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Abstract

Insights into complex, high-dimensional data can be obtained by discovering features of the data
that match or do not match a model of interest. To formalize this task, we introduce the “data
selection” problem: finding a lower-dimensional statistic — such as a subset of variables — that
is well fit by a given parametric model of interest. A fully Bayesian approach to data selection
would be to parametrically model the value of the statistic, nonparametrically model the remaining
“background” components of the data, and perform standard Bayesian model selection for the choice
of statistic. However, fitting a nonparametric model to high-dimensional data tends to be highly
inefficient, statistically and computationally. We propose a novel score for performing data selection,
the “Stein volume criterion (SVC)”, that does not require fitting a nonparametric model. The SVC
takes the form of a generalized marginal likelihood with a kernelized Stein discrepancy in place of the
Kullback–Leibler divergence. We prove that the SVC is consistent for data selection, and establish
consistency and asymptotic normality of the corresponding generalized posterior on parameters. We
apply the SVC to the analysis of single-cell RNA sequencing datasets using probabilistic principal
components analysis and a spin glass model of gene regulation.
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1. Introduction

Scientists often seek to understand complex phenomena by developing working models for various
special cases and subsets. Thus, when faced with a large complex dataset, a natural question to ask
is where and when a given working model applies. We formalize this question statistically by saying
that given a high-dimensional dataset, we want to identify a lower-dimensional statistic—such as a
subset of variables—that follows a parametric model of interest (the working model). We refer to
this problem as “data selection”, in counterpoint to model selection, since it requires selecting the
aspect of the data to which a given model applies.

For example, early studies of single-cell RNA expression showed that the expression of individual
genes was often bistable, which suggests that the system of cellular gene expression might be
described with the theory of interacting bistable systems, or spin glasses, with each gene a separate
spin and each cell a separate observation. While it seems implausible that such a model would hold
in full generality, it is quite possible that there are subsets of genes for which the spin glass model
is a reasonable approximation to reality. Finding such subsets of genes is a data selection problem.
In general, a good data selection method would enable one to (a) discover interesting phenomena
in complex datasets, (b) identify precisely where naive application of the working model to the full
dataset goes wrong, and (c) evaluate the robustness of inferences made with the working model.

Perhaps the most natural Bayesian approach to data selection is to employ a semi-parametric
joint model, using the parametric model of interest for the low-dimensional statistic (the “fore-
ground”) and using a flexible nonparametric model to explain all other aspects of the data (the
“background”). Then, to infer where the foreground model applies, one would perform standard
Bayesian model selection across different choices of the foreground statistic. However, this is com-
putationally challenging due to the need to integrate over the nonparametric model for each choice
of foreground statistic, making this approach quite difficult in practice. A natural frequentist ap-
proach to data selection would be to perform a goodness-of-fit test for each choice of foreground
statistic. However, this still requires specifying an alternative hypothesis, even if the alternative is
nonparametric, and ensuring comparability between alternatives used for different choices of fore-
ground statistics is nontrivial. Moreover, developing goodness-of-fit tests for composite hypotheses
or hierarchical models is often difficult in practice.

In this article, we propose a new score—for both data selection and model selection—that is
similar to the marginal likelihood of a semi-parametric model but does not require one to specify a
background model, let alone integrate over it. The basic idea is to employ a generalized marginal
likelihood where we replace the foreground model likelihood by an exponentiated divergence with
nice properties, and replace the background model’s marginal likelihood with a simple volume cor-
rection factor. For the choice of divergence, we use a kernelized Stein discrepancy (KSD) since it
enables us to provide statistical guarantees and is easy to estimate compared to other divergences
— for instance, the Kullback–Leibler divergence involves a problematic entropy term that cannot
simply be dropped. The background model volume correction arises roughly as follows: if the back-
ground model is well-specified, then asymptotically, its divergence from the empirical distribution
converges to zero and all that remains of the background model’s contribution is the volume of its
effective parameter space. Consequently, it is not necessary to specify the background model, only
its effective dimension. To facilitate computation further, we develop a Laplace approximation for
the foreground model’s contribution to our proposed score.

This article makes a number of novel contributions. We introduce the data selection problem
in broad generality, and provide a thorough asymptotic analysis. We propose a novel model/data
selection score, which we refer to as the Stein volume criterion, that takes the form of a gener-
alized marginal likelihood using a KSD. We provide new theoretical results for this generalized
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marginal likelihood and its associated posterior, complementing and building upon recent work on
the frequentist properties of minimum KSD estimators (Barp et al., 2019). Finally, we provide first-
of-a-kind empirical data selection analyses with two models that are frequently used in single-cell
RNA sequencing analysis.

The article is organized as follows. In Section 2, we introduce the data selection problem
and our proposed method. In Section 3 we study the asymptotic properties of Bayesian data
selection methods and compare to model selection. Section 4 provides a review of related work and
Section 5 illustrates the method on a toy example. In Section 6, we prove (a) consistency results for
both data selection and model selection, (b) a Laplace approximation for the proposed score, and
(c) a Bernstein–von Mises theorem for the corresponding generalized posterior. In Section 7, we
apply our method to probabilistic principal components analysis (pPCA), assess its performance
in simulations, and demonstrate it on single-cell RNA sequencing (scRNAseq) data. In Section 8,
we apply our method to a spin glass model of gene expression, also demonstrated on an scRNAseq
dataset. Section 9 concludes with a brief discussion.

2. Method

Suppose the data X(1), . . . , X(N) ∈ X are independent and identically distributed (i.i.d.), where
X ⊆ Rd. Suppose the true data-generating distribution P0 has density p0(x) with respect to
Lebesgue measure, and let {q(x|θ) : θ ∈ Θ} be a parametric model of interest, where Θ ⊆ Rm. We
are interested in evaluating this model when applied to a projection of the data onto a subspace,
XF ⊆ X (the “foreground” space). Specifically, let XF := V ⊤X be a linear projection of a
datapoint X ∈ X onto XF , where V is a matrix with orthonormal columns which defines the
foreground space. Let q(xF |θ) denote the distribution of XF when X ∼ q(x|θ), and likewise, let
p0(xF ) be the distribution of XF when X ∼ p0(x). Even when the complete model q(x|θ) is
misspecified with respect to p0(x), it may be that q(xF |θ) is well-specified with respect to p0(xF );
see Figure 1 for a toy example. In such cases, the parametric model is only partially misspecified —
specifically, it is misspecified on the “background” space XB, defined as the orthogonal complement
of XF (that is, the set of all vectors that are orthogonal to every vector in XF ).

Our goal is to find subspaces XF of the data space X for which the model q(xF |θ) is correctly
specified. We are not seeking a subset of datapoints, but rather a projection of all the datapoints.

A natural Bayesian solution would be to replace the background component of the assumed
model, q(xB|xF , θ), with a more flexible component q̃(xB|xF , ϕB) that is guaranteed to be well-
specified with respect to p0(xB|xF ), such as a nonparametric model. The resulting joint model,
which we refer to as the “augmented model”, is then

θ ∼ π(θ), X
(i)
F | θ ∼ q(xF | θ),

ϕB ∼ πB(ϕB), X
(i)
B | X(i)

F , ϕB ∼ q̃(xB | X(i)
F , ϕB)

(1)

independently for i ∈ {1, . . . , N}. In other words, the pairs (X
(1)
F , X

(1)
B ), . . . , (X

(N)
F , X

(N)
B ) are

i.i.d. given θ and ϕB, with the foreground projections X
(i)
F drawn from the parametric model of

interest, and the background projections X
(i)
B drawn from the flexible background model. The

standard Bayesian approach to infer XF would be to put a prior on the choice of foreground space
XF , and compute the posterior over the choice of XF . Computing this posterior boils down to
computing the Bayes factor q̃(X(1:N)|F)/q̃(X(1:N)|F ′) for any given pair of foregrounds F and
F ′, where q̃(X(1:N)|F) denotes the marginal likelihood of F under the augmented model, that is,

q̃(X(1:N)|F) =
∫ ∫

q(X
(1:N)
F |θ) q̃(X(1:N)

B |X(1:N)
F , ϕB)π(θ)πB(ϕB)dθdϕB.
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(a) An example for which a bivariate normal
model is partially misspecified. Basis vectors
for XF (foreground) and XB (background) are
blue and red, respectively.
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(b) A univariate normal model is well-specified
for the data projection onto XF .
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(c) A univariate normal model is misspecified
for the data projection onto XB.

Figure 1: A simple example illustrating the data selection problem.

However, in general, it is difficult to find a background model that (a) is guaranteed to be well-
specified with respect to p0(xB|xF ) and (b) can be integrated over in a computationally tractable
way to obtain the posterior on the choice of F . Our proposed method, which we introduce next,
sidesteps these difficulties while still exhibiting similar guarantees.

2.1 Proposed score for data selection and model selection

In this section, we propose a model/data selection score that is simpler to compute than the
marginal likelihood of the augmented model and has similar theoretical guarantees. This score
takes the form of a generalized marginal likelihood with a normalized kernelized Stein discrepancy
(nksd) estimate taking the place of the log likelihood. Specifically, our proposed model/data
selection score, termed the “Stein volume criterion” (SVC), is

K :=

(
2π

N

)mB/2 ∫
exp
(
− N

T
n̂ksd(p0(xF )∥q(xF |θ))

)
π(θ)dθ (2)

where the “temperature” T > 0 is a hyperparameter and mB is the effective dimension of the
background model parameter space. n̂ksd(·∥·) is an empirical estimate of the nksd (Equations 4
and 5), and measures the mismatch between the data and the model over the foreground subspace.

There are three key properties of n̂ksd that distinguish it from other estimators of other diver-
gences. First, it estimates the divergence directly, not just up to a data-dependent constant; this
is essential for data selection consistency (Section 3.1). For instance, putting the log likelihood in
place of N

T n̂ksd in Equation 2 fails to provide data selection consistency since it implicitly involves
comparing the foreground entropy under P0. Second, n̂ksd converges at a O(1/N) convergence
rate when the model is correct; this is essential for nested data selection consistency (Section 3.2).
In contrast, even if the foreground entropy under P0 is known exactly, using a Monte Carlo esti-
mate of the Kullback–Leibler divergence in place of N

T n̂ksd fails since the convergence rate is only

O(1/
√
N). Third, the NKSD exhibits subsystem independence (Section 6.1), which ensures that
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the SVC is comparable between foreground spaces of different dimension. We are unaware of any
other divergence estimator with all three of these key properties.

