When the model is
correctly calibrated, we expect M̂opt ≈ 2N , which leads to I ≈ 0. When the standard pos-
terior is overconfident (respectively, under-confident), we expect M̂opt < 2N (respectively,
M̂opt > 2N ), which leads to I > 0 (respectively, I < 0).

To understand why we set I = NA when M̂∞,opt <N , we consider the cases of M̂∞,opt

and M̂fs,opt separately. By construction, M̂∞,opt ∈ [N,∞) unless v∗N < vN ; in which case
M̂∞,opt < 0, which is nonsensical. On the other hand, M̂fs,opt <N when ŝ2

◦/N > 0.5v0{1+
v0/(2Nσ̂

2
◦ + v0)}; in other words, when the (estimated) optimal posterior variance is large

relative to the prior variance, which indicates that the assumptions used to construct M̂fs,opt
do not hold (since posterior variance should generally be smaller than prior variance). In
either case, M̂opt <N indicates that either (1) there is severe model–data mismatch or (2)
the posterior is multimodal or otherwise far from a Gaussian approximation. Hence, we
choose to set I = NA when M̂opt <N .

2.4. Justification for BayesBag in the model selection setting. In model selection, in-
stead of a continuous parameter θ, we have a finite or countable set of models M. The pos-
terior probability of a model m ∈M isQ(m |x)∝ p(x |m)Q0(m), where x= (x1, . . . , xN ),
p(x |m) is the marginal likelihood, and Q0(m) is the prior probability. In the notation of
Eq. (1), the bagged posterior for model m is

Q∗(m |x) :=
1

NM

∑
x∗

Q(m |x∗).(10)

2.4.1. Sketch of statistical theory for model selection. As first noted in Berk (1966),
when there are two or more models that explain the data equally well, the posterior typi-
cally does not converge on a single model. For instance, consider the case of two models,
M = {1,2}, and suppose X = (X1, . . . ,XN ) where X1,X2, . . . are i.i.d. For distinct mis-
specified models, if limN→∞E{log p(X |1)− log p(X |2)}= 0, then the posterior mass on
model 1 converges in distribution to a Bern(1/2) random variable (Yang and Zhu, 2018):

Q(1 |X)
D−−−−→

N→∞
Bern(1/2).(11)

Since both models provide equally good approximations of the true data-generating distri-
bution, the ideal outcome would be Q(1 |X) =Q(2 |X) = 1/2, but Eq. (11) describes the
opposite behavior: a single model has posterior probability 1.
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Meanwhile, BayesBag model selection does not exhibit this pathological behavior.
Rather, as we show in Theorem 4.1, the bootstrap resampling stabilizes the model prob-
abilities such that when M =N , the bagged posterior mass on model 1 converges in dis-
tribution to a Unif(0,1) random variable:

Q∗(1 |X)
D−−−−→

N→∞
Unif(0,1).

Moreover, if we choose M such that M = o(N), then the bagged posterior mass on model
1 has the ideal behavior of converging to 1/2:

Q∗(1 |X)
D−−−−→

N→∞
1/2.

2.4.2. Justification of recommended bootstrap size for model selection. In practice,
it seems implausible that two models would explain the true data-generating distribution
exactly equally well. However, it turns out that even if model 1 dominates model 2 asymp-
totically, for a finite sample size it can happen that N−1E{log p(X |1)− log p(X |2)} ≈ 0,
such that model 2 dominates model 1 roughly half of the time. The analysis of Yang
and Zhu (2018) was motivated by widespread observations of this type of phenomena in
Bayesian phylogenetic tree reconstruction (Alfaro, Zoller and Lutzoni, 2003; Douady et al.,
2003; Wilcox et al., 2002), though it certainly occurs more generally (Meng and Dunson,
2019) such as in economic modeling (Oelrich et al., 2020).

Thus, settingM =N appears to be a good default choice that will still behave fairly well
in the worst case. If large amounts of data are available and there is reason to believe that
many models have similar expected log-likelihoods, a choice such as M = dN/ log10(N)e
or M = dcNe for a moderate value of c such at 1/4 may be advisable.

3. Theory of parameter inference with BayesBag. In this section, we formally
present our general results on BayesBag in the parameter inference setting. This section
formalizes and generalizes the results sketched out in Section 2.3. Our main result (The-
orem 3.2) is a Bernstein–Von Mises theorem for the bagged posterior under sufficiently
regular finite-dimensional models. In particular, we show that while the standard Bayesian
posterior may be arbitrarily under- or over-confident when the model is misspecified, the
bagged posterior avoids over-confident uncertainty quantification by accounting for sam-
pling variability. Since Theorem 3.2 is asymptotic in nature, it ignores the potentially sig-
nificant finite-sample benefits of both the bootstrap and the posterior, neither of which
requires the normality assumptions of our asymptotic analysis. Nevertheless, the theorem
offers valuable statistical justification for BayesBag in general and for the use of M̂∞,opt
and I in particular. Theorem 3.1 is a simpler version of the same result for the univariate
Gaussian location model, in which case the statement and proof of the theorem are much
more transparent.

3.1. Background. We now restate more precisely the setting that was informally in-
troduced in Sections 1 and 2. Consider a model {Pθ : θ ∈ Θ} for independent and iden-
tically distributed (i.i.d.) data x1, . . . , xN , where xn ∈ X and Θ ⊂ RD . Denote x1:N =
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(x1, . . . , xN ) and suppose pθ is the density of Pθ with respect to some reference measure.
The standard Bayesian posterior given x1:N is

Π(dθ |x1:N ) :=

∏N
n=1 pθ(xn)

p(x1:N )
Π0(dθ),

where Π0(dθ) is the prior distribution and p(x1:N ) :=
∫
{
∏N
n=1 pθ(xn)}Π0(dθ) is the

marginal likelihood. When convenient, we will use the shorthand notation ΠN :=
Π(· |x1:N ).

Assume the observed data X1, . . . ,XN is actually generated i.i.d. from some unknown
distribution P◦. Suppose there is a unique parameter θ◦ that minimizes the Kullback–
Leibler divergence from P◦ to the model, or equivalently, θ◦ = arg maxθ∈Θ E{log pθ(X1)}.
Denote the log-likelihood by `θ := log pθ , its gradient by ˙̀

θ := ∇θ`θ , and its Hessian
by ῭

θ := ∇2
θ`θ . Furthermore, define the information matrices Jθ := −E{῭θ(X1)} and

Iθ := Cov{ ˙̀
θ(X1)}.

Let θ̂N := arg maxθ
∏N
n=1 pθ(Xn) denote the maximum likelihood estimator. Under

regularity conditions, θ̂N is asymptotically normal in the sense that

N1/2(θ̂N − θ◦)
D→N (0, J−1

θ◦
Iθ◦J

−1
θ◦

),(12)

where J−1
θ◦
Iθ◦J

−1
θ◦

is known as the sandwich covariance (White, 1982). Under mild con-
ditions, the Bernstein–Von Mises theorem (Kleijn and van der Vaart, 2012; van der Vaart,
1998, Ch. 10) guarantees that for ϑ∼ΠN ,

N1/2(ϑ− θ̂N ) |X1:N
D→N (0, J−1

θ◦
).(13)

Hence, the standard posterior is correctly calibrated, asymptotically, if the covariance ma-
trices of the Gaussian distributions in Eqs. (12) and (13) coincide – that is, if J−1

θ◦
Iθ◦J

−1
θ◦

=

J−1
θ◦

, or equivalently, Iθ◦ = Jθ◦ . In particular, if Iθ◦ = Jθ◦ , then Bayesian credible sets are
(asymptotically) valid confidence sets in the frequentist sense: sets of posterior probability
1− α contain the true parameter with P∞◦ -probability 1− α, under mild conditions.

If the model is well-specified, that is, if P◦ = Pθ† for some parameter θ† ∈Θ (and thus
θ◦ = θ† by the uniqueness assumption), then Iθ◦ = Jθ◦ under very mild conditions. On the
other hand, if the model is misspecified — that is, if P◦ 6= Pθ for all θ ∈Θ — then although
Eq. (13) still holds, typically Iθ◦ 6= Jθ◦ . If Iθ◦ 6= Jθ◦ , then the standard posterior is not
correctly calibrated, and in fact, asymptotic Bayesian credible sets may be arbitrarily over-
or under-confident.

Although Eqs. (12) and (13) are only asymptotic, we should take little comfort that the
non-asymptotic situation will somehow be better. We have already seen in Example 2.2
that, no matter the sample size, the standard posterior for the Gaussian location model can
be badly miscalibrated. The prior may help to down-weight a priori unlikely hypotheses,
but it cannot account for misspecification in the likelihoods among “reasonable” parameter
values.
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3.2. BayesBag for parameter inference. LetX∗1:M denote a bootstrapped copy ofX1:N

with M observations; in other words, each observation Xn is replicated Kn times in X∗1:M ,
where K1:N ∼Multi(M,1/N) is a multinomial-distributed count vector of length N . We
define the bagged posterior Π∗(· |X1:N ) by setting

Π∗(A |X1:N ) := E{Π(A |X∗1:M ) |X1:N}

for all measurable A⊆Θ. (Note that this is equivalent to the informal definition in Eq. (1).)
In order words, BayesBag uses bootstrapping to average posteriors over approximate real-
izations of data from the true data-generating distribution. Depending on M , the bagged
posterior may be more diffuse or less diffuse than the standard posterior. To avoid notational
clutter, we suppress the dependence of Π∗(· |X1:N ) on M .

We will typically use the shorthand notation Π∗N := Π∗(· |X1:N ) and we let ϑ∗ |X1:N ∼
Π∗N denote a random variable distributed according to the bagged posterior. We assume
Θ is an open subset of RD and we write dθ to denote Lebesgue measure on Θ. Further,
we assume ΠN and Π∗N have densities πN and π∗N , respectively, with respect to Lebesgue
measure. Note that π∗N exists if πN exists.

3.3. Asymptotic normality of BayesBag for the Gaussian location model. Before de-
veloping a general Bernstein–Von Mises theorem for BayesBag, as a warmup we prove
Theorem 3.1, a simpler version of the result in the case of the Gaussian location model
from Examples 2.1 and 2.2. Although it is a special case of Theorem 3.2, the statement
and proof of Theorem 3.1 are much easier to follow and it still captures the essence of the
general result. For maximal clarity, we consider the case of univariate data.

THEOREM 3.1. Let X1,X2, . . . ∈ R i.i.d. such that E(|X1|3) <∞. Let ϑ∗ |X1:N ∼
Π∗N and suppose c := limN→∞M/N ∈ (0,∞) for M = M(N). Then for almost every
(X1,X2, . . .),

N1/2
{
ϑ∗ −E(ϑ∗ |X1:N )

}
|X1:N

D→N (0, V/c+ Var(X1)/c).(14)

In other words, with probability 1, the bagged posterior converges weakly toN (0, V/c+
Var(X1)/c) after centering at its mean and scaling by N1/2. The proof of Theorem 3.1 is
in Appendix G.1.

3.4. Bernstein–Von Mises theorem for BayesBag. We now turn to the main result of
this section: a general Bernstein–Von Mises theorem for BayesBag. Recall that if the stan-
dard posterior were asymptotically correctly calibrated, it would have asymptotic covari-
ance J−1

θ◦
Iθ◦J

−1
θ◦

(the sandwich covariance), whereas in fact it has asymptotic covariance
J−1
θ◦

. Letting c := limN→∞M/N as in Theorem 3.1, we show that the asymptotic covari-
ance of the bagged posterior is J−1

θ◦
/c+ J−1

θ◦
Iθ◦J

−1
θ◦
/c, which mirrors the form of Eq. (14)

but is much more general. Our technical assumptions are essentially the same as those
used by Kleijn and van der Vaart (2012) to prove the Bernstein–Von Mises theorem under
misspecification for the standard posterior.

For a measure ν and function f , we will make use of the shorthand ν(f) :=
∫
fdν. Let

X1:∞ denote the infinite sequence of data (X1,X2, . . . ).
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THEOREM 3.2. Suppose X1,X2, . . . i.i.d.∼ P◦ and assume that:

(i) θ 7→ `θ(X1) is differentiable at θ◦ in probability;
(ii) there is an open neighborhood U of θ◦ and a function mθ◦ : X → R such that
P◦(m

3
θ◦

)<∞ and for all θ, θ′ ∈ U , |`θ − `θ′ | ≤mθ◦ ‖θ− θ′‖2 a.s.[P◦];
(iii) −P◦(`θ − `θ◦) = 1

2(θ− θ◦)>Jθ◦(θ− θ◦) + o(‖θ− θ◦‖22) as θ→ θ◦;
(iv) Jθ◦ is an invertible matrix;
(v) letting ϑ∗ ∼Π∗N , it holds that conditionally on X1:∞, for almost every X1:∞, for every

sequence of constants CN →∞,

E
{

Π(‖ϑ∗ − θ◦‖2 >CN/M
1/2 |X∗1:M )

∣∣∣X1:N

}
→ 0;

and
(vi) c := limN→∞M/N ∈ (0,∞).