The integral in Equation 2 can be approximated using techniques discussed in Section 2.3. The
hyperparameter T can be calibrated by comparing the coverage of the standard Bayesian posterior
to the coverage of the nksd generalized posterior (Section A.1). The (2π/N)mB/2 factor penalizes
higher-complexity background models. In general, we allow mB to grow with N , particularly when
the background model is nonparametric. Crucially, the likelihood of the background model does
not appear in our proposed score, sidestepping the need to fit or even specify the background model
— indeed, the only place that the background model enters into the SVC is through mB.

Thus, rather than specify a background model and then derive mB, one can simply specify
an appropriate value of mB. Reasonable choices of mB can be derived by considering the asymp-
totic behavior of a Pitman-Yor process mixture model, a common nonparametric model that is
a natural choice for a background model. A Pitman-Yor process mixture model with discount
parameter α ∈ (0, 1), concentration parameter ν > −α, and D-dimensional component parameters
will asymptotically have expected effective dimension

mB ∼ D
Γ(ν + 1)

αΓ(ν + α)
Nα (3)

under the prior, where aN ∼ bN means that aN/bN → 1 as N → ∞ and Γ(·) is the gamma
function (Pitman, 2002, §3.3). As a default, we recommend setting mB = cB rB

√
N , where rB is

the dimension of XB and cB is a constant chosen to match Equation 3 with α = 1/2. The
√
N

scaling is particularly nice in terms of asymptotic guarantees; see Section 3.2.
The SVC uses a novel, normalized version of the ksd between densities p(x) and q(x):

nksd(p(x)∥q(x)) :=
EX,Y∼p

[
(sq(X)− sp(X))⊤(sq(Y )− sp(Y ))k(X,Y )

]
EX,Y∼p[k(X,Y )]

(4)

where k(x, y) ∈ R is an integrally strictly positive definite kernel, sq(x) := ∇x log q(x), and sp(x) :=
∇x log p(x); see Section 6.1 for details. The numerator corresponds to the standard ksd (Liu et al.,
2016). The denominator, which is strictly positive and independent of q(x), is a normalization factor
that we have introduced to make the divergence comparable across spaces of different dimension.
See Section A.2 for kernel recommendations. Extending the technique of Liu et al. (2016), we
propose to estimate the normalized KSD using U-statistics:

n̂ksd(p(x)∥q(x)) =
∑

i ̸=j u(X
(i), X(j))∑

i ̸=j k(X
(i), X(j))

(5)

where X(i) ∼ p(x) i.i.d., the sums are over all i, j ∈ {1, . . . , N} such that i ̸= j, and

u(x, y) := sq(x)
⊤sq(y)k(x, y) + sq(x)

⊤∇yk(x, y) + sq(y)
⊤∇xk(x, y) + trace(∇x∇⊤

y k(x, y)).

Importantly, Equation 5 does not require knowledge of sp(x), which is unknown in practice.

2.2 Comparison with the standard marginal likelihood

It is instructive to compare our proposed model/data selection score, the Stein volume criterion, to
the standard marginal likelihood q̃(X(1:N)|F). In particular, we show that the SVC approximates a
generalized version of the marginal likelihood. To see this, first define H := −

∫
p0(x) log p0(x)dx,

the entropy of the complete data distribution, and note that if H were somehow known, then the
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Kullback-Leibler (kl) divergence between the augmented model and the data distribution could be
approximated as

k̂l(p0(x)∥q(xF |θ) q̃(xB|xF , ϕB)) := − 1

N

N∑
i=1

log q(X
(i)
F |θ) q̃(X(i)

B |X(i)
F , ϕB)−H.

Since multiplying the marginal likelihoods by a fixed constant does not affect the Bayes factors, the
following expression could be used instead of the marginal likelihood q̃(X(1:N)|F) to decide among
foreground subspaces:

q̃(X(1:N)|F)

exp(−NH)
=

∫ ∫
exp
(
−N k̂l(p0(x)∥q(xF |θ) q̃(xB|xF , ϕB))

)
π(θ)πB(ϕB)dθdϕB. (6)

Now, consider a generalized marginal likelihood where the nksd replaces the kl:

K̃ :=

∫ ∫
exp
(
−N

1

T
n̂ksd

(
p0(x)∥q(xF |θ) q̃(xB|xF , ϕB)

))
π(θ)πB(ϕB)dθdϕB. (7)

We refer to K̃ as the “nksd marginal likelihood” of the augmented model. Intuitively, we expect
it to behave similarly to the standard marginal likelihood, except that it quantifies the divergence
between the model and data distributions using the nksd instead of the kl.

However, a key advantage of the nksd marginal likelihood is that it admits a simple ap-
proximation via the SVC when the background model is well-specified, unlike the standard
marginal likelihood. For instance, if the foreground and background are independent, that is,
p0(x) = p0(xF )p0(xB) and q̃(xB|xF , ϕB) = q̃(xB|ϕB), then the theory in Section 6 can be extended
to the full augmented model to show that

log K̃
logK

P0−−−−→
N→∞

1, (8)

where K is the SVC (Equation 2). Thus, the SVC approximates the nksd marginal likelihood of
the augmented model, suggesting that the SVC may be a convenient alternative to the standard
marginal likelihood. Formally, Section 3 shows that the SVC exhibits consistency properties similar
to the standard marginal likelihood, even when p0(x) ̸= p0(xF )p0(xB).

2.3 Computation

Next, we discuss methods for computing the SVC including exact solutions, Laplace/BIC approx-
imation, variational approximation, and comparing many possible choices of F . An attractive
feature of the SVC is that, unlike the fully Bayesian augmented model, the computation time
required does not grow with the background dimension mB.

2.3.1 Exact solution for exponential families

When the foreground model is an exponential family, the SVC can be computed analytically.
Specifically, in Section A.3, we show if q(xF |θ) = λ(xF ) exp(θ

⊤t(xF )− κ(θ)), then

n̂ksd(p0(xF )∥q(xF |θ)) = θ⊤Aθ +B⊤θ + C (9)

where A, B, and C depend on the data X(1:N) but not on θ. Therefore, we can compute the SVC in
closed form by choosing a multivariate Gaussian for the prior π(θ) in Equation 2; see Section A.3.
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2.3.2 Laplace and BIC approximations

The Laplace approximation is a widely-used technique for computing marginal likelihoods. In
Theorem 9, we establish regularity conditions under which a Laplace approximation to the SVC is
justified by being asymptotically correct. The resulting approximation is

K ≈
exp

(
−N

T n̂ksd(p0(xF )∥q(xF |θN ))
)
π(θN )

| det 1
T ∇

2
θ n̂ksd(p0(xF )∥q(xF |θN ))|1/2

(
2π

N

)(mF+mB)/2

(10)

where θN := argminθ n̂ksd(p0(xF )∥q(xF |θ)) is the point at which the estimated nksd is minimized,
the “minimum Stein discrepancy estimator” as defined by Barp et al. (2019). Here, θN is simply
used to help compute the approximation and does not depend on π(θ), which can be any prior that
is continuous and positive at the limiting value of θN .

We can also make a rougher approximation, analogous to the Bayesian information criterion
(BIC), which does not require one to compute second derivatives of n̂ksd:

K ≈ exp
(
− N

T
n̂ksd(p0(xF )∥q(xF |θN ))

)(2π

N

)(mF+mB)/2

. (11)

This approximation is easy to compute, given a minimum Stein discrepancy estimator θN . Like the
SVC, it satisfies all of our consistency desiderata (Section B). However, we expect it to perform worse
than the SVC when there is not yet enough data for the nksd posterior to be highly concentrated,
that is, when a range of θ values can plausibly explain the data.

2.3.3 Comparing many foregrounds using approximate optima

Often, we would like to evaluate many possible subspaces XF when performing data selection. Even
when using the Laplace or BIC approximation to the SVC, this can get computationally prohibitive
since we need to re-optimize to find θN for every F under consideration. Here, we propose a way
to reduce this cost by making a fast linear approximation. Define ℓj(θ) := n̂ksd(p0(xFj )∥q(xFj |θ))
for j ∈ {1, 2}. For w ∈ [0, 1], we can linearly interpolate

θN (w) := argmin
θ

ℓ1(θ) + w(ℓ2(θ)− ℓ1(θ)). (12)

Now, θN (0) and θN (1) are the minimum Stein discrepancy estimators for F1 and F2, respectively.
Given θN (0), we can approximate θN (1) by applying the implicit function theorem and a first-order
Taylor expansion (Section A.4):

θN (1) ≈ θN (0)−∇2
θℓ1(θN (0))−1∇θℓ2(θN (0)). (13)

Note that the derivatives of ℓj are often easy to compute with automatic differentiation (Baydin
et al., 2018). Note also that when we are comparing one foreground subspace, such as XF1 = X ,
to many other foreground subspaces XF2 , the inverse Hessian ∇2

θℓ1(θN (0))−1 only needs to be
computed once. Thus, Equation 13 provides a fast approximate method for computing Laplace or
BIC approximations to the SVC for a large number of candidate foregrounds F . We apply this
technique in Section 7, where we find that it performs well in simulation studies and in practice.

2.3.4 Variational approximation

Variational inference is a method for approximating both the posterior distribution and the marginal
likelihood of a probabilistic model. Since the SVC takes the form of a generalized marginal like-
lihood, we can derive a variational approximation to the SVC. Let rζ(θ) be an approximating
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distribution parameterized by ζ. By Jensen’s inequality, we have

log

∫
exp
(
− N

T
n̂ksd(p0(xF )∥q(xF |θ))

)
π(θ)dθ

= log

∫
exp

(
−N

T n̂ksd(p0(xF )∥q(xF |θ))
)
π(θ)

rζ(θ)
rζ(θ)dθ

≥ Erζ

[
log

(
exp

(
−N

T n̂ksd(p0(xF )∥q(xF |θ))
)
π(θ)

rζ(θ)

)]

= −N
T
Erζ

[
n̂ksd(p0(xF )∥q(xF |θ))

]
+ Erζ [log π(θ)]− Erζ [log rζ(θ)].

(14)

Maximizing this lower bound with respect to the variational parameters ζ, and adding the back-
ground correction (mB/2) log(2π/N), provides an approximation to the log SVC. Note that this
variational approximation falls within the framework of generalized variational inference proposed
by Knoblauch et al. (2019).

This variational approximation to the SVC is particularly useful when we are aiming to find
the best subspace XF among a very large number of candidates, since we can jointly optimize the
variational parameters ζ and the choice of foreground subspace XF . Here, we do not necessarily
need to evaluate the SVC for all foreground subspaces XF under consideration, and can instead
rely on optimization methods to search for the best XF from among a large set of possibilities
(see Section 8 for an example). Practically, we recommend using the local linear approximation in
Section 2.3.3 when the goal is to compare SVC values among many not-too-different foreground
subspaces XF , and using the variational approximation when the goal is to find one best XF from
among a large and diverse set.

3. Data selection and model selection consistency

This section presents our consistency results when comparing two different foreground subspaces
(data selection) or two different foreground models (model selection). The theory supporting these
results is in Sections 6 and B. We consider four distinct properties that a procedure would ideally
exhibit: data selection consistency, nested data selection consistency, model selection consistency,
and nested model selection consistency; see Section 6.4 for precise definitions. We consider six
possible model/data selection scores, and we establish which scores satisfy which properties; see
Table 1. The SVC and the full marginal likelihood are the only two of the six scores that satisfy
all four consistency properties.

The intuition behind Bayesian model selection is often explained in terms of Occam’s razor: a
theory should be as simple as possible but no simpler. Data selection and nested data selection
encapsulate a complementary intuition: a theory should explain as much of the data as possible
but no more. In other words, when choosing between foreground spaces, a consistent data selection
score will asymptotically prefer the highest-dimensional space on which the model is correctly
specified.

As in standard model selection, a practical concern in data selection is robustness. For instance,
if the foreground model is even slightly misspecified on XF2 , then the empty foreground XF1 = ∅
will be asymptotically preferred over XF2 . Since the SVC takes the form of a generalized marginal
likelihood, techniques for improving robustness with the standard marginal likelihood—such as
coarsened posteriors, power posteriors, and BayesBag—could potentially be extended to address
this issue (Miller and Dunson, 2019; Huggins and Miller, 2021). We leave exploration of such
approaches to future work.
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Consistency property
Score d.s. nested d.s. m.s. nested m.s.

q̃(X(1:N)|F) full marginal likelihood ✓ ✓ ✓ ✓

K(a) foreground marg lik, background volume ✗ ✗ ✓ ✓

K(b) foreground marg NKSD ✓ ✗ ✓ ✓

K(c) foreground marg KL, background volume ✓ ✗ ✓ ✓

K(d) foreground NKSD, background volume ✓ ✓ ✓ ✗

K foreground marg NKSD, background volume ✓ ✓ ✓ ✓

Table 1: Consistency properties satisfied by various model/data selection scores. Only the Stein
volume criterion K and the full marginal likelihood q̃(X(1:N)|F) satisfy all four desiderata. (d.s. =
data selection, m.s. = model selection, marg = marginal, lik = likelihood.)

3.1 Data selection consistency

First, consider comparisons between different choices of foreground, F1 and F2. When the model is
correctly specified over F1 but not F2, we refer to asymptotic concentration on F1 as “data selection
consistency” (and vice versa if F2 is correct but not F1). For the standard marginal likelihood of
the augmented model, we have (see Section B.2)

1

N
log

q̃(X(1:N)|F1)

q̃(X(1:N)|F2)

P0−−−−→
N→∞

kl(p0(xF2)∥q(xF2 |θkl2,∗))− kl(p0(xF1)∥q(xF1 |θkl1,∗)) (15)

where θklj,∗ := argminkl(p0(xFj )∥q(xFj |θ)) for j ∈ {1, 2}, that is, θklj,∗ is the parameter value that
minimizes the kl divergence between the projected data distribution p0(xFj ) and the projected

model q(xFj |θ). Thus, q̃(X(1:N)|Fj) asymptotically concentrates on the Fj on which the projected
model can most closely match the data distribution in terms of kl.

In Theorem 17, we show that under mild regularity conditions, the Stein volume criterion
behaves precisely the same way but with the nksd in place of the kl:

1

N
log

K1

K2

P0−−−−→
N→∞

1

T
nksd(p0(xF2)∥q(xF2 |θnksd2,∗ ))− 1

T
nksd(p0(xF1)∥q(xF1 |θnksd1,∗ )) (16)

where θnksdj,∗ := argminnksd(p0(xFj )∥q(xFj |θ)) for j ∈ {1, 2}. Therefore, q̃(X(1:N)|F) and K both
yield data selection consistency. It is important here that the SVC uses a true divergence, rather
than a divergence up to a data-dependent constant. If we instead used

K(a) :=

(
2π

N

)mB/2

q(X
(1:N)
F ), (17)

which employs the foreground marginal likelihood q(X
(1:N)
F ) =

∫
q(X

(1:N)
F |θ)π(θ)dθ and a back-

ground volume correction, we would get qualitatively different behavior (Section B.2):

1

N
log

K(a)
1

K(a)
2

P0−−−−→
N→∞

kl(p0(xF2)∥q(xF2 |θkl2,∗))− kl(p0(xF1)∥q(xF1 |θkl1,∗)) +HF2 −HF1 (18)

where HFj := −
∫
p0(xFj ) log p0(xFj )dxFj is the entropy of p0(xFj ) for j ∈ {1, 2}. In short, the

naive score K(a) is a bad choice: it decides between data subspaces based not just on how well the
parametric foreground model performs, but also on the entropy of the data distribution in each
space. As a result, K(a) does not exhibit data selection consistency.

9
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3.2 Nested data selection consistency

When XF2 ⊂ XF1 , we refer to the problem of deciding between subspaces F1 and F2 as nested data
selection, in counterpoint to nested model selection, where one model is a subset of another (Vuong,
1989). If the model q(x|θ) is well-specified over XF1 , then it is guaranteed to be well-specified over
any lower-dimensional sub-subspace XF2 ⊂ XF1 ; in this case, we refer to asymptotic concentra-
tion on F1 as “nested data selection consistency”. In this situation, kl(p0(xFj )∥q(xFj |θklj,∗)) and
nksd(p0(xFj ), q(xFj |θnksdj,∗ )) are both zero for j ∈ {1, 2}, making it necessary to look at higher-order
terms in Equations 15 and 16. In Section B.3, we show that if XF2 ⊂ XF1 , q(x|θ) is well-specified
over XF1 , the background models are well-specified, and their dimensionsmB1 andmB2 are constant
with respect to N , then

1

logN
log

q̃(X(1:N)|F1)

q̃(X(1:N)|F2)

P0−−−−→
N→∞

1

2
(mF2 +mB2 −mF1 −mB1) (19)

where mFj is the effective dimension of the parameter space of q(xFj |θ). In Theorem 17, we show
that under mild regularity conditions, the SVC behaves the same way:

1

logN
log

K1

K2

P0−−−−→
N→∞

1

2
(mF2 +mB2 −mF1 −mB1). (20)

Thus, so long as mF2 +mB2 > mF1 +mB1 whenever XF2 ⊂ XF1 , the marginal likelihood and the
SVC asymptotically concentrate on the larger foreground F1; hence, they both exhibit nested data
selection consistency. This is a natural assumption since the background model is generally more
flexible—on a per dimension basis—than the foreground model.

The volume correction (2π/N)mB/2 in the definition of the SVC is important for nested data
selection consistency (Equation 20). An alternative score without that correction,

K(b) :=

∫
exp
(
− N

T
n̂ksd(p0(xF )∥q(xF |θ))

)
π(θ)dθ, (21)

exhibits data selection consistency (Equation 16 holds for K(b)), but not nested data selection
consistency; see Sections B.2 and B.3. More subtly, the asymptotics of the SVC in the case of
nested data selection also depend on the variance of U-statistics. To illustrate, consider a score
that is similar to the SVC but uses k̂l instead of n̂ksd:

K(c) :=

(
2π

N

)mB/2 ∫
exp
(
−N k̂l(p0(xF )∥q(xF |θ))

)
π(θ)dθ (22)

where k̂l(p0(xF )∥q(xF |θ)) := − 1
N

∑N
i=1 log q(X

(i)
F |θ) −HF and HF is required to be known. The

score K(c) exhibits data selection consistency, but not nested data selection consistency. The reason
is that the error in estimating the kl is of order 1/

√
N by the central limit theorem, and this

source of error dominates the logN term contributed by the volume correction; see Section B.3.
Meanwhile, the error in estimating the nksd is of order 1/N when the model is well-specified, due
to the rapid convergence rate of the U-statistic estimator. Thus, in the SVC, this source of error is
dominated by the volume correction; see Theorem 12.

The nested data selection results we have described so far assume mB does not depend on N ,
or at least mB2 −mB1 does not depend on N (Theorem 17). However, in Section 2.1, we suggest
setting mB = cB rB

√
N where cB is a constant and rB is the dimension of XB. With this choice,

the asymptotics of the SVC for nested data selection become (Theorem 17)

1√
N logN

log
K1

K2

P0−−−−→
N→∞

1

2
cB (rB2 − rB1). (23)

10
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Since rB1 < rB2 when XF2 ⊂ XF1 , the SVC concentrates on the larger foreground F1, yielding
nested data selection consistency. Going beyond the well-specified case, Theorem 17 shows that
Equation 23 holds when nksd(p0(xF1)∥q(xF1 |θnksd1,∗ )) = nksd(p0(xF2)∥q(xF2 |θnksd2,∗ )) ̸= 0, that is,
when the models are misspecified by the same amount as measured by the nksd. Equation 23
holds regardless of whether mF1 is equal to mF2 .

3.3 Model selection and nested model selection consistency

Consider comparing different foreground models q1(xF |θ1) and q2(xF |θ2) over the same subspace
XF , while using the same background model. We say that a score exhibits “model selection con-
sistency” if it concentrates on the correct model, when one of the models is correctly specified and
the other is not. When the two models are nested and both are correct, a score exhibits “nested
model selection consistency” if it concentrates on the simpler model.

Like the standard marginal likelihood, the SVC exhibits both types of model selection consis-
tency. The standard marginal likelihood satisfies (Section B.4)

1

N
log

q̃1(X
(1:N)|F)

q̃2(X(1:N)|F)

P0−−−−→
N→∞

kl(p0(xF )∥q2(xF |θkl2,∗))− kl(p0(xF )∥q1(xF |θkl1,∗)) (24)

where θklj,∗ := argminkl(p0(xF )∥qj(xF |θj)) for j ∈ {1, 2}. Analogously, by Theorem 17,

1

N
log

K1

K2

P0−−−−→
N→∞

1

T
nksd(p0(xF )∥q2(xF |θnksd2,∗ ))− 1

T
nksd(p0(xF )∥q1(xF |θnksd1,∗ )) (25)

where θnksdj,∗ := argminnksd(p0(xF )∥qj(xF |θj)) for j ∈ {1, 2}. Thus, for both scores, concentration
occurs on the model that comes closer to the data distribution in terms of the corresponding
divergence (kl or nksd).