Then, letting ϑ∗ ∼Π∗N , we have that conditionally on X1:∞, for almost every X1:∞,

N1/2(ϑ∗ − θ◦)−∆N |X1:N
D→N (0, J−1

θ◦
/c+ J−1

θ◦
Iθ◦J

−1
θ◦
/c),

where ∆N :=N1/2J−1
θ◦

(PN − P◦) ˙̀
θ◦ and PN :=N−1

∑N
n=1 δXn .

The proof of Theorem 3.2 is in Appendix G.2. To interpret this result, it is helpful to
compare it to the behavior of the standard posterior. Under the conditions of Theorem 3.2,
letting ϑ∼ΠN , then almost surelyN1/2(ϑ−θ◦)−∆N

D→N (0, J−1
θ◦

) by Kleijn and van der
Vaart (2012, Theorem 2.1 and Lemma 2.1). Thus, the bagged posterior and the standard
posterior for N1/2(θ − θ◦) have the same asymptotic mean, ∆N , but the bagged posterior
has asymptotic covariance J−1

θ◦
/c+ J−1

θ◦
Iθ◦J

−1
θ◦
/c instead of J−1

θ◦
.

3.5. Extensions. There are many possible extensions to Theorem 3.2.

Regression models. Our main results in this section as well as the next section on model
selection (that is, Theorem 3.2, Theorem 4.1, and Corollary 4.2) apply equally well to the
regression setting with random regressors where the data take the form Xn = (Yn,Zn) and
the models pθ(y |z) are conditional.

Alternative bootstrap methods. Much of bootstrap theory extends beyond the multi-
nomial distribution for K1:N to other distributions such as those where K1, . . . ,KN are
weakly correlated random variables with mean 1 and variance 1 (van der Vaart and Wellner,
1996). Thus, we conjecture that Theorem 3.2 also holds when we use the bagged posterior
proportional to π0(θ)

∏N
n=1 pθ(Xn)Kn , where K1, . . . ,KN are independent nonnegative

random variables satisfying E(Kn) = 1 and Var(Kn) = 1 (n= 1, . . . ,N).

Dependent observations. We have also focused on the case of independent observa-
tions X1, . . . ,XN , but it is feasible to extend our theory and methodology to more complex
models. One possibility is to draw on the rich existing bootstrap literature for time series
and spatial models (Künsch, 1989; Peligrad, 1998). Alternatively, a model-based bootstrap
approach could be used by employing a nonparametric or rich parametric model to approx-
imate P◦. We leave investigation of these extensions for future work.
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4. Theory of model selection with BayesBag. The issues with Bayesian model se-
lection, which concerns a countable collection of models, are quite different from the chal-
lenges with Bayesian parameter inference, where we are dealing with continuous parameter
space. The central issue we will be concerned with is that posterior model probabilities can
be extremely unstable when there is model misspecification. In the spirit of bagging, Bayes-
Bag is able to stabilize the posterior model probabilities, thus improving reproducibility.

In Bayesian model selection, we have a countable set of models M. A model m ∈M
has prior probability Q0(m) and marginal likelihood

p(X1:N |m) =

∫ { N∏
n=1

pθm(Xn |m)

}
Π0(dθm |m),

where θm ∈Θm is now an element of a model-specific parameter space with prior distribu-
tion Π0(dθm |m). The posterior probability of m ∈M isQ(m |X1:N )∝ p(X1:N |m)Q0(m).

Recall from Eq. (10) that the bagged posterior probability of model m ∈M is

Q∗(m |X1:N ) = E{Q(m |X∗1:M ) |X1:N}.

We develop our asymptotic theory in the case of two models, M = {1,2}. For the mo-
ment, we assume each model contains a single parameter value, that is, |Θm| = 1, but
we allow the observation model pN (Xn |m) to depend on the number of observations,
so that p(X1:N |m) =

∏N
n=1 pN (Xn |m). (We generalize to the case of nondegenerate

parameter spaces Θm in Corollary 4.2.) Let ZN := log p(X1:N |1) − log p(X1:N |2) and
ZNn := log pN (Xn |1)− log pN (Xn |2) for n= 1, . . . ,N . Assume the data X1,X2, . . . are
i.i.d. from some unknown distribution P◦.

To perform an asymptotic analysis that captures the behavior of the nonasymptotic
regime in which the mean of ZN is comparable to its standard deviation, we assume
that limN→∞N

1/2E(ZNn) = µ∞ ∈R while the variance remains fixed: Var(ZNn) = σ2
∞.

Thus, E(ZN )≈N1/2µ∞ and Std(ZN ) =N1/2σ∞ when N is large, so whenever µ∞ 6= 0
the deviation of E(ZN ) from zero remains nontrivial relative to Std(ZN )—even in the
asymptotic regime. The effect size δ∞ := µ∞/σ∞ quantifies the amount of evidence in fa-
vor of model 1. If δ∞ > 0, then model 1 is favored, whereas model 2 is favored if δ∞ < 0.

Our next result, which is similar in spirit to the bagging result of Bühlmann and Yu
(2002, Proposition 2.1), shows that (1) the posterior probability of model 1 converges to a
Bernoulli random variable with parameter depending on δ∞ and (2) when M = Θ(N), the
bagged posterior probability of model 1 converges to a continuous random variable on [0,1]
with a distribution that depends on δ∞. Hence, in the context of model selection, BayesBag
yields more stable and reproducible inferences than the standard posterior. Let Φ(t) denote
the cumulative distribution function of the standard normal distribution.

THEOREM 4.1. Let X1,X2, . . . i.i.d.∼ P◦ for some distribution P◦ and define ZNn :=
log pN (Xn |1)− log pN (Xn |2). If

(i) limN→∞N
1/2E(ZNn) = µ∞ ∈R,

(ii) Var(ZNn) = σ2
∞ ∈ (0,∞) for all N ,

(iii) lim supN→∞E(|ZNn|2+ε)<∞ for some ε > 0, and
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(iv) c := limN→∞M/N ∈ [0,∞) with M =M(N),

then

1. for the standard posterior, Q(1 |X1:N )
D→ U ∼ Bern(Φ(µ∞/σ∞));

2. for the bagged posterior, if c > 0, then

Q∗(1 |X1:N )
D→ U∗

whereU∗ is a random variable on [0,1] with probability density f(u) = Φ′
(
c−1/2Φ−1(u)−

µ∞/σ∞
)
c−1/2/Φ′(Φ−1(u)) for u ∈ (0,1); and

3. for the bagged posterior, if c= 0, then

Q∗(1 |X1:N )
P→ 1/2.

In particular, if µ∞ = 0 and c > 0, then we have Q(1 |X1:N )
D→ Bern(1/2) and

Q∗(1 |X1:N )
D→ Unif(0,1).

The proof is in Appendix G.3. Fig. 3 illustrates how Theorem 4.1 establishes the greater
stability of BayesBag versus standard Bayes for model selection. Even for effect sizes
δ∞ > 1, which should strongly favor model 1, the standard posterior overwhelmingly favors
model 2 with non-negligible probability — that is, P(Q(1 |X1:N ) ≈ 0) is non-negligible.
Meanwhile, the probability that the bagged posterior strongly favors model 2 goes to zero
rapidly as δ∞ increases — that is, P(Q∗(1 |X1:N )≈ 0)→ 0 rapidly as δ∞ grows. For ex-
ample, when δ∞ = 2 and c= 1, P(U = 0)> 0.02 whereas P(U∗ < 0.1)< 7× 10−5. Thus,
in this example, in 1 out of 50 experiments the standard posterior will overwhelmingly fa-
vor the “wrong” model, whereas BayesBag will somewhat strongly favor the wrong model
in only around 7 out of 100,000 experiments.

In Corollary 4.2, we extend Theorem 4.1 to nondegenerate parameter spaces Θ1 ⊂RD1

and Θ2 ⊂ RD2 . To avoid tedious arguments, we only consider the case where µ∞ = 0.
For m ∈M, define `m,θm(Xn) := log pθm(Xn |m) and denote the optimal parameter by
θm◦ := arg maxθm∈Θm

E{`m,θm(X1)}.
For arbitrary data x, let Λx := log p(x |1)Q0(1)− log p(x |2)Q0(2). We will assume that

conditionally on (X1,X2, . . .), for almost every (X1,X2, . . .),

ΛX∗1:M =
1

2
(D2 −D1) logN +

M∑
m=1

log
pθ1◦(X

∗
m |1)

pθ2◦(X
∗
m |2)

+OP+(1),(15)

where X∗1:M is bootstrapped from X1:N and OP+(1) denotes a (random) quantity which
is bounded in (outer) probability. Eq. (15) holds when X∗1:M is replaced by X1:N , under
standard regularity assumptions (Clarke and Barron, 1990). Thus, we expect Eq. (15) to
hold under similar but slightly stronger conditions, since we must consider a triangular
array rather than a sequence of random variables.

COROLLARY 4.2. Let X1,X2, . . . i.i.d. ∼ P◦ and assume the regularity conditions
in Theorem 3.2 hold for both models 1 and 2. Further assume that Eq. (15) holds,
E{`1,θ1◦(X1)−`2,θ2◦(X1)}= 0, and Var{`1,θ1◦(X1)−`2,θ2◦(X1)} ∈ (0,∞). Then the con-
clusions of Theorem 4.1 apply.
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Fig 3: Asymptotic distribution of posterior probability of model 1 under the standard poste-
rior (U ) and bagged posterior (U∗). Larger values of the effect size δ∞ = µ∞/σ∞ indicate
stronger evidence for model 1. (A) Probabilities that U = 0 and U∗ < 0.1 as a function of
δ∞. (B) Densities of U∗ for a range of δ∞ values, with c= 1. (C) Densities of U∗ as δ∞
and c vary.

The proof is in Appendix G.4.

5. Simulation studies.

5.1. Linear regression. We performed an extensive collection of simulations to assess
the performance of BayesBag in the setting of linear regression. Linear regression is an
ideal model for investigating the properties of BayesBag and the usefulness of the mis-
match index I and optimal bootstrap sample size estimator M̂opt, since all computations
of posterior quantities can be done in closed form, yet it is a rich enough model that we
can explore many kinds of model–data mismatch. For linear regression, the data consist
of regressors Zn ∈ RD and observations Yn ∈ R (n = 1, . . . ,N) while the parameter is
θ = (θ0, . . . , θD) = (logσ2, β1, . . . , βD) ∈ RD+1. Assuming conjugate priors, the genera-
tive model is

σ2 ∼ Γ−1(a0, b0)
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Fig 4: Parameter inference performance on default, 1-sparse, and nonlinear data for λ ∈
{1,4,16}. A positive improvement value indicates that the bagged posterior outperformed
the standard posterior on that dataset. Scenarios marked with a ? (respectively, •) exhibited
a statistically significant difference in the positive (respectively, negative) direction (p <
0.05, two-sided Wilcoxon signed-rank test). RSE = relative squared error of β◦. LPD = log
posterior density at β◦.
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Fig 5: Parameter inference performance on default and correlated data for N ∈ {50,200}.
See caption for Fig. 4 for further explanation.

βd |σ2 i.i.d.∼ N (0, σ2/λ) d= 1, . . . ,D,

Yn |Zn, β, σ2 indep∼ N (Z>n β,σ
2) n= 1, . . . ,N,

where a0, b0, and λ are hyperparameters that will be specified later. We simulated data by
generating Zn

i.i.d.∼ G, εn
i.i.d.∼ N (0,1), and

Yn = f(Zn)>β† + εn(16)

for n= 1, . . . ,N , where we used two settings for each of the regressor distribution G, the
regression function f , and the coefficient vector β† ∈RD .

• Regressor distribution G. By default, we used G = N (0, I); we refer to this as the
uncorrelated setting. Alternatively, we used a correlated setting, where, for h = 10,
Z ∼ G was defined by generating ξ ∼ χ2(h) and then Z | ξ ∼ N (0,Σ) where Σdd′ =

exp{−(d − d′)2/64}/(ξdξd′) and ξd =
√
ξ/(h− 2) 1(d is odd). The motivation for the

correlated sampling procedure was to generate correlated regressors that have differ-
ent tail behaviors while still having the same first two moments, since regressors are
typically standardized to have mean 0 and variance 1. Note that, marginally, Z1,Z3, . . .
are each rescaled t-distributed random variables with h degrees of freedom such that
Var(Z1) = 1, and Z2,Z4, . . . are standard normal.
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• Regression function f . By default, we used a linear regression function f(z) = z. Al-
ternatively, we used the nonlinear function f(z) = (z3

1 , . . . , z
3
D)>.