For nested model selection, suppose both foreground models are well-specified and mB1 = mB2 .
Letting mF ,j be the parameter dimension of qj(xF |θj), we have (Section B.5)

1

logN
log

q̃1(X
(1:N)|F)

q̃2(X(1:N)|F)

P0−−−−→
N→∞

1

2
(mF ,2 −mF ,1). (26)

In Theorem 17, we show that the SVC behaves identically:

1

logN
log

K1

K2

P0−−−−→
N→∞

1

2
(mF ,2 −mF ,1). (27)

Here, a key role is played by the volume of the foreground parameter space, which quantifies the
foreground model complexity. The SVC accounts for this by integrating over foreground parameter
space. Meanwhile, a naive alternative that ignores the foreground volume,

K(d) :=

(
2π

N

)mB/2

exp
(
− N

T
min
θ

n̂ksd(p0(xF )∥q(xF |θ))
)
, (28)

exhibits model selection consistency (Equation 25 holds for K(d)) but not nested model selection
consistency (Section B.5). The Laplace and BIC approximations to the SVC (Equations 10 and
11) explicitly correct for the foreground parameter volume without integrating.

11
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4. Related work

Projection pursuit methods are closely related to data selection in that they attempt to identify
“interesting” subspaces of the data. However, projection pursuit uses certain pre-specified objec-
tive functions to optimize over projections, whereas our method allows one to specify a model of
interest (Huber, 1985).

Another related line of research is on Bayesian goodness-of-fit (GOF) tests, which compute
the posterior probability that the data comes from a given parametric model versus a flexible
alternative such as a nonparametric model. Our setup differs in that it aims to compare among
different semiparametric models. Nonetheless, in an effort to address the GOF problem, a number of
authors have developed nonparametric models with tractable marginals (Verdinelli and Wasserman,
1998; Berger and Guglielmi, 2001), and using these models as the background component in an
augmented model could in theory solve data selection problems. In practice, however, such models
can only be applied to one-dimensional or few-dimensional data spaces. In Section 7, we show that
naively extending the method of Berger and Guglielmi (2001) to the multi-dimensional setting has
fundamental limitations.

There is a sizeable frequentist literature on GOF testing using discrepancies (Gretton et al.,
2012; Barron, 1989; Györfi and Van Der Meulen, 1991). Our proposed method builds directly on
the KSD-based GOF test proposed by Liu et al. (2016) and Chwialkowski et al. (2016). However,
using these methods to draw comparisons between different foreground subspaces is non-trivial,
since the set of alternative models considered by the GOF test, though nonparametric, will be
different over data spaces with different dimensionality. Moreover, the Bayesian aspect of the SVC
makes it more straightforward to integrate prior information and employ hierarchical models.

In composite likelihood methods, instead of the standard likelihood, one uses the product of
the conditional likelihoods of selected statistics (Lindsay, 1988; Varin et al., 2011). Composite
likelihoods have seen widespread use, often for robustness or computational purposes. However,
in composite likelihood methods, the choice of statistics is fixed before performing inference. In
contrast, in data selection the choice of statistics is a central quantity to be inferred.

Relatedly, our work connects with the literature on robust Bayesian methods. Doksum and
Lo (1990) propose conditioning on the value of an insufficient statistic, rather than the complete
dataset, when performing inference; also see Lewis et al. (2021). However, making an appropriate
choice of statistic requires one to know which aspects of the model are correct; in contrast, our
procedure infers the choice of statistic. The nksd posterior also falls within the general class of
Gibbs posteriors, which have been studied in the context of robustness, randomized estimators, and
generalized belief updating (Zhang, 2006a,b; Jiang and Tanner, 2008; Bissiri et al., 2016; Jewson
et al., 2018; Miller and Dunson, 2019).

Our theoretical results also contribute to the emerging literature on Stein discrepancies (Anas-
tasiou et al., 2021). Barp et al. (2019) recently proposed minimum kernelized Stein discrepancy
estimators and established their consistency and asymptotic normality. In Section 6, we establish
a Bayesian counterpart to these results, showing that the nksd posterior is asymptotically normal
(in the sense of Bernstein–von Mises) and admits a Laplace approximation. To prove this result,
we rely on the recent work of Miller (2021) on the asymptotics of generalized posteriors. Since Barp
et al. (2019) show that the kernelized Stein discrepancy is related to the Hyvärinen divergence in
that both are Stein discrepancies, our work bears an interesting relationship to that of Shao et al.
(2018), who use a Bayesian version of the Hyvärinen divergence to perform model selection with
improper priors. They derive a consistency result analogous to Equation 16, however, their model
selection score takes the form of a prequential score, not a Gibbs marginal likelihood as in the SVC,
and cannot be used for data selection.

12
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In independent recent work, Matsubara et al. (2021) propose a Gibbs posterior based on the
KSD and derive a Bernstein-von Mises theorem similar to Theorem 9 using the results of Miller
(2021). Their method is not motivated by the Bayesian data selection problem but rather by
(1) inference for energy-based models with intractable normalizing constants and (2) robustness
to ϵ-contamination. Their Bernstein-von Mises theorem differs from ours in that it applies to a
V-statistic estimator of the KSD rather than a U-statistic estimator of the NKSD.

Our linear approximation to the minimum Stein discrepancy estimator (Section 2.3.3) is in-
spired by previous work on empirical influence functions and the Swiss Army infinitesimal jack-
knife (Giordano et al., 2019; Koh and Liang, 2017). These previous methods similarly compute the
linear response of an extremum estimator with respect to perturbations of the dataset, but focus
on the effects of dropping datapoints rather than data subspaces.

5. Toy example

The purpose of this toy example is to illustrate the behavior of the Stein volume criterion, and
compare it to some of the defective alternatives listed in Table 1, in a simple setting where all
computations can be done analytically (Section A.3). In all of the following experiments, we
simulated data from a bivariate normal distribution: X(1), . . . , X(N) i.i.d. ∼ N ((0, 0)⊤,Σ0).

To set up the Stein volume criterion, we set T = 5 and we choose a radial basis function kernel,
k(x, y) = exp(−1

2∥x − y∥22), which factors across dimensions. We considered both dataset size-
independent values of mB (in particular, mB = 5 rB) and dataset size-dependent values of mB (in
particular, Equation 3 with α = 0.5, ν = 1, and D = 0.2, where fractional values of D correspond
to shared parameters across components in the Pitman-Yor mixture model), obtaining very similar
results in each case (shown in Figures 2 and 10, respectively). These choices of mB ensure that,
except for at very small N , the background model has more parameters per data dimension than
each of the foreground models considered below, which have just one. In particular, mB > 1 rB for
all N (in the size-independent case) and for N ≥ 5 (in the size-dependent case).

Data selection consistency

First, we set Σ0 to be a diagonal matrix with entries (1, 1/2), that is, Σ0 = diag(1, 1/2), and for
x ∈ R2, we consider the model

q(x|θ) = N (x | θ, I)
π(θ) = N (θ | (0, 0)⊤, 10I)

(29)

where I denotes the identity matrix. This parametric model is misspecified, owing to the incorrect
choice of covariance matrix. We consider two choices of foreground subspace: the first dimension
(defined by the projection matrix VF1 = (1, 0)⊤) or the second dimension (projection matrix VF2 =
(0, 1)⊤). The model is only well-specified for F1 (not F2), so a successful data selection procedure
would asymptotically select F1.

In Figure 2a, we see that the SVC correctly concentrates on F1 as the number of datapoints N
increases, with the log SVC ratio growing linearly in N , as predicted by Equation 16. Meanwhile,
the naive alternative score K(a) (Equation 17) fails since it depends on the foreground entropies,
while K(b) (Equation 21) succeeds since the volume correction is negligible in this case; see Sec-
tion 3.1 and Table 1.
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Figure 2: Behavior of the Stein volume criterion K, the foreground marginal likelihood with a
background volume correction K(a), and the foreground marginal nksd K(b) on toy examples.
Here, we set mB = 5 rB. The plots show the results for 5 randomly generated datasets (thin lines)
and the average over 100 random datasets (bold lines).

Nested data selection consistency

Next, we examine the nested data selection case. We use the same model (Equation 29), but we
set Σ0 = I so that the model is well-specified even without being projected. We compare the
complete data space (XF1 = X , projection matrix VF1 = I) to the first dimension alone (projection
matrix VF1 = (1, 0)⊤). Nested data selection consistency demands that the higher-dimensional
data space XF1 be preferred asymptotically, since the model is well-specified for both XF1 and
XF2 . Figure 2b shows that this is indeed the case for the Stein volume criterion, with the log
SVC ratio growing at a logN rate when mB is independent of N , as predicted by Equation 20.
When mB depends on N via the Pitman-Yor expression, the log SVC ratio grows at a Nα logN
rate (Figure 10b). Meanwhile, Figure 2b shows that K(a) and K(b) both fail to exhibit nested data
selection consistency, in accordance with our theory (Section 3.2 and Table 1).
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Model selection consistency (nested and non-nested)

Finally, we examine model selection and nested model selection consistency. We again set Σ0 =
I. We first compare the (well-specified) model q(x|θ) = N (x | θ, I) to the (misspecified) model
q(x|θ) = N (x | θ, 2I), using the prior π(θ) = N (θ | (0, 0)⊤, 10I) for both models. As shown
in Figure 2c, the SVC correctly concentrates on the first model, with the log SVC ratio growing
linearly in N , as predicted by Equation 25. The same asymptotic behavior is exhibited by K(a),
which is equivalent to the standard Bayesian marginal likelihood in this setting (Section 3.3).
Finally, to check nested model selection consistency, we compare two well-specified nested models:
q(x) = N (x | (0, 0)⊤, I) and q(x|θ) = N (x | θ, I). Figure 2d shows that the SVC correctly selects
the simpler model (that is, the model with smaller parameter dimension) and the log SVC ratio
grows as logN (Equation 27). This, too, matches the behavior of the standard Bayesian marginal
likelihood, seen in the plot of K(a).

6. Theory

6.1 Properties of the NKSD

Suppose X(1), . . . , X(N) are i.i.d. samples from a probability measure P on X ⊆ Rd having density
p(x) with respect to the Lebesgue measure. Let L1(P ) denote the set of measurable functions
f such that

∫
∥f(x)∥p(x)dx < ∞ where ∥ · ∥ is the Euclidean norm. We impose the following

regularity conditions to use the nksd to compare P with another probability measure Q having
density q(x) with respect to the Lebesgue measure; these are similar to conditions used for the
standard ksd in previous work (Liu et al., 2016; Barp et al., 2019).