• Coefficient vector β†. By default, we used a dense vector with β†d = 2(5−d)/2 for d=
1, . . . ,D. Alternatively, we used a k-sparse vector with β†d = 1 if d ∈ {bj(D+ 1

2)/(k+
1)c | j = 1, . . . , k} and β†d = 0 otherwise.

For brevity, we omit the default setting labels when indicating which settings of G, f ,
and β† were used in each dataset. For example, we abbreviate uncorrelated-nonlinear-2-
sparse as nonlinear-2-sparse, and correlated-linear-dense as correlated. We refer to the
dataset with all three defaults as default.

Throughout this section, unless stated otherwise, the data were generated with D = 10
and N = 50, and the model hyperparameters were set to a0 = 2, b0 = 1, and λ= 1. Each
experimental setting was replicated 50 times. BayesBag was run with M = M̂fs,opt and
B = 100 since pilot experiments revealed no noticeable differences when larger values of
B were used.

5.1.1. Parameter inference. We begin by assessing how well the standard posterior and
the bagged posterior estimated the optimal coefficient vector β◦ := arg minβ∈Rd E{(Y1 −
Z>1 β)2}. For the linear simulation setting (regardless of G), β◦ = β†; for the uncorrelated
and nonlinear setting, β◦ = 3β†. Let β̂ and logπ(β) denote, respectively, the (standard or
bagged) posterior mean and log posterior density of β. We quantify estimation accuracy by
computing the relative squared error (RSE) ‖β̂ − β◦‖22/‖β◦‖22 and the log posterior density
(LPD) logπ(β◦). For all experiments, we first ran BayesBag with M = N in order to
compute M̂fs,opt and I . If I 6= NA, we reran BayesBag using M = M̂fs,opt. If I = NA,
we reran BayesBag using M = 2N because we found that I = NA typically indicated
a poorly chosen prior (either because the true parameter was unlikely or the model was
poorly identified), which we could best mitigate by using more data.

Almost universally, the bagged posterior performed as well as or better than the stan-
dard posterior in terms of both relative squared error and log posterior density. Fig. 4
compares performance on default, 1-sparse, and nonlinear data for the varying prior
choices λ ∈ {1,4,16}. The benefits of BayesBag were especially large for the excessively
strong λ = 16 prior. As expected, BayesBag was also particularly effective on the mis-
specified nonlinear data. Fig. 5 compares performance on default and correlated data for
N ∈ {50,500}. Because the prior on β was very weak, there were significant identifia-
bility issues when the data were heavily correlated—particularly in the small data regime
of N = 50. The only case in which BayesBag performed noticeably worse than the stan-
dard posterior was in terms of relative squared error on the correlated data (Fig. 5A–B).
However, BayesBag still performed better in terms of log posterior density (Fig. 5C–D),
indicating superior calibration of the parameter estimate at the cost of a small additional
bias.

5.1.2. Model criticism using the mismatch index. Next, we reconsider the Section 5.1.1
scenarios from the perspective of model criticism. Our results demonstrate how I can be
used to detect model–data mismatch when either (a) the likelihood is misspecified or (b)
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Fig 6: Model–data mismatch indices I for selected parameters as well as the overall I value
for default, 1-sparse, and nonlinear data for λ ∈ {1,4,16}. We only display one component
of β since the I values followed the same distribution for all components.
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the likelihood is well-specified but the prior is poorly chosen or some model parameters are
poorly identified.

Dense versus sparse coefficient vector. We first consider the effects of varying prior
choices. Fig. 6 compares the mismatch index with default and 1-sparse data for λ ∈
{1,4,16}. For the default data with a dense coefficient vector, the larger λ values result
in a prior on β that is too concentrated near zero, leading to larger I values. The settings
of λ = 4 and λ = 16 resulted in I = NA for many of the datasets. For the 1-sparse data,
on the other hand, a larger λ is more appropriate since all but one coefficient is zero. Thus,
I was at most 0.5 for λ ∈ {1,4}, although the stronger prior resulting from λ= 16 led to
I = NA.

Linear versus nonlinear regression function. Finally, we consider misspecified data.
Fig. 6 compares the mismatch index with default and nonlinear data for λ ∈ {1,4,16}.
Due to the misspecification, I = NA for all choices of λ.

Correlated versus uncorrelated regressors. See Appendix C.

5.1.3. Model selection. We conclude our simulation study with feature selection in
linear regression. For each γ ∈ {0,1}D , we define a model such that the dth component is
included in the linear regression if and only if γd = 1. We consider a collection of models
Mk? := {γ ∈ {0,1}D |

∑D
d=1 γd ≤ k?} where k? ∈ {1, . . . ,D}. Let Z ∈RN×D denote the

matrix with the nth row equal to Zn and let Zγ denote the submatrix of Z that includes
the dth column if and only if γd = 1. Letting Dγ :=

∑D
d=1 γd, conditional on model γ, the

parameter space is Θγ = RDγ+1 and the generative model is

σ2 ∼ Γ−1(a0, b0)

βd |σ2 i.i.d.∼ N (0, σ2/λ) d= 1, . . . ,Dγ

Yn |Zγ , β, σ2 indep∼ N (Z>γ,nβ, σ
2) n= 1, . . . ,N.

To perform posterior inference for γ, we analytically compute the marginal likelihood for
each model γ, integrating out σ2 and β. The prior for model γ ∈Mk? was Q0(γ) ∝
q
Dγ
0 (1 − q0)D−Dγ , where q0 ∈ (0,1) is the prior inclusion probability of a single com-

ponent. For k-sparse data, we set q0 = k/D.
In the spirit of GWAS fine-mapping (Schaid, Chen and Larson, 2018), we created syn-

thetic data to simulate a scenario with many highly correlated regressors, of which only a
few regressors are truly “causal.” Specifically, we generated datasets under the correlated-
k-sparse and correlated-k-sparse-nonlinear settings with either (a) D = 10, N = 50, and
k = 1, or (b) D = 20, N = 100, and k = 2. We used λ = 16, as this helped to penalize
the addition of extraneous features. We set M = N per our default recommendation and
k? = 2.

We are interested in verifying the theory of Section 4 in the finite-sample regime, which
suggests that when the model is misspecified, similar models may be assigned wildly vary-
ing probabilities under the standard posteriors, while the bagged posterior probabilities will
tend to be more balanced. In Figs. 7, 8 and C.2, we plot the standard and bagged posterior
inclusion probabilities (pips) for each component for all 50 replications. First, Fig. 7 shows
that when the model is correctly specified, Bayesian and BayesBag model selection behave
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Fig 7: Posterior inclusion probabilities (pips) for well-specified data. Components used
to generate the data are marked with a “+”. The horizontal dotted lines indicate the prior
inclusion probability and (when shown) the maximum inclusion probability (i.e., 1).

similarly. When N is small, BayesBag is slightly more conservative, assigning smaller
posterior probabilities to both causal and non-causal components.

The results in the misspecified setting, shown in Figs. 8 and C.2, are more interesting
and subtle. Due to the misspecification and correlated regressors, it no longer holds in
general that the “causal” components will be selected. In fact, if k? =D, it is possible that
all components will be selected — however, to maintain sparsity, we chose k? = 2. See
Appendix E for derivations and further discussion; see also Buja et al. (2019a,b).

Figure 8 shows the results for correlated-1-sparse-nonlinear data. The regressor distri-
bution G and coefficient vector β† are such that, by symmetry, components 5− i and 5 + i
(i= 0, . . . ,4) are equivalent. As N →∞, it is optimal to use component 3 (and/or compo-
nent 7) and component 2 (and/or component 8). The Bayesian pip for either component 3 or
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Fig 8: Posterior inclusion probabilities (pips) for misspecified correlated-1-sparse-
nonlinear data. See caption for Fig. 7 for further explanation.

7 is ≈ 1 (with the other ≈ 0) and similarly for components 2 and 8, demonstrating that the
standard posterior is highly unstable. On the other hand, the BayesBag pips for components
2, 3, 7, and 8 are close to uniformly distributed between 0 and 1, as expected. The Bayesian
pips are also highly unstable as N increases, as illustrated by the pips ≈ 1 for components
4, 5, and 6 when N = 5 × 103 that eventually go to zero as N increases; the BayesBag
pips, on the other hand, do not exhibit this instability. Thus, we see exactly the unstable
behavior predicted by Theorem 4.1 and Corollary 4.2. We defer discussion of Fig. C.2 and
Fig. C.3 – which shows model–data mismatch index values for a representative subset of
experimental configurations – to Appendix C.

5.2. Hierarchical Mixed Effects Logistic Regression Model. Next, we considered the
canonical setting of mixed effects models, where Bayesian inference provides superior
inferences compared to maximum likelihood and quasi-likelihood methods (Browne and
Draper, 2006) and, even with significant amounts of data, can lead to dramatically different
inferences (e.g., Giordano, Broderick and Jordan, 2018). Our objective was to compare the
predictive performance of the bagged posterior (BayesBag) to both the standard Bayesian
posterior and alternative likelihood-based methods. Specifically, we considered a 3-level
logistic regression model with mixed effects and a balanced design:

vk
i.i.d.∼ N (0, σ2

v), ujk
i.i.d.∼ N (0, σ2

u),

Yijk |Zijk, ujk, vk
indep∼ Bern(pijk), pijk = logit−1(β0 +Z>ijkβ + ujk + vk),
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Fig 9: Differences between log predictive densities (LPDs) of the standard posterior and
alternative methods on held-out data for the hierarchical mixed effects logistic regression
model.

for k = 1, . . . ,K , j = 1, . . . , J , i= 1, . . . , I , Zijk ∈RD , β0 ∈R, and β ∈RD . For example,
Browne and Draper (2006) take Yijk to be a binary indicator of whether a woman received
modern prenatal care during a pregnancy, with i indexing the birth, j indexing the mother,
and k indexing the Guatemalan community to which the mother belonged. Note that in this
particular example one would not expect a balanced design, but we used the balanced case
for simplicity. For the Bayesian model, we used relatively diffuse priors:

σv ∼ Unif(0,100), σu ∼ Unif(0,100),

βd
i.i.d.∼ N (0,102), d= 0, . . . ,D.

In our experiments, we took I = 3, J = 8, K = 100, and D = 3. We considered a well-
specified scenario and a misspecified scenario. In the well-specified scenario, we generated
covariates Zijkd

i.i.d.∼ N (0,1) and generated responses Yijk according to the assumed model
with β0 = 0.65, β = (1,1,1), and σv = σu = 3. For the misspecified scenario, we generated
data as in the well-specified case except that the random effects had unmodeled correlation
structure: (vk, u1k, . . . , uJk) was jointly Gaussian with correlation ρ between each pair of
components, where ρ= 0.99.

We compared the predictive performance of the standard posterior, the bagged posterior,
and four methods based on maximum likelihood estimation (with the random effects inte-
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grated out): the standard MLE, the bootstrapped MLE, the weighted likelihood bootstrap
(Newton and Raftery, 1994), and the posterior bootstrap (Lyddon, Walker and Holmes,
2018). See Section 7 for further discussion of these approaches. Fig. 9 shows the predictive
performance of each method relative to the standard Bayesian posterior. Both the standard
and bagged posteriors outperformed the MLE-based methods. In the well-specified sce-
nario, standard Bayes was slightly better than BayesBag, as expected. Meanwhile, in the
misspecified scenario, BayesBag had superior predictive performance compared to stan-
dard Bayes.

6. Experiments. In this section, we validate the effectiveness of BayesBag when ap-
plied to three diverse models using real-world data. Table 1 summarizes the real-world
datasets we used for the three models. Some implementation details are deferred to Ap-
pendix B.

6.1. Linear regression feature selection. We compared standard Bayesian and Bayes-
Bag model selection for linear regression on four real-world datasets. We set M =N per
our default recommendation. In the notation of Section 5.1, we used a prior inclusion prob-
ability of q0 = 3/D and maximum nonzero components k? =D, except for the residential
building dataset, where for computational tractability we used k? = 3. The residential build-
ing datasets required only 58 out of 104 principle components to explain 99% of the vari-
ance, whereas for the other three datasets, D out of D principle components were needed
to explain 99% of the variance. Thus, we expected the parameters to be well-identified for
all datasets except the residential building dataset. Therefore, we used λ= 16 for the resi-
dential building dataset and λ= 1 otherwise. The model mismatch indices (computed with
γd = 1 for all d = 1, . . . ,D) were in agreement with expectations, as only the residential
building dataset had a model mismatch index of NA. For the California housing, Boston
housing, and diabetes datasets, we obtained mismatch indices of, respectively, 1.00, 0.62,
and 0.03, indicating that the model was misspecified for the two housing datasets.

Fig. 10 shows the posterior inclusion probabilities (pips) for all four datasets. To com-
pare the reliability of the methods, we also ran each method on subsets of the data obtained
by randomly dividing each dataset into k roughly equally sized splits. We used k = 3 splits
for all datasets except for California housing, for which we used k = 5 since N was sub-
stantially larger. Fig. 10 shows the pips for these splits as well. Generally, across splits,
BayesBag produced lower-variance, more conservative pips that were more consistent with
the pips from the full datasets. In general, BayesBag has a regularizing effect in which the
pips tend to shrink toward the prior inclusion probability. These results were consistent
with the simulation experiments in Section 5.1.3.

6.2. Sparse logistic regression. We next considered a sparse logistic regression model.
We used the model and four cancer microarray datasets from Piironen and Vehtari (2017).
Since we do not have access to ground truth parameters, we followed the procedure of Pi-
ironen and Vehtari (2017) and computed the mean log predictive density (MLPD) on 50
random train–test splits of each dataset, holding out 20% as test data on each split. Because
the posteriors for all datasets are highly multimodal, M̂opt and I were not applicable. In-
stead, a small pilot run using M ∈ {N,1.5N,2N} suggested M = 2N provided the best
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TABLE 1
Real-world datasets used in experiments. LR = linear regression, BC = binary classification, PTR =

phylogenetic tree reconstruction.

Name Model N D

California housing LR 20,650 8
Boston housing LR 506 13

Diabetes LR 442 10
Residential building LR 371 105

Colon BC 62 2,000
Leukemia BC 72 7,129
Ovarian BC 54 1,536
Prostate BC 102 5,966

Whale mitochondrial coding DNA PTR 14 10,605
Whale mitochondrial amino acids PTR 14 3,535
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Fig 10: Posterior inclusion probabilities (pips) for four real-world datasets when the data is
split (•) and for the full dataset (?). Only components with pips above the prior inclusion
probability are shown. The horizontal dotted lines indicate the prior inclusion probability
and the maximum inclusion probability (i.e., 1).
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Fig 11: Predictive performance on 20% held-out test data across 50 random splits of the
data for sparse logistic regression. (A) Differences in mean log predictive density (MLPD)
between BayesBag and standard Bayes; a positive difference means BayesBag outper-
formed standard Bayes. Datasets marked with a ? (respectively, •) exhibited a statistically
significant difference in the positive (respectively, negative) direction (p < 0.05, two-sided
Wilcoxon signed-rank test). (B) MLPD of BayesBag and standard Bayes. The ratios of
variances of the MLPDs for colon, leukemia, ovarian, and prostrate were, respectively, 1.2,
3.1, 0.89, and 1.1.

performance for BayesBag. We used B = 50 bootstrap samples to approximate the bagged
posterior. (Nearly identical results were obtained with B = 25, which indicated that it was
not necessary to make B larger.) The results, shown in Fig. 11, suggest that the predictive
performance of the bagged posterior is (1) equal or slightly better on average and (2) more
stable—that is, lower-variance—across splits. The only exception was the ovarian dataset,
where BayesBag had slightly lower MLPD on average and slightly higher variance MLPDs.
However, the average MLPD difference was only−0.007 nats on the ovarian dataset, while
it was 0.018 nats on the colon dataset. The average MLPD difference for the leukemia and
prostate dataset were −0.008 and 0.006 nats, respectively, although these differences were
not statistically significant.

6.3. Phylogenetic tree reconstruction. Finally, we investigate the use of BayesBag
model selection for reconstructing the phylogenetic tree of a collection of species based
on their observed characteristics. This is an important model selection problem, due to the
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Fig 12: Comparison of standard Bayesian and BayesBag model selection consistency on
the whale dataset in terms of overlap of 99% high-probability regions (HPRs). To quantify
uncertainty in the overlap due to Monte Carlo error, 80% bootstrapped confidence intervals
are provided for the BayesBag overlaps.
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widespread use of phylogeny reconstruction algorithms. Systematists have exhaustively
documented that Bayesian model selection of phylogenetic trees can behave poorly. In
particular, the standard Bayesian approach can provide contradictory results depending on
what characteristics are used (for example, coding DNA or amino acid sequences), what
evolutionary model is used, or which outgroups are included (Alfaro, Zoller and Lutzoni,
2003; Buckley, 2002; Douady et al., 2003; Huelsenbeck and Rannala, 2004; Lemmon and
Moriarty, 2004; Waddell, Kishino and Ota, 2002; Wilcox et al., 2002; Yang, 2007). We
illustrate how BayesBag model selection provides reasonable inferences that are signifi-
cantly more robust to the choice of data and model. We used the whale dataset from Yang
(2008), which consists of mitochondrial coding DNA from 13 whale species and the hip-
popotamus. (The hippopotamus was included as an “outgroup” species to identify the root
of the tree, because the evolutionary models are time-reversible and hence the trees are
modeled as unrooted.) We considered four DNA models (JC, HKY+C+Γ5, GTR+Γ+I, and
mixed+Γ5) and one amino acid model (mtmam+Γ5); see Yang (2008) for more details on
these models. For brevity, we refer to the models as JC, HKY, GTR, mixed, and mtmam,
respectively. For the BayesBag settings, we used M =N and B = 100 in all experiments.

Our goal was to investigate whether BayesBag can avoid the self-contradictory infer-
ences produced by the standard posterior. To this end, we compared the output of different
configurations of the data, model, and inference method, as follows. We computed the set of
trees in the 99% high-probability regions (HPRs) for each 〈data, model, inference method〉
configuration. We then computed the overlap of the 99% HPRs in terms of both proba-
bility mass and number of trees. Since we approximated the bagged posterior via Monte
Carlo with B = 100 (as in Eq. (2)), we quantify the uncertainty in these overlaps by re-
porting 80% confidence intervals. (We computed these confidence intervals using standard
bootstrap methodology for a Monte Carlo estimate.)

For the first experiment, we looked at the overlap between pairs of models when using
the standard posterior and bagged posterior. As shown in Fig. 12(A) and Table C.1, there
was substantially more overlap when using the bagged posterior. The difference is par-
ticularly noticeable when comparing JC (the simplest model) or mtmam (the amino acid
model) to the other models. When using the standard posterior, JC had either 0% or (in
one case) 0.1% overlap with the other models while mtmam only overlapped with HKY.
Meanwhile, when using BayesBag, all models had nonzero overlap, with typical amounts
ranging from 30% to 50%. Hence, when applied to different models, BayesBag did not
produce contradictory results.

However, the good overlap exhibited by BayesBag does not necessarily mean that it is
performing well, since it could simply be producing posteriors that are too diffuse, spread-
ing the posterior mass over a very large number of trees. To investigate this possibility, we
considered the overlap of the bagged posterior for each model and the standard posterior
for mixed, which is the most complex of the DNA models. As shown in Fig. 12(B) and Ta-
ble C.2, all the bagged posteriors (with the exception of mtmam) put substantial posterior
probability on the 99% HPR of the standard mixed posterior. Moreover, all but BayesBag
mtmam had two trees in the overlap, which was the maximum possible since the standard
mixed 99% HPR only contained two trees.

Next, we performed intra-model comparisons by considering three datasets: the com-
plete whale dataset (denoted all) and two additional datasets formed by splitting the ge-
nomic data for each species in half (denoted S1 and S2). Since the results for GTR and



J. H. HUGGINS AND J. W. MILLER / BAGGED POSTERIORS 31

mixed were very similar, we only report results for JC, HKY, GTR, and mtmam. Ideally,
for a fixed model, we would expect to see substantial overlap when comparing the results
for these three datasets. However, when using the standard posterior, there was little to
no overlap in many cases, particularly for the simpler DNA models and the amino acid
model; see Fig. 12(C) and Table C.3. On the other hand, the bagged posteriors typically
exhibited overlaps of between 21% and 56%, with less (though still nonzero) overlap with
mtmam. These results suggest that BayesBag exhibits superior reproducibility in terms of
uncertainty quantification.

Finally, we computed the mismatch index for each model on the complete whale dataset,
obtaining values of 0.21 (JC), 0.16 (HKY), 0.47 (GTR), 0.84 (mixed), and 0.34 (mtmam).
These mismatch indices indicate significant but not overwhelming amounts of model mis-
specification, with the simpler models perhaps underestimating the actual amount of mis-
specification. In our experiments, we used M =N for BayesBag. However, Douady et al.
(2003) found that BayesBag yielded similar results to standard maximum likelihood boot-
strap for phylogenetic tree reconstruction, which suggests that using M = N may be too
conservative. Combined with the finding of moderate values for the model–data mismatch
index, it would be worth investigating the use of BayesBag withM >N . Although our the-
oretical results for model selection suggest the use of M ≤N , phylogenetic tree inference
may—at least in certain ways—behave more like parameter inference due to the very large
number of trees as well as the importance of inferring a significant number of tree-agnostic
parameter values.

7. Discussion. We conclude by situating BayesBag in the wider literature on robust
Bayesian inference and model criticism. With this additional context in place, we highlight
the strengths of our approach, while also suggesting fruitful directions for future develop-
ment.

7.1. Robust Bayesian inference. Two common themes emerge when surveying exist-
ing methods for robust Bayesian inference. First, many methods require choosing a free pa-
rameter. But the proposals for choosing free parameters are either (a) heuristic, (b) strongly
dependent on being in the asymptotic regime, or (c) computationally prohibitive for most
real-world problems. Second, those methods without a free parameter all lose key parts of
what make the Bayesian approach attractive. For example, they strongly rely on asymptotic
assumptions, make a Gaussian assumption, or do not incorporate a prior distribution.

The power posterior is perhaps the most widely studied method for making the poste-
rior robust to model misspecification (Grünwald, 2012; Grünwald and van Ommen, 2017;
Holmes and Walker, 2017; Lyddon, Holmes and Walker, 2019; Miller and Dunson, 2018;
Syring and Martin, 2019). For a likelihood function L(θ), prior distribution Π0, and any
ζ ≥ 0, the ζ-power posterior is defined as Π(ζ)(dθ)∝ L(θ)ζΠ0(dθ). Hence, Π(1) is equal
to the standard posterior and Π(0) is equal to the prior. Typically, ζ is set to a value between
these two extremes, as there is significant theoretical support for the use of power posteriors
with ζ ∈ (0,1) (Bhattacharya, Pati and Yang, 2019; Grünwald, 2012; Miller and Dunson,
2018; Royall and Tsou, 2003; Walker and Hjort, 2001). However, there are two signifi-
cant methodological challenges. First, computing the power posterior often requires new
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computational methods or additional approximations, particularly in latent variable mod-
els (Antoniano-Villalobos and Walker, 2013; Miller and Dunson, 2018). Second, choosing
an appropriate value of ζ can be difficult. Grünwald (2012) proposes SafeBayes, a theo-
retically sound method which is evaluated empirically in de Heide et al. (2019); Grünwald
and van Ommen (2017). However, SafeBayes is computationally prohibitive except with
simple models and very small datasets. In addition, the underlying theory relies on strong
assumptions on the model class. Many other methods for choosing ζ have been suggested,
but they are either heuristic or rely on strong asymptotic assumptions such as the accuracy
of the plug-in estimator for the sandwich covariance (Holmes and Walker, 2017; Lyddon,
Holmes and Walker, 2019; Miller and Dunson, 2018; Royall and Tsou, 2003; Syring and
Martin, 2019).

More in the spirit of BayesBag are a number of bootstrapped point estimation ap-
proaches (Chamberlain and Imbens, 2003; Lyddon, Holmes and Walker, 2019; Lyddon,
Walker and Holmes, 2018; Newton and Raftery, 1994; Rubin, 1981). However, unlike
BayesBag, these methods compute a collection of maximum a posteriori (MAP) or maxi-
mum likelihood (ML) estimates. The weighted likelihood bootstrap of Newton and Raftery
(1994) and a generalization proposed by Lyddon, Holmes and Walker (2019) do not incor-
porate a prior, and therefore lose many of the benefits of Bayesian inference. The related
approach of Lyddon, Walker and Holmes (2018), which includes the weighted likelihood
bootstrap and standard Bayesian inference as limiting cases, draws the bootstrap samples
partially from the posterior and partially from the empirical distribution. Unfortunately,
there is no accompanying theory to guide how much the empirical distribution and posterior
distribution should be weighted relative to each other—nor rigorous robustness guarantees.
Moreover, bootstrapped point estimation methods can behave poorly when the MAP and
ML estimates are not well-behaved—for example, due to the likelihood being peaked (or
even tending to infinity) in a region of low posterior probability.

Müller (2013) suggests replacing the standard posterior with a Gaussian distribution with
covariance proportional to a plug-in estimate of the sandwich covariance. However, the
applicability of such an approach seems rather limited, since it requires that the dataset be
large enough that (1) the sandwich covariance can be well-estimated, and (2) the posterior
uncertainty can be represented as approximately Gaussian. If both these conditions hold,
then Bayesian inference may be adding minimal value anyway.