Condition 1 (Restrictions on p and q) Assume sp(x) := ∇x log p(x) and sq(x) := ∇x log q(x)
exist and are continuous for all x ∈ X , and assume X is connected and open. Further, assume
sp, sq ∈ L1(P ).

We refer to sp as the Stein score function of p. Note that existence of sp(x) implies p(x) > 0. Now,
consider a kernel k : X × X → R. The kernel k is said to be integrally strictly positive definite if
for any g : X → R such that 0 <

∫
X |g(x)|dx < ∞, we have

∫
X
∫
X g(x)k(x, y)g(y)dxdy > 0. The

kernel k is said to belong to the Stein class of P if
∫
X ∇x(k(x, y)p(x))dx = 0 for all y ∈ X .

Condition 2 (Restrictions on k) Assume the kernel k is symmetric, bounded, integrally strictly
positive definite, and belongs to the Stein class of P .

The following result shows that the nksd can be written in a way that does not involve sp; this
is particularly useful for estimating the nksd when P is unknown.

Proposition 3 If Conditions 1 and 2 hold, then the nksd is finite and

nksd(p(x)∥q(x)) :=
EX,Y∼p[u(X,Y )]

EX,Y∼p[k(X,Y )]
(30)

where

u(x, y) = sq(x)
⊤sq(y)k(x, y) + sq(x)

⊤∇yk(x, y) + sq(y)
⊤∇xk(x, y) + trace(∇x∇⊤

y k(x, y)). (31)

The proof is in Section C.1. Next, we show the nksd satisfies the properties of a divergence.
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Proposition 4 If Conditions 1 and 2 hold, then

nksd(p(x)∥q(x)) ≥ 0, (32)

with equality if and only if p(x) = q(x) almost everywhere.

The proof is in Section C.1. Unlike the standard ksd, but like the kl divergence, the nksd exhibits
subsystem independence (Caticha, 2004, 2011; Rezende, 2018): if two distributions P and Q have
the same independence structure, then the total nksd separates into a sum of individual nksd
terms. This is formalized in Proposition 6.

Condition 5 (Shared independence structure) Let x = (x⊤1 , x
⊤
2 )

⊤ be a decomposition of a
vector x ∈ Rd into two subvectors, x1 and x2. Assume p(x) and q(x) factor as p(x) = p(x1)p(x2)
and q(x) = q(x1)q(x2), and that the kernel k factors as k(x, y) = k1(x1, y1)k2(x2, y2) where k1 and
k2 both satisfy Condition 2.

Proposition 6 (Subsystem independence) If Conditions 1, 2, and 5 hold, then

nksd(p(x)∥q(x)) = nksd(p(x1)∥q(x1)) + nksd(p(x2)∥q(x2)) (33)

where the first term on the right-hand side uses kernel k1 and the second term uses k2.

See Section C.1 for the proof. Subsystem independence is powerful since it separates the problem
of evaluating the foreground model from that of evaluating the background model. A modified
version applies to the estimator n̂ksd(p∥q) (Equation 5); see Proposition 20.

6.2 Bernstein–von Mises theorem for the NKSD posterior

In this section, we establish asymptotic properties of the SVC and, more broadly, of its correspond-
ing generalized posterior, which we refer to as the nksd posterior, defined as

πN (θ) ∝ exp
(
− N

T
n̂ksd(p0(xF )∥q(xF |θ))

)
π(θ). (34)

In particular, in Theorem 9, we show that the nksd posterior concentrates and is asymptotically
normal, and we establish that the Laplace approximation to the SVC (Equation 10) is asymp-
totically correct. These results form a Bayesian counterpart to those of Barp et al. (2019), who
establish the consistency and asymptotic normality of minimum ksd estimators. Thus, in both the
frequentist and Bayesian contexts, we can replace the average log likelihood with the negative ksd
and obtain similar key properties. Our results in this section do not depend on whether or not we
are working with a foreground subspace, so we suppress the xF notation.

Let Θ ⊆ Rm, and let {Qθ : θ ∈ Θ} be a family of probability measures on X ⊆ Rd having
densities qθ(x) with respect to Lebesgue measure. For notational convenience, we sometimes write
q(x|θ) instead of qθ(x). Suppose the data X(1), . . . , X(N) are i.i.d. samples from some probability
measure P0 on X having density p0(x) with respect to Lebesgue measure. To ensure the nksd
satisfies the properties of a divergence for all qθ, and that convergence of n̂ksd is uniform on
compact subsets of Θ (Proposition 21), we require the following.

Condition 7 Assume Conditions 1 and 2 hold for p0, k, and qθ for all θ ∈ Θ. Further, assume
that the kernel k has continuous and bounded partial derivatives up to and including second order,
and k(x, y) > 0 for all x, y ∈ X .
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Now we can set up the generalized posterior. First define

fN (θ) :=
1

T
n̂ksd(p0(x)∥q(x|θ)) =

1

T

∑
i ̸=j uθ(X

(i), X(j))∑
i ̸=j k(X

(i), X(j))
, (35)

where uθ(x, y) is the u(x, y) function from Equation 5 with qθ in place of q. For the case of N = 1,
we define f1(θ) = 0 by convention. Note that −NfN (θ) plays the role of the log likelihood. Also
define

f(θ) :=
1

T
nksd(p0(x)∥q(x|θ)), (36)

zN :=

∫
Θ
exp(−NfN (θ))π(θ)dθ,

πN (θ) :=
1

zN
exp(−NfN (θ))π(θ),

where π(θ) is a prior density on Θ. Note that πN (θ)dθ is the NKSD posterior and zN is the cor-
responding generalized marginal likelihood employed in the SVC. Denote the gradient and Hessian
of f by f ′(θ) = ∇θf(θ) and f ′′(θ) = ∇2

θf(θ), respectively. To ensure that the nksd posterior is
well defined and has an isolated maximum, we assume the following condition.

Condition 8 Suppose Θ ⊆ Rm is a convex set and (a) Θ is compact or (b) Θ is open and fN is
convex on Θ with probability 1 for all N . Assume zN <∞ a.s. for all N . Assume f has a unique
minimizer θ∗ ∈ Θ, f ′′(θ∗) is invertible, π is continuous at θ∗, and π(θ∗) > 0.

By Proposition 4, f has a unique minimizer whenever {Qθ : θ ∈ Θ} is well-specified and identifiable,
that is, when Qθ = P0 for some θ and θ 7→ Qθ is injective.

In Theorem 9 below, we establish the following results: (1) the minimum n̂ksd converges
to the minimum nksd; (2) πN concentrates around the minimizer of the nksd; (3) the Laplace
approximation to zN is asymptotically correct; and (4) πN is asymptotically normal in the sense of
Bernstein–von Mises. The primary regularity conditions we need for this theorem are restraints on
the derivatives of sqθ with respect to θ (Condition 10). Our proof of Theorem 9 relies on the theory
of generalized posteriors developed by Miller (2021). We use ∥ · ∥ for the Euclidean–Frobenius
norms: for vectors A ∈ RD, ∥A∥ = (

∑
iA

2
i )

1/2; for matrices A ∈ RD×D, ∥A∥ = (
∑

i,j A
2
i,j)

1/2; for

tensors A ∈ RD×D×D, ∥A∥ = (
∑

i,j,k A
2
i,j,k)

1/2; and so on.

Theorem 9 If Conditions 7, 8, and 10 hold, then there is a sequence θN → θ∗ a.s. such that:

1. fN (θN ) → f(θ∗), f
′
N (θN ) = 0 for all N sufficiently large, and f ′′N (θN ) → f ′′(θ∗) a.s.,

2. letting Bϵ(θ∗) := {θ ∈ Rm : ∥θ − θ∗∥ < ϵ}, we have∫
Bϵ(θ∗)

πN (θ)dθ
a.s.−−−−→

N→∞
1 for all ϵ > 0, (37)

3.

zN ∼ exp(−NfN (θN ))π(θ∗)

|det f ′′(θ∗)|1/2

(
2π

N

)m/2

(38)

almost surely, where aN ∼ bN means that aN/bN → 1 as N → ∞, and

17



Weinstein and Miller

4. letting hN denote the density of
√
N(θ − θN ) when θ is sampled from πN , we have that hN

converges to N (0, f ′′(θ∗)
−1) in total variation, that is,∫
Rm

∣∣∣hN (θ̃)−N (θ̃ | 0, f ′′(θ∗)−1)
∣∣∣dθ̃ a.s.−−−−→

N→∞
0. (39)

The proof is in Section C.2. We write ∇2
θsqθ to denote the tensor in Rd×m×m in which entry (i, j, k)

is ∂2sqθ(x)i/∂θj∂θk. Likewise, ∇3
θsqθ denotes the tensor in Rd×m×m×m in which entry (i, j, k, ℓ) is

∂3sqθ(x)i/∂θj∂θk∂θℓ. We write N to denote the set of natural numbers.

Condition 10 (Stein score regularity) Assume sqθ(x) has continuous third-order partial deriva-
tives with respect to the entries of θ on Θ. Suppose that for any compact, convex subset C ⊆ Θ,
there exist continuous functions g0,C , g1,C ∈ L1(P0) such that for all θ ∈ C, x ∈ X ,

∥sqθ(x)∥ ≤ g0,C(x),

∥∇θsqθ(x)∥ ≤ g1,C(x).
(40)

Further, assume there is an open, convex, bounded set E ⊆ Θ such that θ∗ ∈ E, Ē ⊆ Θ, and the
sets { 1

N

N∑
i=1

∥∇2
θsqθ(X

(i))∥ : N ∈ N, θ ∈ E
}
, (41)

{ 1

N

N∑
i=1

∥∇3
θsqθ(X

(i))∥ : N ∈ N, θ ∈ E
}

(42)

are bounded with probability 1.

Next, Theorem 11 shows that in the special case where qθ(x) is an exponential family, many of the
conditions of Theorem 9 are automatically satisfied.

Theorem 11 Suppose {Qθ : θ ∈ Θ} is an exponential family with densities of the form qθ(x) =
λ(x) exp(θ⊤t(x) − κ(θ)) for x ∈ X ⊆ Rd. Assume Θ = {θ ∈ Rm : |κ(θ)| < ∞}, and assume Θ
is convex, open, and nonempty. Assume log λ(x) and t(x) are continuously differentiable on X ,
∥∇x log λ(x)∥ and ∥∇xt(x)∥ are in L1(P0), and the rows of the Jacobian matrix ∇xt(x) ∈ Rm×d

are linearly independent with positive probability under P0. Suppose Condition 7 holds, f has a
unique minimizer θ∗ ∈ Θ, the prior π is continuous at θ∗, and π(θ∗) > 0. Then the assumptions of
Theorem 9 are satisfied for all N sufficiently large.

The proof is in Section C.2.

6.3 Asymptotics of the Stein volume criterion

The Laplace approximation to the SVC uses the estimate n̂ksd and its minimizer θN , rather than
the true nksd and its minimizer θ∗. To establish the consistency properties of the SVC, we need to
understand the relationship between the two. To do so, we adapt a standard approach to performing
such an analysis of the marginal likelihood, for instance, as in Theorem 1 of Dawid (2011).

Theorem 12 Assume the conditions of Theorem 9 hold, and assume sqθ∗ and ∇θ

∣∣
θ=θ∗

sqθ are in

L2(P0). Then as N → ∞,
fN (θN )− fN (θ∗) = OP0(N

−1). (43)
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Further, if nksd(p0(x)∥q(x|θ∗)) > 0 then

fN (θ∗)− f(θ∗) = OP0(N
−1/2), (44)

whereas if nksd(p0(x)∥q(x|θ∗)) = 0 then

fN (θ∗)− f(θ∗) = OP0(N
−1). (45)

The proof is in Section C.3. Remarkably, Equation 45 shows that fN (θ∗) converges to f(θ∗) more
rapidly when the model is well-specified, specifically, at a 1/N rate instead of 1/

√
N . This is

unusual and is crucial for our results in Section 6.4. The standard log likelihood does not exhibit
this rapid convergence; see Section B.1. This property of the nksd derives from similar properties
exhibited by the standard ksd (Liu et al., 2016, Theorem 4.1). Combined with Theorem 9 (part
3), Theorem 12 implies that when the model is misspecified, the leading order term of log zN is
−Nf(θ∗), whereas when the model is well-specified, the leading order term is −1

2 m logN .

6.4 Data and model selection consistency of the SVC

In this section, we establish the asymptotic consistency of the Stein volume criterion (SVC) when
used for data selection, nested data selection, model selection, and nested model selection; see
Theorem 17. This provides rigorous justification for the claims in Section 3. These results are all
in the context of pairwise comparisons between two models or two model projections, M1 and M2.
Before proving the results, we formally define the consistency properties discussed in Section 3.
Each property is defined in terms of a pairwise score ρ(M1,M2), such as ρ(M1,M2) = log(K1/K2).
For simplicity, we assume ρ(M1,M2) = −ρ(M2,M1); this is satisfied for all of the cases we consider.
Let dim(·) denote the dimension of a real space.

Definition 13 (Data selection consistency) For j ∈ {1, 2}, consider foreground model pro-
jections Mj := {q(xFj |θ) : θ ∈ Θ}. We say that ρ satisfies “data selection consistency” if
ρ(M1,M2) → ∞ as N → ∞ when M1 is well-specified with respect to p0(xF1) and M2 is mis-
specified with respect to p0(xF2).

Definition 14 (Nested data selection consistency) For j ∈ {1, 2}, consider foreground model
projections Mj := {q(xFj |θ) : θ ∈ Θ}. We say that ρ satisfies “nested data selection consistency”
if ρ(M1,M2) → ∞ as N → ∞ when M1 is well-specified with respect to p0(xF1), XF2 ⊂ XF1, and
dim(XF2) < dim(XF1).

Definition 15 (Model selection consistency) For j ∈ {1, 2}, consider foreground models
Mj := {qj(xF |θj) : θj ∈ Θj}. We say that ρ satisfies “model selection consistency” if ρ(M1,M2) →
∞ as N → ∞ when M1 is well-specified with respect to p0(xF ) and M2 is misspecified.

Definition 16 (Nested model selection consistency) For j ∈ {1, 2}, consider foreground
models Mj := {qj(xF |θj) : θj ∈ Θj}. We say that ρ satisfies “nested model selection consis-
tency” if ρ(M1,M2) → ∞ as N → ∞ when M1 is well-specified with respect to p0(xF ), M1 ⊂ M2,
and dim(Θ1) < dim(Θ2).

In each case, ρ may diverge almost surely (“strong consistency”) or in probability (“weak
consistency”). Note that in Definitions 13–14, the difference between M1 and M2 is the choice of
foreground data space F , whereas in Definitions 15–16, M1 and M2 are over the same foreground
space but employ different model spaces.
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In Theorem 17, we show that the SVC has the asymptotic properties outlined in Section 3.
In combination with the subsystem independence properties of the NKSD (Propositions 6 and
20), Theorem 17 also leads to the conclusion that the SVC approximates the NKSD marginal
likelihood of the augmented model (Equation 8). Our proof is similar in spirit to previous results
for model selection with the standard marginal likelihood, notably those of Hong and Preston
(2005) and Huggins and Miller (2021), but relies on the special properties of the nksd marginal
likelihood in Theorem 12.

Theorem 17 For j ∈ {1, 2}, assume the conditions of Theorem 12 hold for model Mj defined on
XFj , with density qj(xFj |θj) for θj ∈ Θj ⊆ RmFj ,j . Let Kj,N be the Stein volume criterion for Mj,
with background model penalty mBj = mBj (N), and let θj,∗ := argminθj nksd(p0(xFj )∥qj(xFj |θj)).
Then:

1. If mBj = o(N/ logN) for j ∈ {1, 2}, then

1

N
log

K1,N

K2,N

P0−−−−→
N→∞

1

T
nksd(p0(xF2)∥q2(xF2 |θ2,∗))−

1

T
nksd(p0(xF1)∥q1(xF1 |θ1,∗)).

2. If nksd(p0(xF1)∥q1(xF1 |θ1,∗)) = nksd(p0(xF2)∥q2(xF2 |θ2,∗)) = 0 and mB2 − mB1 does not
depend on N , then

1

logN
log

K1,N

K2,N

P0−−−−→
N→∞

1

2
(mF2,2 +mB2 −mF1,1 −mB1).

3. If nksd(p0(xF1)∥q1(xF1 |θ1,∗)) = nksd(p0(xF2)∥q2(xF2 |θ2,∗)), mB1 = cB1

√
N , and mB2 =

cB2

√
N , where cB1 and cB2 are positive and constant in N , then

1√
N logN

log
K1,N

K2,N

P0−−−−→
N→∞

1

2
(cB2 − cB1).

The proof is in Section C.4. In particular, assuming the conditions of Theorem 12, we
obtain the following consistency results in terms of convergence in probability. Let Dj :=
nksd(p0(xFj )∥qj(xFj |θj,∗)) for j ∈ {1, 2}.

� If mBj = o(N/ logN) then the SVC exhibits data selection consistency and model selection
consistency. This holds by Theorem 17 (part 1) since D2 > D1 = 0.

� If mB1 = mB2 then the SVC exhibits nested model selection consistency. This holds by
Theorem 17 (part 2) since D1 = D2 = 0, mB2 −mB1 = 0, and mF2,2 > mF1,1.

� Consider a nested data selection problem with XF2 ⊂ XF1 . If (A) mB2 −mB1 does not depend
on N and mF2,2 +mB2 > mF1,1 +mB1 or (B) mBj = cBj

√
N and cB2 > cB1 > 0, then the

SVC exhibits nested data selection consistency. Cases A and B hold by Theorem 17 (parts 2
and 3, respectively) since D1 = D2 = 0.

7. Application: Probabilistic PCA

Probabilistic principal components analysis (pPCA) is a commonly used tool for modeling and
visualization. The basic idea is to model the data as linear combinations of k latent factors plus
Gaussian noise. The inferred weights on the factors are frequently used to provide low-dimensional
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summaries of the data, while the factors themselves describe major axes of variation in the data.
In practice, pPCA is often applied in settings where it is likely to be misspecified – for instance,
the weights are often clearly non-Gaussian. In this section, we show how data selection can be used
to uncover sources of misspecification and to analyze how this misspecification affects downstream
inferences.

The generative model used in pPCA is

Z(i) ∼ N (0, Ik),

X(i)|Z(i) ∼ N (HZ(i), vId),
(46)

independently for i = 1, . . . , N , where Ik is the k-dimensional identity matrix, Z(i) ∈ Rk is the
weight vector for datapoint i, H ∈ Rd×k is the unknown matrix of latent factors, and v > 0 is the
variance of the noise. To form a Laplace approximation for the Stein volume criterion, we follow
the approach developed by Minka (2001) for the standard marginal likelihood. Specifically, we
parameterize H as

H = U(L− vIk)
1/2 (47)

where U is a d × k matrix with orthonormal columns (that is, it lies on the Stiefel manifold) and
L is a k × k diagonal matrix. We use the priors suggested by Minka (2001),

U ∼ Uniform(U),
Lii ∼ InverseGamma(α/2, α/2),

v ∼ InverseGamma
(
(α/2 + 1)(d− k)− 1, (α/2)(d− k)

)
,

(48)

where U is the set of d× k matrices with orthonormal columns and Lii is the ith diagonal entry of
L. We set α = 0.1 in the following experiments, and we use pymanopt (Townsend et al., 2016) to
optimize U over the Stiefel manifold (Section D).

7.1 Simulations

In simulations, we evaluate the ability of the SVC to detect partial misspecification. We set d = 6,
draw the first four dimensions from a pPCA model with k = 2 and

H =


1 0

−1 1
0 1

−1 −1

 , (49)

and generate dimensions 5 and 6 in such a way that pPCA is misspecified. We consider two
misspecified scenarios: scenario A (Figure 3a) is that

W (i) ∼ Bernoulli(0.5),

X
(i)
5:6 |W

(i) ∼ N (0,ΣW (i)) ,
(50)

where ΣW (i) = (0.05)W
(i)
I2. Scenario B (Figure 3d) is the same but with

ΣW (i) =

(
1 (−1)W

(i)
0.99

(−1)W
(i)
0.99 1

)
. (51)

Scenario B is more challenging because the marginals of the misspecified dimensions are still Gaus-
sian, and thus, misspecification only comes from the dependence between X5 and X6. As illustrated
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(e) Scenario B, pPCA latent space.
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Figure 3: Data selection in the probabilistic PCA model.

in Figures 3b and 3e, both kinds of misspecification are very hard to see in the lower-dimensional
latent representation of the data.