7.2. Misspecification and decision theory. When the model is well-specified, Bayesian
inference is the optimal procedure for updating beliefs in light of new data, no matter
the loss function (Bernardo and Smith, 2000; Robert, 1994). However, when the model is
misspecified, our analysis of BayesBag only shows (near) optimality under log loss. When
some other loss function is ultimately of interest, there is no reason to assume BayesBag
will provide high-quality inferences – although the log loss does serve as a reasonable and
universally-applicable default choice. However, when the model is misspecified and a loss
function is available, generalized belief updating (that is, using a Gibbs posterior) may
be more appropriate (Bissiri, Holmes and Walker, 2016; Syring, Hong and Martin, 2019;
Syring and Martin, 2017). It is conceptually straightforward to combine our BayesBag
methodology with generalized belief updates to obtain better-calibrated inferences that are
(near) optimal for the loss function of interest.
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7.3. Model criticism. Methods for model criticism typically involve “predictive
checks.” For example, prior and posterior predictive checks compare the observed data
to data generated from the prior and posterior predictive distributions, respectively (Box,
1980; Gelman, Meng and Stern, 1996; Guttman, 1967; Rubin, 1984; Vehtari and Oja-
nen, 2012). The version most closely related to BayesBag is the population predictive
check (Ranganath and Blei, 2019), which is based on a fusion of Bayesian and frequen-
tist thinking. The population predictive check aims to avoid the data-reuse of posterior
predictive checks by comparing data generated from the posterior predictive to data gen-
erated from the true distribution. As a computable approximation to the ideal population
predictive check, Ranganath and Blei (2019) suggest bootstrapping datasets and computing
the predictive check on the data not included in the bootstrap sample. Like all predictive
checks, the population predictive check requires choosing a measure of data similarity,
which BayesBag and our model–data mismatch index do not require. Having this addi-
tional degree of freedom could be useful if the data analyst knows what aspects of the
data they wish to focus on, but it may also be an unwelcome burden. An additional chal-
lenge with all predictive checks is that, when the goal is to diagnose misspecification, an
additional calibration step much be performed (Hjort, Dahl and Steinbakk, 2006; Robins,
van der Vaart and Ventura, 2000). The mismatch index, on the other hand, is already on an
interpretable scale.

7.4. The benefits of BayesBag. In view of previous work, the BayesBag approach has a
number of attractive features that make it flexible, easy-to-use, and widely applicable. From
a methodological perspective, BayesBag is general-purpose. It relies only on carrying out
standard posterior inference, it is applicable to a wide range of models, and it can make full
use of modern probabilistic programming tools: the only other requirement is the design of
a bootstrapping scheme. Although this paper focuses on using BayesBag with independent
observations, future applications can draw on the large literature devoted to adapting the
bootstrap to more complex models such as those involving time-series and spatial data;
moreover, in hierarchical models such as multilevel regression models (Gelman and Hill,
2006), it would be straightforward to bootstrap data within each group. BayesBag is also
general-purpose in the sense that it is useful no matter whether the ultimate goal of Bayesian
inference is parameter estimation, prediction, or model selection.

Another appeal of BayesBag as a methodology is that its only two hyperparameters are
straightforward to choose. First, the bootstrap dataset size M has a natural, theoretically
well-justified choice of M = N that results in conservative inferences. However, when
the posterior quantities of interest are sufficiently close to being Gaussian-distributed, the
bootstrap dataset size can also be selected in a data-driven way using M̂∞,opt or M̂fs,opt,
making inferences less conservative when the data supports it. See Section 2.3.2 for further
discussion of these points. Second, as described in Section 2.2.2, validating that the number
of bootstrap datasets B is sufficiently large only requires computing simple Monte Carlo
error bounds. Moreover, defaulting to B = 50 or 100 appears to be an empirically sound
choice across a range of problems.

In terms of computation, while there is an additional cost due to the need to compute the
posterior for each bootstrapped dataset, it is trivial to compute the bootstrapped posteriors in
parallel. Nonetheless, speeding up BayesBag with more specialized computational methods
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could be worthwhile in some applications. For example, we suggest one simple approach
to speeding up Markov chain Monte Carlo (MCMC) in Appendix D. Pierre Jacob has
proposed using more advanced unbiased MCMC techniques for potentially even greater
computational efficiency.1

A final benefit of BayesBag is that it incorporates robustness features of frequentist
methods into Bayesian inference without sacrificing the core benefits of the Bayesian
approach such as flexible modeling and the use of prior information. This synthesis of
Bayesian and frequentist approaches compares favorably to existing methods, which, as
we described above, either sacrifice some useful part of standard Bayesian inference or
introduce tuning parameters that are difficult to choose. Indeed, BayesBag can actually
diagnose how much robustness is necessary via the the model–data mismatch index. An
exciting direction for future work is to better understand the finite-sample properties of
BayesBag and the mismatch index.

Acknowledgments. Thanks to Pierre Jacob for bringing P. Bühlmann’s BayesBag paper
to our attention and to Ziheng Yang for sharing the whale dataset and his MrBayes scripts.
Thanks also to Ryan Giordano and Pierre Jacob for helpful feedback on an earlier draft of
this paper, and to Peter Grünwald, Natalia Bochkina, Mathieu Gerber, and Anthony Lee for
helpful discussions.

REFERENCES

ALFARO, M. E., ZOLLER, S. and LUTZONI, F. (2003). Bayes or Bootstrap? A Simulation Study Compar-
ing the Performance of Bayesian Markov Chain Monte Carlo Sampling and Bootstrapping in Assessing
Phylogenetic Confidence. Molecular Biology and Evolution 20 255–266.

ANTONIANO-VILLALOBOS, I. and WALKER, S. G. (2013). Bayesian Nonparametric Inference for the Power
Likelihood. Journal of Computational and Graphical Statistics 22 801–813.

BERK, R. H. (1966). Limiting Behavior of Posterior Distributions when the Model is Incorrect. The Annals of
Mathematical Statistics 37 51–58.

BERNARDO, J. M. and SMITH, A. F. M. (2000). Bayesian Theory. Wiley, New York.
BHATTACHARYA, A., PATI, D. and YANG, Y. (2019). Bayesian fractional posteriors. The Annals of Statistics

47 39–66.
BISSIRI, P. G., HOLMES, C. C. and WALKER, S. G. (2016). A general framework for updating belief distri-

butions. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 78 1103–1130.
BLEI, D. M. (2014). Build, Compute, Critique, Repeat: Data Analysis with Latent Variable Models. Annual

Review of Statistics and Its Application 1 203–232.
BOX, G. E. P. (1979). Robustness in the Strategy of Scientific Model Building. In Robustness in Statistics

201–236. Elsevier.
BOX, G. E. P. (1980). Sampling and Bayes’ Inference in Scientific Modelling and Robustness. Journal of the

Royal Statistical Society. Series A (General) 143 383–430.
BREIMAN, L. (1996). Bagging Predictors. Machine Learning 24 123–140.
BROWNE, W. J. and DRAPER, D. (2006). A comparison of Bayesian and likelihood-based methods for fitting

multilevel models. Bayesian Analysis 1 473–514.
BUCKLEY, T. R. (2002). Model Misspecification and Probabilistic Tests of Topology: Evidence from Empirical

Data Sets. Systematic Biology 51 509–523.
BÜHLMANN, P. (2014). Discussion of Big Bayes Stories and BayesBag. Statistical Science 29 91–94.

1https://statisfaction.wordpress.com/2019/10/02/
bayesbag-and-how-to-approximate-it/

https://statisfaction.wordpress.com/2019/10/02/bayesbag-and-how-to-approximate-it/
https://statisfaction.wordpress.com/2019/10/02/bayesbag-and-how-to-approximate-it/


J. H. HUGGINS AND J. W. MILLER / BAGGED POSTERIORS 35

BÜHLMANN, P. and YU, B. (2002). Analyzing bagging. The Annals of Statistics 30 927–961.
BUJA, A., BROWN, L., BERK, R., GEORGE, E., PITKIN, E., TRASKIN, M., ZHANG, K. and ZHAO, L. H.

(2019a). Models as Approximations I: Consequences Illustrated with Linear Regression. Statistical Science
34 523–544.

BUJA, A., BROWN, L., KUCHIBHOTLA, A. K., BERK, R., GEORGE, E. and ZHAO, L. H. (2019b). Models
as Approximations II: A Model-Free Theory of Parametric Regression. Statistical Science 34 545–565.

CHAMBERLAIN, G. and IMBENS, G. (2003). Nonparametric applications of Bayesian inference. Journal of
Business Economic Statistics 21 12–18.

CHEN, L. H. Y., GOLDSTEIN, L. and SHAO, Q.-M. (2010). Normal Approximation by Stein’s Method. Prob-
ability and Its Applications. Springer Science & Business Media, Berlin, Heidelberg.

CLARKE, B. S. and BARRON, A. R. (1990). Information-theoretic asymptotics of Bayes methods. Information
Theory, IEEE Transactions on 36 453–471.

COX, D. R. (1990). Role of Models in Statistical Analysis. Statistical Science 5 169–174.
DAWID, A. P. (2011). Posterior model probabilities. In Philosophy of Statistics 607–630. Elsevier, New York.
DE HEIDE, R., KIRICHENKO, A., MEHTA, N. and GRÜNWALD, P. D. (2019). Safe-Bayesian Generalized

Linear Regression. arXiv.org arXiv:1910.09227 [math.ST].
DIACONIS, P. and ZABELL, S. L. (1982). Updating subjective probability. Journal of the American Statistical

Association 77 822–830.
DOUADY, C. J., DELSUC, F., BOUCHER, Y., DOOLITTLE, W. F. and DOUZERY, E. J. P. (2003). Comparison

of Bayesian and Maximum Likelihood Bootstrap Measures of Phylogenetic Reliability. Molecular Biology
and Evolution 20 248–254.

EFRON, B. (1979). Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics 7 1–26.
GELMAN, A. and HILL, J. (2006). Data Analysis Using Regression and Multilevel/Hierarchical Models. Cam-

bridge University Press.
GELMAN, A., MENG, X.-L. and STERN, H. (1996). Posterior predictive assessment of model fitness via

realized discrepancies. Statistica Sinica 6 733–807.
GELMAN, A. and SHALIZI, C. R. (2011). Philosophy and the practice of Bayesian statistics. British Journal

of Mathematical and Statistical Psychology.
GELMAN, A., CARLIN, J., STERN, H., DUNSON, D. B., VEHTARI, A. and RUBIN, D. B. (2013). Bayesian

Data Analysis, Third ed. Chapman and Hall/CRC.
GIORDANO, R., BRODERICK, T. and JORDAN, M. I. (2018). Covariances, Robustness, and Variational Bayes.

Journal of Machine Learning Research 19 1–49.
GRÜNWALD, P. D. (2012). The Safe Bayesian: Learning the Learning Rate via the Mixability Gap. In Algo-

rithmic Learning Theory 169–183.
GRÜNWALD, P. D. and VAN OMMEN, T. (2017). Inconsistency of Bayesian Inference for Misspecified Linear

Models, and a Proposal for Repairing It. Bayesian Analysis 12 1069–1103.
GUTTMAN, I. (1967). The Use of the Concept of a Future Observation in Goodness-Of-Fit Problems. Journal

of the Royal Statistical Society: Series B (Statistical Methodology) 29 83–100.
HJORT, N. L., DAHL, F. A. and STEINBAKK, G. H. (2006). Post-Processing Posterior Predictive p Values.

Journal of the American Statistical Association 101 1157–1174.
HOLMES, C. C. and WALKER, S. G. (2017). Assigning a value to a power likelihood in a general Bayesian

model. Biometrika 104 497–503.
HUELSENBECK, J. P. and RANNALA, B. (2004). Frequentist Properties of Bayesian Posterior Probabilities of

Phylogenetic Trees Under Simple and Complex Substitution Models. Systematic Biology 53 904–913.
JEFFREY, R. C. (1968). Probable Knowledge. In The Problem of Inductive Logic (I. Lakatos, ed.) 166–180.

North-Holland, Amsterdam.
JEFFREY, R. C. (1990). The Logic of Decision, 2nd ed. University of Chicago Press.
KALLENBERG, O. (2002). Foundations of Modern Probability, 2nd ed. Springer, New York, NY.
KLEIJN, B. J. K. and VAN DER VAART, A. W. (2012). The Bernstein-Von-Mises theorem under misspecifica-

tion. Electronic Journal of Statistics 6 354–381.
KOEHLER, E., BROWN, E. and HANEUSE, S. J. P. A. (2009). On the Assessment of Monte Carlo Error in

Simulation-Based Statistical Analyses. The American Statistician 63 155–162.



J. H. HUGGINS AND J. W. MILLER / BAGGED POSTERIORS 36

KÜNSCH, H. R. (1989). The jackknife and the bootstrap for general stationary observations. The Annals of
Statistics 17 1217–1241.

LEHMANN, E. L. (1990). Model specification: the views of Fisher and Neyman, and later developments. Sta-
tistical Science 5 160–168.

LEMMON, A. R. and MORIARTY, E. C. (2004). The Importance of Proper Model Assumption in Bayesian
Phylogenetics. Systematic Biology 53 265–277.