Our method can be used to both (i) detect misspecified subsets of dimensions, and (ii) conversely,
find a maximal subset of dimensions for which the pPCA model provides a reasonable fit to the data.
We set T = 0.05 in the SVC, based on the calibration procedure in Section A.1 (Section D.3). We
use the Pitman-Yor mixture model expression for the background model dimension (Equation 3),
with α = 0.5, ν = 1, and D = 0.2. This value of D ensures that the number of background
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model parameters per data dimension is greater than the number of foreground model parameters
per data dimension except for at very small N , since there are two foreground parameters for
each additional data dimension in the pPCA model, and mB > 2 rB for N ≥ 20. We performed
leave-one-out data selection, comparing the foreground space XF0 = X to foreground spaces XFj

for j ∈ {1, . . . , d}, which exclude the jth dimension of the data. We computed the log SVC ratio
log(Kj/K0) = logKj − logK0 using the BIC approximation to the SVC (Section 2.3.2) and the
approximate optima technique (Section 2.3.3). We quantify the performance of the method in
detecting misspecified dimensions in terms of the balanced accuracy, defined as (TN/N +TP/P )/2
where TN is the number of true negatives (dimension by dimension), N is the number of negatives,
TP is the number of true positives, and P is the number of positives. Experiments were repeated
independently five times. Figures 3c and 3f show that as the sample size increases, the SVC correctly
infers that dimensions 1 through 4 should be included and dimensions 5 and 6 should be excluded.

7.2 Comparison with a nonparametric background model

To benchmark our method, we compare with an alternative approach that uses an explicit aug-
mented model. The Pólya tree is a nonparametric model with a closed-form marginal likelihood
that is tractable for one-dimensional data (Lavine, 1992). We define a flexible background model
by sampling each dimension j of the background space independently as

Xj ∼ PolyaTree(F, F̃, η), (52)

with the Pólya tree constructed as by Berger and Guglielmi (2001) (Section D.4). We set F =
N (0, 10), F̃ = N (0, 10), and η = 1000 so that the model is weighted only very weakly towards the
base distribution.

We performed data selection using the marginal likelihood of the Pólya tree augmented model,
computing the marginal of the pPCA foreground model using the approximation of Minka (2001).
The accuracy results for data selection are in Figures 3c and 3f. On scenario A (Equation 50),
the Pólya tree augmented model requires significantly more data to detect which dimensions are
misspecified. On scenario B (Equation 51) the Pólya tree augmented model fails entirely, preferring
the full data space XF0 = X which includes all dimensions (Figure 3f). The reason is that the
background model is misspecified due to the assumption of independent dimensions, and thus, the
asymptotic data selection results (Equations 15 and 19) do not hold. This could be resolved by using
a richer background model that allows for dependence between dimensions, however, computing
the marginal likelihood under such a model would be computationally challenging. Even with the
independence assumption, the Pólya tree approach is already substantially slower than the SVC
(Figure 3g).

7.3 Application to pPCA for single-cell RNA sequencing

Single-cell RNA sequencing (scRNAseq) has emerged as a powerful technology for high-
throughput characterization of individual cells. It provides a snapshot of the transcriptional state
of each cell by measuring the number of RNA transcripts from each gene. PCA is widely used
to study scRNAseq datasets, both as a method for visualizing different cell types in the dataset
and as a pre-processing technique, where the latent embedding is used for downstream tasks like
clustering and lineage reconstruction (Qiu et al., 2017; van Dijk et al., 2018). We applied data
selection to answer two practical questions in the application of probabilistic PCA to scRNAseq
data: (1) Where is the pPCA model misspecified? (2) How does partial misspecification of the
pPCA model affect downstream inferences?
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Model criticism

Our first goal was to verify that the SVC provides reasonable inferences of partial model misspec-
ification in practice. We examined two different scRNAseq datasets, focusing for illustration on
a dataset from human peripheral blood mononuclear cells taken from a healthy donor, and pre-
processed the data following standard procedures in the field (Section D.5). We subsampled each
dataset to 200 genes (selected randomly from among the 2000 most highly expressed) and 2000
cells (selected randomly) for computational tractability, then mean-subtracted and standardized
the variance of each gene, again following standard practice in the field. The number of latent
components k was set to 3, based on the procedure of Minka (2000). We performed leave-one-out
data selection, comparing the foreground space XF0 := X to foreground spaces XFj that exclude the
jth gene. We computed the log SVC ratio logKj − logK0 using the BIC approximation to the SVC
(Section 2.3.2) and the approximate optima technique (Section 2.3.3). We used the same setting of
T and of mB as was used in simulation, resulting in a background model complexity of mB = 20 rB
for datasets of this size. Based on the SVC criterion, 162 out of 200 genes should be excluded from
the foreground pPCA model, suggesting widespread partial misspecification. Figure 4 compares
the histogram of individual genes to their estimated density under the pPCA model inferred for
XF0 = X . Those genes most favored to be excluded (namely, UBE2V2 and IRF8) show extreme
violations of normality, in stark contrast to those genes most favored to be included (MT-CO1 and
RPL6).

Next, we compared the results of our data selection approach to a more conventional strategy for
model criticism. Criticism of partially misspecified models can be challenging in practice because
misspecification of the model over some dimensions of the data can lead to substantial model-data
mismatch in dimensions for which the model is indeed well-specified (Jacob et al., 2017). The
standard approach to model criticism—first fit a model, then identify aspects of the data that the
model poorly explains—can therefore be misleading if our aim is to determine how the model might
be improved (e.g., in the context of “Box’s loop”, Blei, 2014). In particular, standard approaches
such as posterior predictive checks will be expected to overstate problems with components of
the model that are well-specified and understate problems with components of the model that
are misspecified. Bayesian data selection circumvents this issue by evaluating augmented models,
which replace potentially misspecified components of the model by well-specified components. To
illustrate the difference between these approaches in practice, we compared the SVC to a closely
analogous measurement of error for the full foreground model (inferred from XF0 = X ),

log Ej − log E0 := −N
T
n̂ksd(p0(xFj )∥q(xFj |θ0,N )) +

N

T
n̂ksd(p0(x)∥q(x|θ0,N )) (53)

where θ0,N := argmin n̂ksd(p0(x)∥q(x|θ)) is the minimum nksd estimator for the foreground model
when including all dimensions. This model criticism score evaluates the amount of model-data
mismatch contributed by the subspace XBj when modeling all data dimensions with the foreground
model. For comparison, the BIC approximation to the log SVC ratio is

logKj − logK0 ≈ −N
T
n̂ksd(p0(xFj )∥q(xFj |θj,N ) +

N

T
n̂ksd(p0(x)∥q(x|θ0,N ))

+
mBj +mFj −mF0

2
log

(
2π

N

) (54)

where θj,N := argmin n̂ksd(p0(xFj )∥q(xFj |θ)) is the minimum nksd estimator for the projected
foreground model applied to the restricted dataset, which we approximate as θ0,N plus the implicit
function correction derived in Section 2.3.3. Figure 5 illustrates the differences between the con-
ventional criticism approach (log Ej − log E0) and the log SVC ratio on an scRNAseq dataset. To
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Figure 4: (a,b) Histograms of gene expression (after pre-processing), i.e., X
(1)
j , . . . , X

(N)
j , for genes

j selected to be included in the foreground space based on the log SVC ratio logKj − logK0. The
estimated density under the pPCA model is shown in blue. (c,d) Histograms of example genes
selected to be excluded. Higher ranks (in each title) correspond to larger log SVC ratios.

enable direct comparison of the two methods, we focus on the lower order terms of Equation 54,
that is, we set mBj = mF0 −mFj . We see that the amount of error contributed by XBj , as judged
by the SVC, is often substantially higher than the amount indicated by the conventional criticism
approach, implying that the conventional criticism approach understates the problems caused by
individual genes and, conversely, overstates the problems with the rest of the model.

Using the SVC instead of a standard criticism approach can also help clarify trends in where the
proposed model fails. A prominent concern in scRNAseq data analysis is the common occurrence of
cells that show exactly zero expression of a certain gene (Pierson and Yau, 2015; Hicks et al., 2018).
We found a Spearman correlation of ρ = 0.89 between the conventional criticism log Ej − log E0 for
a gene j and the fraction of cells with zero expression of that gene j, suggesting that this is an
important source of model-data mismatch in this scRNAseq dataset, but not necessarily the only
source (Figure 6a). However, the log SVC ratio yields a Spearman correlation of ρ = 0.98, suggesting
instead that the amount of model-data mismatch can be entirely explained by the fraction of cells
with zero expression (Figure 6b). These observations are repeatable across different scRNAseq
datasets (Figure 6c, 6d).
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Figure 5: Scatterplot comparison and projected marginals of the leave-one-out log SVC ratio,
logKj − logK0 (with mBj = mF0 −mFj ), and the conventional full model criticism score, log Ej −
log E0, for each gene.

Evaluating robustness

Data selection can also be used to evaluate the robustness of the foreground model to partial model
misspecification. This is particularly relevant for pPCA on scRNAseq data, since the inferred
latent embeddings of each cell are often used for downstream tasks such as clustering, lineage
reconstruction, and so on. Misspecification may produce spurious conclusions, or alternatively,
misspecification may be due to structure in the data that is scientifically interesting. To understand
how partial misspecification of the pPCA model affects the latent representation of cells (and
thus, downstream inferences), we performed data selection with a sequence of background model
complexities cB, where mB = cB rB (Figure 7a). We inferred the pPCA parameters based only
on genes that the SVC selects to include in the foreground subspace. Figures 7e-7b visualize
how the latent representation changes as cB grows and fewer genes are selected. We can observe
the representation morphing into a standard normal distribution, as we would expect in the case
where the pPCA model is well-specified. However, the relative spatial organization of cells in the
latent space remains fairly stable, suggesting that this aspect of the latent embedding is robust to
partial misspecification. We can conclude that, at least in this example, misspecification strongly
contributes to the non-Gaussian shape of the latent representation of the dataset, but not to the
distinction between subpopulations.