LYDDON, S. P., HOLMES, C. C. and WALKER, S. G. (2019). General Bayesian updating and the loss-
likelihood bootstrap. Biometrika 106 465–478.

LYDDON, S. P., WALKER, S. G. and HOLMES, C. C. (2018). Nonparametric learning from Bayesian models
with randomized objective functions. In Advances in Neural Information Processing Systems.

MAMMEN, E. (1992). Bootstrap, wild bootstrap, and asymptotic normality. Probability Theory and Related
Fields 93 439–455.

MENG, L. and DUNSON, D. B. (2019). Comparing and weighting imperfect models using D-probabilities.
Journal of the American Statistical Association 0 1–33.

MILLER, J. W. and DUNSON, D. B. (2018). Robust Bayesian Inference via Coarsening. Journal of the Amer-
ican Statistical Association 114 1113–1125.

MÜLLER, U. K. (2013). Risk of Bayesian Inference in Misspecified Models, and the Sandwich Covariance
Matrix. Econometrica: Journal of the Econometric Society 81 1805–1849.

NEWTON, M. A. and RAFTERY, A. E. (1994). Approximate Bayesian Inference with the Weighted Likelihood
Bootstrap. Journal of the Royal Statistical Society. Series B (Methodological) 56 3–46.

OELRICH, O., DING, S., MAGNUSSON, M., VEHTARI, A. and VILLANI, M. (2020). When are Bayesian
model probabilities overconfident? arXiv.org arXiv:2003.04026 [math.ST].

PELIGRAD, M. (1998). On the blockwise bootstrap for empirical processes for stationary sequences. The An-
nals of Probability 26 877–901.

PIIRONEN, J. and VEHTARI, A. (2017). Sparsity information and regularization in the horseshoe and other
shrinkage priors. Electronic Journal of Statistics 11 5018–5051.

RANGANATH, R. and BLEI, D. M. (2019). Population Predictive Checks. arXiv.org arXiv:1908.00882
[stat.ME].

ROBERT, C. P. (1994). The Bayesian Choice. Springer, New York, NY.
ROBINS, J. M., VAN DER VAART, A. W. and VENTURA, V. (2000). Asymptotic Distribution of P Values in

Composite Null Models. Journal of the American Statistical Association 95 1143–1156.
RONQUIST, F., TESLENKO, M., VAN DER MARK, P., AYRES, D. L., DARLING, A., HÖHNA, S., LARGET, B.,

LIU, L., SUCHARD, M. A. and HUELSENBECK, J. P. (2012). MrBayes 3.2: Efficient Bayesian Phylogenetic
Inference and Model Choice Across a Large Model Space. Systematic Biology 61 539–542.

ROYALL, R. and TSOU, T.-S. (2003). Interpreting statistical evidence by using imperfect models: robust ad-
justed likelihood functions. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 65
391–404.

RUBIN, D. B. (1981). The Bayesian Bootstrap. The Annals of Statistics 9 130–134.
RUBIN, D. B. (1984). Bayesianly justifiable and relevant frequency calculations for the applied statistician.

The Annals of Statistics 12 1151–1172.
SCHAID, D. J., CHEN, W. and LARSON, N. B. (2018). From genome-wide associations to candidate causal

variants by statistical fine-mapping. Nature Reviews Genetics 19 1–14.
SYRING, N., HONG, L. and MARTIN, R. (2019). Gibbs posterior inference on value-at-risk. Scandavian Ac-

tuarial Journal 2019 548–557.
SYRING, N. and MARTIN, R. (2017). Gibbs posterior inference on the minimum clinically important differ-

ence. Journal of Statistical Planning and Inference 187 67–77.
SYRING, N. and MARTIN, R. (2019). Calibrating general posterior credible regions. Biometrika 106 479–486.
VAN DER VAART, A. W. (1998). Asymptotic Statistics. University of Cambridge.
VAN DER VAART, A. W. and WELLNER, J. A. (1996). Weak Convergence and Empirical Processes. With

Applications to Statistics. Springer, New York.
VEHTARI, A. and OJANEN, J. (2012). A survey of Bayesian predictive methods for model assessment, selec-

tion and comparison. Statistics Surveys 6 142–228.



J. H. HUGGINS AND J. W. MILLER / BAGGED POSTERIORS 37

WADDELL, P. J., KISHINO, H. and OTA, R. (2002). Very fast algorithms for evaluating the stability of ML and
Bayesian phylogenetic trees from sequence data. Genome informatics. International Conference on Genome
Informatics 13 82–92.

WALKER, S. G. and HJORT, N. L. (2001). On Bayesian consistency. Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 63 811–821.

WHITE, H. (1982). Maximum Likelihood Estimation of Misspecified Models. Econometrica: Journal of the
Econometric Society 50 1–25.

WILCOX, T. P., ZWICKL, D. J., HEATH, T. A. and HILLIS, D. M. (2002). Phylogenetic relationships of
the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support. Molecular
phylogenetics and evolution 25 361–371.

YANG, Z. (2007). Fair-Balance Paradox, Star-tree Paradox, and Bayesian Phylogenetics. Molecular Biology
and Evolution 24 1639–1655.

YANG, Z. (2008). Empirical evaluation of a prior for Bayesian phylogenetic inference. Philosophical Transac-
tions of the Royal Society B: Biological Sciences 363 4031–4039.

YANG, Z. and ZHU, T. (2018). Bayesian selection of misspecified models is overconfident and may cause
spurious posterior probabilities for phylogenetic trees. Proceedings of the National Academy of Sciences
115 1854–1859.



J. H. HUGGINS AND J. W. MILLER / BAGGED POSTERIORS 38

APPENDIX A: INTERPRETATION OF THE BAGGED POSTERIOR IN TERMS OF
JEFFREY CONDITIONALIZATION

The bagged posterior has an insightful interpretation in terms of Jeffrey conditional-
ization. This interpretation elegantly unifies the Bayesian and frequentist elements of the
bagged posterior which might otherwise seem challenging to interpret coherently (e.g., the
covariance decomposition in Eq. (5)).

Suppose we have a model p(x, y) of two variables x and y. In the absence of any other
data or knowledge, we would quantify our uncertainty in x and y via the marginal distribu-
tions p(x) =

∫
p(x|y)p(y)dy and p(y) =

∫
p(y|x)p(x)dx, respectively. Now, suppose we

are informed that the true distribution of x is p◦(x), but we are not given any samples of x
or y. We would then quantify our uncertainty in x via p◦(x), and a natural way to quantify
our uncertainty in y is via q(y) :=

∫
p(y|x)p◦(x)dx. The idea is that q(x, y) := p(y|x)p◦(x)

updates the model to have the correct distribution of x, while remaining as close as possible
to the original model p(x, y). This is referred to as Jeffrey conditionalization (Diaconis and
Zabell, 1982; Jeffrey, 1968, 1990).

Suppose x = (x1, . . . , xN ) is the data and y = θ is a parameter, so that p(x, y) =
p(x1:N , θ) is the joint distribution of the data and the parameter. If we are informed that
the true distribution of the data is p◦N (x1:N ), then the Jeffrey conditionalization approach
above is to quantify our uncertainty in θ by

q(θ) =

∫
p(θ |x1:N )p◦N (x1:N )dx1:N .(17)

Now, suppose we are not informed of the true distribution exactly, but we are given
data X1, . . . ,XN i.i.d. ∼ p◦. Since the empirical distribution PN := N−1

∑N
n=1 δXn is a

consistent estimator of p◦ and p◦N (x1:N ) =
∏N
n=1 p◦(xn), it is natural to plug in

∏N
n=1 PN

for p◦N in Eq. (17). Doing so, we arrive at the bagged posterior:

q(θ)≈
∫
p(θ |x1:N )

N∏
n=1

PN (dxn) = E
{
p(θ |X∗1:N ) |X1:N

}
where X∗1 , . . . ,X

∗
N i.i.d.∼ PN given X1:N .

APPENDIX B: ADDITIONAL EXPERIMENTAL DETAILS

Hierarchical Mixed Effects Logistic Regression Model. We computed maximum
likelihood estimates with the R package lme4, which uses a Laplace approximation to
integrate out the random effects; for prediction we used Monte Carlo to integrate out the
random effects. To approximate the standard and bagged posteriors, we used Stan’s imple-
mentation of dynamic Hamiltonian Monte Carlo with 4 chains (for the standard posterior)
or 2 chains (for the bagged posterior) each run for 2,000 total iterations (discarding the first
half as burn-in). For BayesBag we used B = 100 bootstrap datasets. For the MLE-based
bootstrap methods we used 500 bootstrap datasets.
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Sparse logistic regression. We used M. Betancourt’s Stan implementation of the
model from Piironen and Vehtari (2017).2 To approximate the standard and bagged pos-
teriors, we used Stan’s implementation of dynamic Hamiltonian Monte Carlo with 4 chains
each run for 2,000 total iterations (discarding the first half as burn-in). We used Stan’s built-
in convergence diagnostics in our preliminary experiments to confirm acceptable mixing;
however, we then turned the diagnostics off because they significantly increased runtime.

Phylogenetic tree reconstruction. To approximate the standard and bagged posteri-
ors, we used MrBayes 3.2 (Ronquist et al., 2012) with 2 independent runs, each with 4
coupled chains run for 1,000,000 total iterations (discarding the first quarter as burn-in).
We confirmed acceptable mixing using the MrBayes built-in convergence diagnostics.

APPENDIX C: ADDITIONAL FIGURES AND TABLES

The mismatch index with correlated versus uncorrelated regressors. Continu-
ing the discussion in Section 5.1.2, we consider cases involving poor identifiability in
the model. Fig. C.1 compares the mismatch index with default and correlated data for
N ∈ {50,200}. The poor identifiability of the correlated data was correctly detected by
I . The identifiability issue becomes less severe with more data, which is reflected in the
I values clustered around zero when N = 200. On the other hand, no identifiability issues
were present for the uncorrelated default data, resulting in I values that were appropriately
clustered near 0.

More on linear regression feature selection with simulated data. Figure C.2 shows
similar results for correlated-2-sparse-nonlinear data. Note, however, that in this case it is
asymptotically optimal to select one of the causal components (13) but not optimal to select
the other causal component (6); rather, using either component 5 or 7 provides a better fit
than component 6. Even though component 13 is asymptotically optimal, the standard pips
for components near 13 sometimes remain at or close to 1 even whenN is in the thousands.
The BayesBag pips do not display the same instability.

Mismatch index results for linear regression feature selection with simulated data.
Fig. C.3 shows model–data mismatch index values for a representative subset of experi-
mental configurations (computed with γd = 1 for all d = 1, . . . ,D). For the correlated-k-
sparse data, the mismatch indices were either near zero or NA, reflecting that the model is
correctly specified but there are some issues with poor identifiability. For the correlated-k-
sparse-nonlinear data, the mismatch indices were almost all NA, reflecting that the model
is misspecified and there may also be identifiability issues.

2https://betanalpha.github.io/assets/case_studies/bayes_sparse_
regression.html

https://betanalpha.github.io/assets/case_studies/bayes_sparse_regression.html
https://betanalpha.github.io/assets/case_studies/bayes_sparse_regression.html
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Fig C.1: Model–data mismatch indices I for selected parameters as well as the overall I
value for default and correlated data for N ∈ {50,200}. We only display one component of
β since the I values followed very similar distributions for all components.
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Fig C.2: Posterior inclusion probabilities (pips) for misspecified correlated-2-sparse-
nonlinear data. See caption for Fig. 7 for further explanation.
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Fig C.3: Model–data mismatch indices I for selected parameters as well as the overall
I value. We only display two components of β since the I values follow fairly similar
distributions for all components.
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TABLE C.1
Overlap between the posteriors for each pair of models, given the whale dataset, when using standard Bayes

or BayesBag. The “mass” column shows the overlap of the 99% high-probability regions and “# trees” shows
the number of trees in common. For BayesBag, “mass” shows 80% confidence intervals for the overlaps and

“# trees” shows the median number of common trees.

Comparison Standard BayesBag
mass # trees mass (80% CI) # trees

JC vs HKY 0.1% 1 (30%, 41%) 4
JC vs GTR 0% 0 (38%, 50%) 3
JC vs mixed 0% 0 (39%, 52%) 4
JC vs mtmam 0% 0 (3%, 8%) 3

HKY vs GTR 29% 1 (38%, 50%) 10
HKY vs mixed 30% 2 (46%, 58%) 10
HKY vs mtmam 57% 2 (32%, 43%) 8
GTR vs mixed 98% 1 (79%, 90%) 11
GTR vs mtmam 0% 0 (9%, 16%) 8

mixed vs mtmam 0% 0 (13%, 22%) 9

TABLE C.2
Overlap between the standard posterior for the mixed model and the bagged posterior for each model, given

the whale dataset. The form of each data entry and the BayesBag parameters are the same as Table C.1.

Model Standard BayesBag
mass # trees mass (80% CI) # trees

JC 0% 0 (28%, 39%) 2
HKY 30% 1 (21%, 32%) 2
GTR 98% 1 (64%, 74%) 2
mixed 99% 2 (56%, 66%) 2

mtmam 0% 0 (0.5%, 0.5%) 1

TABLE C.3
Comparison of self-consistency on whale dataset. The form of each data entry and the BayesBag parameters

are the same as Table C.1.

Model Comparison Standard BayesBag
mass # trees mass (80% CI) # trees

JC S1 vs S2 0% 0 (21%, 32%) 4
all vs S1 0% 0 (24%, 36%) 5
all vs S2 97% 1 (51%, 65%) 4

HKY S1 vs S2 8% 3 (26%, 35%) 9
all vs S1 12% 4 (44%, 56%) 9
all vs S2 40% 4 (51%, 62%) 11

GTR S1 vs S2 38% 2 (36%, 44%) 14
all vs S1 38% 1 (44%, 54%) 12
all vs S2 90% 1 (57%, 68%) 11

mtmam S1 vs S2 0% 0 (0.3%, 2%) 9
all vs S1 0.1% 1 (10%, 16%) 24
all vs S2 28% 4 (17%, 25%) 24
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APPENDIX D: COMPUTATION

When the posterior can be computed in closed form, using BayesBag is straightforward.
If, however, approximate sampling methods such as Markov chain Monte Carlo are neces-
sary, the computational cost could become substantial. In such cases we propose the basic
scheme described in Algorithm 1, although more advanced approaches could also be de-
veloped. In short, the idea is to run a single long chain (or set of chains) on the standard
posterior, then use the sampler hyperparameters and posterior samples to initialize shorter
chains that sample from many different bootstrap datasets. Our proposed algorithm facili-
tates the use of M̂opt and I since it outputs samples from the standard posterior as well as
the bagged posterior.

If the approximation of π(θ |x∗(b)) is not very accurate (e.g., because it requires a time-
consuming Markov chain Monte Carlo run), then we face a tradeoff between the error due
to approximating each π(θ |x∗(b)) and the Monte Carlo error due to the BayesBag approxi-
mation given in Eq. (2). When using Markov chain Monte Carlo, we recommend assessing
on how accurate different length Markov chains are likely to be by running long chains for
the standard posterior, then using this information to decide on the best trade off between
the length of the Markov chains and number of bootstrap datasets. Such an approach should
not result in much wasted computation since we suggest obtaining a high-quality approxi-
mation to the standard posterior no matter what, as this permits computing quantities such
as the optimal bootstrap sample size and the model–data mismatch index.

Algorithm 1 Basic BayesBag Sampler
Require: A Markov chain Monte Carlo procedure MCMC(x, T , θinit, βinit) that returns adapted sampler hy-

perparameters and T approximate samples from Π(· |x), with the sampler initialized at θinit with hyperpa-
rameters βinit

Require: Data x, “large” sample number T , “small” sample number T ∗, number of bootstrap datasets B,
initial hyperparameters βinit

1: β, θ1:T ← MCMC(x, T , βinit)
2: for b= 1, . . . ,B do
3: Generate a new bootstrap dataset x∗(b) of size M from x
4: Sample θ∗(b)init uniformly from θ1:T
5: β(b), θ

∗
(b)1:T∗ ← MCMC(x∗(b), T

∗, θ∗(b)init, β)
6: end for
7: θ∗1:BT∗ ← concatenate(θ∗(1)1:T∗ , . . . , θ

∗
(B)1:T∗)

8: return posterior samples θ1:T and BayesBag samples θ∗1:BT∗
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APPENDIX E: FEATURE SELECTION IN LINEAR REGRESSION

We derive the KL-optimal linear regression parameters for data generated as in our sim-
ulation studies (Section 5.1). In particular, we show that when the model is misspecified,
even if the “causal” regression coefficients are sparse, the Kullback–Leibler (KL)-optimal
regression coefficients may not be. Assuming a linear regression model and that the data
follow Eq. (16), we have

E{log p(Yn |Zn, β,σ2)}

=− 1

2σ2
E{(Yn −Z>n β)2} − 1

2
log(2πσ2)

=− 1

2σ2
E{(f(Zn)>β† + εn −Z>n β)2} − 1

2
log(2πσ2)

=− 1

2σ2
E{β>† f(Zn)f(Zn)>β† + β>ZnZ

>
n β − 2β>† f(Zn)Z>n β}

− 1

2σ2
− 1

2
log(2πσ2).

Thus,

σ2∇βE{log p(Yn |Zn, β, σ2)}=−E(ZnZ
>
n )β +E{Znf(Zn)>}β†,

so the optimal coefficient vector is

β◦ = E(ZnZ
>
n )−1E{Znf(Zn)>}β†.

Thus, when f is not the identity and the regressors are no independent, in general β◦ will
be dense even if β† is sparse.

Let ΣZZ := E(ZnZ
>
n ), ΣZf := E{Znf(Zn)>}, and Σff := E{f(Zn)f(Zn)>}. For the

optimal coefficient vector, we have

E{log p(Yn |Zn, β◦, σ2)}

=− 1

2σ2

[
β>† Σffβ† + β>† Σ>ZfΣ−1

ZZΣZfβ† − 2β>† ΣZfΣ−1
ZZΣZfβ†

]
− 1

2σ2
− 1

2
log(2πσ2).

=− 1

2σ2
β>† Σffβ† +

1

2σ2
β>† Σ>ZfΣ−1

ZZΣZfβ† −
1

2σ2
− 1

2
log(2πσ2).

Thus, the optimal variance is

σ2
◦ =

(
1 + β>† Σffβ† − β>† Σ>ZfΣ−1

ZZΣZfβ†

)
+
.

Now plugging in the optimal variance, we have

E{log p(Yn |Zn, β◦, σ2
◦)}

=

{
− log(2eπ)− log

(
1 + β>† Σffβ† − β>† Σ>ZfΣ−1

ZZΣZfβ†

)
σ2
◦ > 0

∞ σ2
◦ = 0.
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APPENDIX F: DERIVATION OF FINITE-SAMPLE OPTIMAL BOOTSTRAP SIZE

We conclude with a derivation of the finite-sample optimal bootstrap sample size esti-
mator M̂fs,opt. Recall that a potential shortcoming of using M̂∞,opt to choose the optimal
bootstrap sample size is that it does not account for the influence of the prior. If the prior
remains influential, then v∗N − vN may be deceptively small, leading M̂∞,opt to be too large
and the resulting bagged posterior to be overconfident. To account for the effect of the
prior, we can instead use Eq. (6). Define σ2

◦ and s2
◦ as in Section 2.3.2. Eq. (6) yields the

following more refined approximation v∗M ≈ (RMσ
2
◦ +R2

Ms
2
◦)/M to the bagged posterior

variance. Note that since σ2
◦ now plays the role that V played in the Gaussian location

model, RM = (1 + σ2
◦v
−1
0 /M)−1. Since v∗M needs to be approximately s2

◦/N in order to
be well-calibrated, we set (RMσ

2
◦ +R2

Ms
2
◦)/M = s2

◦/N and solve for M , which yields

Mfs,opt =
N

2
+
Nσ2
◦

2s2
◦
− σ2

◦
v0

+

{(
N

2
+
Nσ2
◦

2s2
◦

)2

− Nσ2
◦

v0

}1/2

.

It remains to derive the estimators for σ2
◦ and s2

◦. Solving vN = σ2
◦v0/(Nv0 + σ2

◦) for
σ2
◦ yields the finite-sample estimator σ̂2

◦ = Nv0vN/(v0 − vN ) and plugging σ̂2
◦ into the

definition of RN yields the estimator R̂N = 1− vN/v0. Combining these yields the finite-
sample estimator

ŝ2
◦ :=

v2
0

(v0 − vN )2
(v∗N − vN )N.

Observe that we recover the asymptotic versions of the variance estimators and M∞,opt by
taking v0→∞.

APPENDIX G: PROOFS

NOTATION. The characteristic function of a distribution η on RK is denoted ψη(t) :=∫
exp(it>x)η(dx) for t ∈ RK . We use P→ to denote convergence in probability and

P+→ to
denote convergence in outer probability.

G.1. Proof of Theorem 3.1. We use the classical characteristic function approach
to proving central limit theorems. For µ ∈ R and σ2 > 0, the characteristic function of
N (µ,σ2) is

ψN (µ,σ2)(t) = exp(iµt− σ2t2/2), t ∈R.(18)

For L ∈ N and p1, . . . , pK ≥ 0 with
∑K

k=1 pk = 1, the characteristic function of the multi-
nomial distribution Multi(L,p) is

ψMulti(L,p)(t) =

(
K∑
k=1

pke
itk

)L
, t ∈RK .(19)

Let Π̃(· |X∗1:M ) := N (N1/2RM (X̄∗M − X̄N ),NVM ), noting that this is the distribution
of N1/2{ϑ∗ − E(ϑ∗ |X1:N )} |X∗1:M . Similarly, let Π̃∗(· |X1:N ) denote the distribution
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of N1/2{ϑ∗ − E(ϑ∗ |X1:N )} |X1:N . Let YNn := N1/2RM (Xn − X̄N ) and let K1:N ∼
Multi(M,1/N) . Using Eqs. (18) and (19), we have

ψΠ̃∗(· |X1:N )(t) = E{ψΠ̃(· |X∗1:M )(t) |X1:N}

= E
[

exp
{
itM−1∑N

n=1KnYNn −NVM t2/2
}
|X1:N

]
=

{
1

N

N∑
n=1

exp(itM−1YNn)

}M
exp(−NVM t2/2).(20)

Let V̂N :=N−1
∑N

n=1(Xn−X̄N )2. By Taylor’s theorem, eis = 1+is−s2/2+R(s) where
R(s)≤ |s|3/3. Since N−1

∑N
n=1 YNn = 0, the first factor of Eq. (20) can be expanded as{

1

N

N∑
n=1

(
1 + itM−1YNn − 1

2 t
2M−2Y 2

Nn +R(tM−1YNn)

)}M

=

{
1− 1

2 t
2NR

2
M

M2
V̂N +

1

N

N∑
n=1

R(tM−1YNn)

}M
.(21)

Since R(s)≤ |s|3/3,
N∑
n=1

R(tM−1YNn)≤
t3N3/2R3

M

3M3

N∑
n=1

|Xn − X̄N |3.

Using |Xn − X̄N |3 ≤ |Xn|3 + 3|Xn|2|X̄N |+ 3|Xn||X̄N |2 + |X̄N |3, and applying the the
strong law of large numbers to each factor, we have

lim sup
N→∞

1

N

N∑
n=1

|Xn − X̄N |3
a.s.
< ∞.

Hence, almost surely, for all t ∈ R,
∑N

n=1R(tM−1YNn)→ 0 as N →∞. Further, note
that M/N → c, RM → 1, and V̂N

a.s.→ Var(X1) as N →∞. Now, we use the fact that
if aN → a and cN → c, then (1 + aN/N)NcN → exp(a)c. Thus, almost surely, for all t,
Eq. (21) converges to exp(−1

2 t
2 Var(X1)/c). Combining this with Eq. (20), and noting

that NVM → V/c, we have that almost surely, for all t ∈R,

ψΠ̃∗(· |X1:N )(t)→ exp(−1
2 t

2(Var(X1)/c+ V/c)).

The result follows by Lévy’s continuity theorem (Kallenberg, 2002, Theorem 5.3).

G.2. Proof of Theorem 3.2. To de-clutter the notation, we abbreviate J◦ := Jθ◦ , I◦ :=
Iθ◦ , and ˙̀◦ := ˙̀

θ◦ . Define

P∗N :=M−1
N∑
n=1

KnδXn ,

∆∗N :=N1/2J−1
◦ (P∗N − PN ) ˙̀

θ◦ ,



J. H. HUGGINS AND J. W. MILLER / BAGGED POSTERIORS 48

the empirical process GN = N1/2(PN − P◦), and the bootstrap empirical process G∗N =

M1/2(P∗N − PN ). The conditions of van der Vaart (1998, Lemma 19.31) hold by assump-
tion, so for any sequence h1, h2, . . . ∈RD bounded in probability,

GN{N1/2λN − h>N ˙̀◦}
P→ 0,

where λN = `θ◦+hN/N1/2 − `θ◦ . By van der Vaart and Wellner (1996, Theorem 3.6.3), for
almost every X1:∞, conditional on X1:∞, G∗N and GN both converge weakly to the same
limiting process. For the remainder of the proof we condition on X1:∞, so all statements
will hold for almost every X1:∞. It follows that

G∗N{N1/2λN − h>N ˙̀◦}
P+→ 0.(22)

By the proof of Kleijn and van der Vaart (2012, Lemma 2.1),

|NPNλN −GNh
>
N

˙̀◦ − 1
2h
>
NJ◦hN |

P+→ 0

and, following the same reasoning, we can expand the lefthand side of Eq. (22) and multiply
though by c1/2 to get

c1/2(NM)1/2P∗NλN − c1/2G∗Nh>N ˙̀◦ − c1/2(NM)1/2PNλN
P+→ 0

and hence

MP∗NλN − (c1/2G∗N + cGN )h>N
˙̀◦ − 1

2h
>
N (cJ◦)hN

P+→ 0.

Since cGNh
>
N

˙̀◦ = h>N (cJ◦)∆N and c1/2G∗Nh>N ˙̀◦(cN/M)1/2 = h>N (cJ◦)∆
∗
N by the defi-

nitions of ∆N and ∆∗N , it follows that for every compact K ⊂Θ,

sup
h∈K

∣∣∣MP∗N (`θ◦+h/N1/2 − `θ◦)− h>(cJ◦)(∆N + ∆∗N )− 1
2h
>(cJ◦)h

∣∣∣ P+→ 0.

We apply Kleijn and van der Vaart (2012, Theorem 2.1) to conclude that, letting
ϑ∗′|X∗1:M ∼Π(· |X∗1:M ), the total variation distance between the distribution ofN1/2(ϑ∗′−
θ◦) |X∗1:M and N (∆N + ∆∗N , J

−1
◦ /c) converges to zero in outer probability. Compared to

the notation of Kleijn and van der Vaart (2012, Theorem 2.1), we have X∗1:M in place of
X(n), PMN in place of P (n)

0 , cJ◦ in place of Vθ∗ , and ∆N + ∆∗N in place of ∆n,θ∗ . Hence,
uniformly in t ∈RD , the absolute difference in their characteristic functions must also con-
verge to zero in outer probability. Let εN (t) (and similarly ε̄N (t)) denote a function that
satisfies lim supN→∞ supt∈R εN (t) = 0. We can therefore write the characteristic function
of N1/2(ϑ∗ − θ◦)−∆N |X1:N evaluated at t ∈RD as

E
[
exp

{
i∆∗>N t− t>J−1

◦ t/(2c)
}
|X1:N

]
+ εN (t)

= E
[
exp

{
iN1/2P∗N ˙̀>

◦ J
−1
◦ t
} ∣∣X1:N

]
exp

{
−iN1/2PN ˙̀>

◦ J
−1
◦ t
}

× exp
{
−t>J−1

◦ t/(2c)
}

+ εN (t).
(23)
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Letting δ ˙̀◦(Xn) := ˙̀◦(Xn)− PN ˙̀◦, we can further expand the first line of Eq. (23) to get

E

[
exp

{
iN1/2M−1

N∑
n=1

Kn
˙̀◦(Xn)>J−1

◦ t

} ∣∣∣∣X1:N

]
exp

{
−iN1/2PN ˙̀>

◦ J
−1
◦ t
}

=

[
1

N

N∑
n=1

exp

{
iN1/2 ˙̀◦(Xn)>J−1

◦ t

M

}]M
exp

{
−iN1/2PN ˙̀>

◦ J
−1
◦ t
}

=

[
1

N

N∑
n=1

exp

{
iN1/2δ ˙̀◦(Xn)>J−1

◦ t

M

}]M

=

[
1

N

N∑
n=1

{
1 +

iN1/2δ ˙̀◦(Xn)>J−1
◦ t

M
− N(δ ˙̀◦(Xn)>J−1

◦ t)2

2M2
+Rn

}]M

=

{
1− Nt>J−1

◦ PN (δ ˙̀◦δ ˙̀>
◦ )J−1

◦ t

2M2
+Rn

}M
,(24)

where (recalling the notation from the proof of Theorem 3.1)

Rn :=R

(
iN1/2δ ˙̀◦(Xn)>J−1

◦ t

M

)
.

Arguing as in the proof of Theorem 3.1 and using assumption (ii), we conclude that
limN→∞

∑N
n=1Rn = 0.

Note that M/N → c, and PN (δ ˙̀◦δ ˙̀>
◦ )

a.s.→ I◦ as N →∞. Now, we use the fact that
if aN → a and cN → c, then (1 + aN/N)NcN → exp(a)c. Combining all these observa-
tions with Eqs. (23) and (24), we have that, for all t ∈ RD , the characteristic function of
N1/2(ϑ∗ − θ◦) |X1:N evaluated at t is

exp
{
i∆>N t− t>J−1

◦ t/(2c)− t>J−1
◦ I◦J

−1
◦ t/(2c)

}
+ εN (t) + ε̄N (t).

The result follows from Lévy’s continuity theorem (Kallenberg, 2002, Theorem 5.3).

G.3. Proof of Theorem 4.1. We first prove a simple uniform central limit theorem that
is needed for our proof of Theorem 4.1. For a random variable ξ, let L(ξ) denote its law. For
real-valued random variables ξ, ξ′, let dK(L(ξ),L(ξ′)) := supt∈R |P(ξ ≤ t) − P(ξ′ ≤ t)|
denote the Kolmogorov distance.

PROPOSITION G.1. For a triangular array ξNn ∼ PN (N = 1,2, . . . ;n= 1, . . . ,N) of
independent random variables, if (i) N1/2E(ξN1)→ µ ∈ R as N →∞, (ii) Var(ξN1) =
σ2 ∈ (0,∞) for all N , and (iii) lim supN→∞E{|ξN1 −E(ξN1)|2+ε}<∞ for some ε > 0,
then WN :=N−1/2

∑N
n=1 ξNn satisfies

lim
N→∞

dK(L(WN ),N (µ,σ2)) = 0.
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PROOF. Let ξ̃Nn := ξNn −E(ξNn) and W̃N :=N−1/2
∑N

n=1 ξ̃Nn. By Chen, Goldstein
and Shao (2010, Thm. 3.2, Thm. 3.3, Eq. 3.14), for any α ∈ (0,1),

dK(L(W̃N ),N (0, σ2))≤ 4
(
σ−2E{|ξ̃Nn|21(|ξ̃Nn|>ασN1/2)}+ α

)1/2
.

Further,

E
{
|ξ̃N1|21(|ξ̃N1|>ασN1/2)

}
≤ E{|ξ̃N1|2+ε}2/(2+ε) E{1(|ξ̃N1|>ασN1/2)}ε/(2+ε)

= E{|ξ̃N1|2+ε}2/(2+ε) P(|ξ̃N1|>ασN1/2)ε/(2+ε)

≤ E{|ξ̃N1|2+ε}2/(2+ε)
(
α2N

)−ε/(2+ε) −−−−→
N→∞

0,

where we have used Hölder’s inequality, Chebyshev’s inequality, assumption (ii), and as-
sumption (iii). Since we can make α arbitrarily small, we have

lim
N→∞

dK(L(W̃N ),N (0, σ2)) = 0.(25)

Since the cumulative distribution function of Z ∼N (µ,σ2) is Lipschitz for some con-
stant C > 0, |P(Z < t)− P(Z < s)| ≤C|t− s|. Let Z̃ := Z − µ∼N (0, σ2) and note that
WN = W̃N + µN where µN := N1/2E(ξN1). Thus, for all t ∈ R, letting t̃ := t− µN , we
have

|P(WN < t)− P(Z < t)|

= |P(W̃N + µN < t̃+ µN )− P(Z̃ + µ < t̃+ µN )|

= |P(W̃N < t̃)− P(Z̃ < t̃+ µN − µ)|

≤ |P(W̃N < t̃)− P(Z̃ < t̃)|+ |P(Z̃ < t̃)− P(Z̃ < t̃+ µN − µ)|

≤ |P(W̃N < t̃)− P(Z̃ < t̃)|+C|µN − µ|.

By Eq. (25), the previous display, and assumption (i), it follows that supt |P(WN < t)−
P(Z < t)| → 0 as N →∞.

Proof of Theorem 4.1, part (1). Let ZN0 := logQ0(1)− logQ0(2) denote the log prior
ratio, let WN :=N−1/2

∑N
n=0ZNn, and let W∞ ∼N (µ∞, σ

2
∞). It follows from Proposi-

tion G.1 with ξNn := ZNn +ZN0/N that

lim
N→∞

dK(L(WN ),L(W∞)) = 0,(26)

where the Minkowski inequality and assumption (iii) of Theorem 4.1 verify assumption
(iii) of Proposition G.1. In particular, Eq. (26) implies that WN

D→W∞.
Letting φN (t) = {1 + exp(−N1/2t)}−1, we can write the posterior probability of model

1 as Q(1 |X1:N ) = φN (WN ). Since φN (t)→ 1(t > 0) pointwise for t 6= 0, it follows
from the continuous mapping theorem (Kallenberg, 2002, Theorem 4.27) that φN (WN )

D→
1(W∞ > 0). Since 1(W∞ > 0)∼ Bern(Φ(µ∞/σ∞)), we haveQ(1 |X1:N )

D→ Bern(Φ(µ∞/σ∞)).
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Proof of Theorem 4.1, parts (2) and (3). Let

W ∗N :=M−1/2

(
ZN0 +

N∑
n=1

KNnZNn

)
,

where KN,1:N ∼Multi(M,1/N) is independent of (X1,X2, . . .). Furthermore, let ∆∗N :=

W ∗N − (M/N)1/2WN and, independently of (X1,X2, . . .), let ∆∗∞ ∼N (0, σ2
∞). The im-

plication (i) =⇒ (iii) in Mammen (1992, Theorem 1) holds not only for M =N but also,
after the obvious rescaling, for the general M(N) case as well when limN→∞M/N <∞.
So, together with Eq. (26), we have that

dK(L(WN − µ∞),L(∆∗N |X1:N ))
P→ 0

and hence

κ∗N := dK(L(∆∗∞),L(∆∗N |X1:N ))
P→ 0.

We can write the bagged posterior probability of model 1 asQ∗(1 |X1:N ) = E{φM (W ∗N ) |X1:N}=

E{φM (∆∗N + (M/N)1/2WN ) |X1:N}. Let IN = [−εN , εN ] for εN = M−1/4. Since the
density of ∆∗∞ is bounded by a constant b, it follows that for any α ∈R,

P(∆∗N + α ∈ IN )≤ P(∆∗∞ + α ∈ IN ) + 2κ∗N ≤ 2bεN + 2κ∗N .

Since |φM (t) − 1(t > 0)| ≤ exp(−M1/2|t|), for all t 6∈ IN , |φM (t) − 1(t > 0)| ≤
exp(−M1/2εN ). We conclude that∣∣∣E{φM (∆∗N + (M/N)1/2WN ) |X1:N} −E{1(∆∗N + (M/N)1/2WN > 0) |X1:N}

∣∣∣
≤ exp(−M1/2εN ) + 2bεN + 2κ∗N = oP (1).

Moreover,∣∣∣E{1(∆∗N + (M/N)1/2WN > 0) |X1:N}| −E{1(∆∗∞ + (M/N)1/2WN > 0) |X1:N}
∣∣∣

≤ κ∗N = oP (1).

Combining the previous two displays, we have

E{φM (∆∗N + (M/N)1/2WN ) |X1:N}

= E{1(∆∗∞ + (M/N)1/2WN > 0) |X1:N}+ oP (1)

= Φ((M/N)1/2WN/σ∞) + oP (1)

D→Φ(c1/2W∞/σ∞),

where the second equality follows from the definition of ∆∗∞, and convergence in distribu-
tion follows from the assumption that M/N → c, Eq. (26), and Slutsky’s theorem.

If c > 0 then the cumulative distribution function of the random variable U∗ :=
Φ(c1/2W∞/σ∞) is given by u 7→Φ(c−1/2Φ−1(u)−µ∞/σ∞) for u ∈ (0,1), and differenti-
ating, we find that the density ofU∗ is u 7→Φ′

(
c−1/2Φ−1(u)−µ∞/σ∞

)
c−1/2/Φ′(Φ−1(u)).

If c= 0, then we instead have thatQ∗(1 |X1:N )
D→Φ(0) = 1/2, which implies convergence

in probability.
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G.4. Proof of Corollary 4.2. Note that Q(1 |X1:N ) = φ(ΛX1:N
) and Q∗(1 |X1:N ) =

E{φ(ΛX∗1:M ) |X1:N} where φ(t) = {1 + exp(−t)}−1. We have the asymptotic expan-
sion (Clarke and Barron, 1990; Dawid, 2011)

ΛX1:N
=

1

2
(D2 −D1) logN +

N∑
n=1

log
pθ1◦(Xn |1)

pθ2◦(Xn |2)
+OP (1).

Letting Zn := log pθ1◦(Xn |1) − log pθ2◦(Xn |2) = `1,θ1◦(Xn) − `2,θ2◦(Xn), the conclu-
sions follow as in the proof of Theorem 4.1, although the argument is somewhat simplified
by the fact that X1,X2, . . . i.i.d., so we do not need to reason about triangular arrays.
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