8. Application: Glass model of gene regulation

A central goal in the study of gene expression is to discover how individual genes regulate one
another other’s expression. Early studies of single cell gene expression noted the prevalence of
genes that were bistable in their expression level (Shalek et al., 2013; Singer et al., 2014). This
suggests a simple physical analogy: if individual gene expression is a two-state system, we might
study gene regulation with the theory of interacting two-state systems, namely spin glasses. We
can consider for instance a standard model of this type in which each cell i is described by a vector
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Figure 6: (a) Comparison of the conventional criticism score, for each gene j, and the fraction of
cells that show zero expression of that gene j in the raw data. Spearman ρ = 0.89, p < 0.01.
(b) Same as (a) but with the log SVC ratio. Spearman ρ = 0.98, p < 0.01. In orange are genes
that would be included when using a background model with cB = 20 and in blue are genes that
would be excluded. (c) Same as (a) for a dataset taken from a MALT lymphoma (Section D.5).
Spearman ρ = 0.81, p < 0.01. (d) Same as (b) for the MALT lymphoma dataset. Spearman
ρ = 0.99, p < 0.01.

of spins zi = (zi1, . . . , zid)
⊤ drawn from an Ising model, specifying whether each gene j ∈ {1, . . . , d}

is “on” or “off”. In reality, gene expression lies on a continuum, so we use a continuous relaxation
of the Ising model and parameterize each spin using a logistic function, setting zij1(xij , µ, τ) =
1/(1+exp(−τ(xij −µ))) and zij2(xij , µ, τ) = 1−zij1(xij , µ, τ). Here, xij is the observed expression
level of gene j in cell i, the unknown parameter µ controls the threshold for whether the expression
of a gene is “on” (such that zij ≈ (1, 0)⊤) or “off” (such that zij ≈ (0, 1)⊤), and the unknown
parameter τ > 0 controls the sharpness of the threshold. The complete model is then given by

X(i) ∼ p(xi|H,J, µ, τ) :=
1

ZH,J,µ,τ
exp
(∑

j

H⊤
j zij(xij , τ, µ) +

∑
j′>j

z⊤ij(xij , τ, µ)Jjj′zij′(xij′ , τ, µ)
)

where ZH,J,µ,τ is the unknown normalizing constant of the model, and the vectors Hj ∈ R2 and
matrices Jjj′ ∈ R2×2 are unknown parameters. This model is motivated by experimental obser-
vations and is closely related to RNAseq analysis methods that have been successfully applied in
the past (Friedman et al., 2000; Friedman, 2004; Ding and Peng, 2005; Chen et al., 2015; Banerjee
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Figure 7: (a) Histogram of log SVC ratios logKj − logK0 for all 200 genes in the dataset (with
mBj = mF0 − mFj ). Dotted lines show the value of the volume correction term in the SVC for
different choices of background model complexity cB; for each choice, genes with logKj − logK0

values above the dotted line would be excluded from the foreground subspace based on the SVC.
(b) Posterior mean of the first two latent variables (z1 and z2), with the pPCA model applied
to the genes selected with a background model complexity of cB = 10 (keeping 23 genes in the
foreground). (c-e) Same as (b), but with cB = 20 (keeping 38 genes), cB = 40 (keeping 87 genes)
and cB = 60 (keeping all 200 genes). In (a)-(d), the points are colored using the z1 value when
cB = 60.

et al., 2008; Duvenaud et al., 2008; Liu et al., 2009; Huynh-Thu et al., 2010; Moignard et al., 2015;
Matsumoto et al., 2017). However, from a biological perspective we can expect that serious prob-
lems may occur when applying the model naively to an scRNAseq dataset. Genes need not exhibit
bistable expression: it is straightforward in theory to write down models of gene regulation that
do not have just one or two steady states—gene expression may fall on a continuum, or oscillate,
or have three stable states—and many alternative patterns have been well-documented empiri-
cally (Alon, 2019). Interactions between genes may also be more complex than the model assumes,
involving for instance three-way dependencies between genes. All of these biological concerns can
potentially produce severe violations of the proposed two-state glass model’s assumptions. Data
selection provides a method for discovering where the proposed model applies.

Applying standard Bayesian inference to the glass model is intractable, since the normalizing
constant is unknown (it is an energy-based model). However, the normalizing constant does not
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affect the SVC, so we can still perform data selection. We used the variational approximation to
the SVC in Section 2.3.4. We placed a Gaussian prior on H and a Laplace prior on each entry
of J to encourage sparsity in the pairwise gene interactions; we also used Gaussian priors for µ
and τ after applying an appropriate transform to remove constraints (Section E.1). Following
the logic of stochastic variational inference, we optimized the SVC variational approximation using
minibatches of the data and a reparameterization gradient estimator (Hoffman et al., 2013; Kingma
and Welling, 2014; Kucukelbir et al., 2017). We also simultaneously stochastically optimized the set
of genes included in the foreground subspace, using Leave-One-Out REINFORCE (Kool et al., 2019;
Dimitriev and Zhou, 2021) to estimate log-odds gradients. We implemented the model and inference
strategy within the probabilistic programming language Pyro by defining a new distribution with log
probability given by the negative NKSD (Bingham et al., 2019). Pyro provides automated, GPU-
accelerated stochastic variational inference, requiring less than an hour for inference on datasets
with thousands of cells. See Section E.1 for more details on these inference procedures.

We examined three scRNAseq datasets, taken from (i) peripheral blood monocytes (PBMCs)
from a healthy donor (2,428 cells), (ii) a MALT lymphoma (7,570 cells), and (iii) mouse neurons
(10,658 cells) (Section E.2). We preprocessed the data following standard protocols and focused on
200 high expression, high variability genes in each dataset, based on the metric of Gigante et al.
(2020). We set T = 0.05 as in Section 7, and used the Pitman-Yor expression for mB (Equation 3)
with α = 0.5, ν = 1 and D = 100. This value of D ensures that the number of background model
parameters per data dimension is larger than the number of foreground model parameters per data
dimension except for at very small N ; in particular, there are 798 foreground model parameter
dimensions associated with each data dimension (from the 199 interactions Jjj′ that each gene
has with each other gene, plus the contribution of Hj), and mB > 798 rB for N ≥ 13. Our data
selection procedure selects 65 genes (32.5%) in the PBMC dataset, 0 genes in the neuron dataset,
and 187 genes (93.5%) in the MALT dataset; note that for a lower value of mB, in particular using
D = 10, no genes are selected in the MALT dataset. These results suggest substantial partial
misspecification in the PBMC and neuron datasets, and more moderate partial misspecification in
the MALT dataset.

We investigated the biological information captured by the foreground model on the MALT
dataset. In particular, we looked at the approximate NKSD posterior for the selected 187 genes,
and compared it to the approximate NKSD posterior for the model when applied to all 200 genes.
(Note that, since the glass model lacks a tractable normalizing constant, we cannot compare stan-
dard Bayesian posteriors.) Figure 8 shows, for a subset of selected genes, the posterior mean of the
interaction energy ∆Ejj′ := Jjj′21+Jjj′12−Jjj′22−Jjj′11, that is, the total difference in energy be-
tween two genes being in the same state versus in opposite states. We focused on strong interactions
with |∆Ejj′ | > 1, corresponding to just 5% of all possible gene-gene interactions (Figure 12).

One foreground gene with especially large loading onto the top principal component of the
∆E matrix is CD37 (Figure 8). In B-cell lymphomas, of which MALT lymphoma is an exam-
ple, CD37 loss is known to be associated with decreased patient survival (Xu-Monette et al.,
2016). Further, previous studies have observed that CD37 loss leads to high NF-κB pathway ac-
tivation (Xu-Monette et al., 2016). Consistent with this observation, the estimated interaction
energies in our model suggest that decreasing CD37 will lead to higher expression of REL, an
NF-κB transcription factor (∆ECD37,REL = 2.5), decreased expression of NKFBIA, an NF-κB in-
hibitor (∆ECD37,NKFBIA = −3.6), and higher expression of BCL2A1, a downstream target of the
NF-κB pathway (∆ECD37,BCL2A1 = 2.1). Separately, a knockout study of Cd37 in B-cell lym-
phoma in mice does not show IgM expression (de Winde et al., 2016), consistent with our model
(∆ECD37,IGHM = −8.2). The same study does show MHC-II expression, and our model predicts
the same result, for HLA-DQ in particular (∆ECD37,HLA-DQA1 = 5.0, ∆ECD37,HLA-DQB1 = 3.7).
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Figure 8: Posterior mean interaction energies ∆Ejj′ := Jjj′21+Jjj′12−Jjj′22−Jjj′11 for a subset of
the selected genes. For visualization purposes, weak interactions (|∆Ejj′ | ≤ 1) are set to zero, and
genes with less than 10 total strong connections are not shown. Genes are sorted based on their
(signed) projection onto the top principal component of the ∆E matrix.

These results suggest that the data selection procedure can successfully find systems of interacting
genes that can plausibly be modeled as a spin glass, and which, in this case, are relevant for cancer.

To investigate whether data selection provided a benefit in this analysis, we compare with the
results obtained by applying the foreground model to the full dataset of all 200 genes. All but one
of the interactions listed above have |∆E| < 1 in the full foreground model, and three have opposite
signs (∆ECD37,NFKBIA = +0.7, ∆ECD37,IGHM = +0.0, ∆ECD37,HLA-DQB1 = −0.6); see Figure 13.
Across all 187 selected genes, we find only a moderate correlation between the interaction energies
estimated when using the full foreground model compared with the data selection-based model
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Figure 9: Comparison of posterior mean interaction energies ∆Ejj′ for a model applied to all 200
genes (pre-data selection) to those learned from a model applied to the selected foreground subspace
(post-data selection). Each point corresponds to a pairwise interaction between two of the selected
187 genes.

(Spearman’s rho = 0.30, p < 0.01; Figure 9). These results show that using data selection can
lead to substantially different, and arguably more biologically plausible, downstream conclusions
as compared to naive application of the foreground model to the full dataset.

As a simple alternative, one might wonder whether genes that are poorly fit by the model
could be identified simply by looking their posterior uncertainty under the full foreground model.
This simple approach does not work well, however, since it is possible for parameters to have low
uncertainty even when the model poorly describes the data. Indeed, we found that examining
uncertainty in the glass model does not lead to the same conclusions as performing data selection:
the genes excluded by our data selection procedure are not the ones with the highest uncertainty
in their interactions (as measured by the mean posterior standard deviation of ∆Ejj′ under the
NKSD posterior), though they do have above average uncertainty (Figure 14a). Instead, the genes
excluded by our data selection procedure are the ones with the highest fraction of cells with zero
expression, violating the assumptions of the foreground model (Figure 14b). These results show how
data selection provides a sound, computationally tractable approach to criticizing and evaluating
complex Bayesian models.

9. Discussion

Statistical modeling is often described as an iterative process, where we design models, infer hidden
parameters, critique model performance, and then use what we have learned from the critique to
design new models and repeat the process (Gelman et al., 2013). This process has been called
“Box’s loop” (Blei, 2014). From one perspective, data selection offers a new criticism approach. It
goes beyond posterior predictive checks and related methods by changing the model itself, replacing
potentially misspecified components with a flexible background model. This has important practical
consequences: since misspecification can distort estimates of model parameters in unpredictable
ways, predictive checks are likely to indicate mismatch between the model and the data across
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the entire space X even when the proposed parametric model is only partially misspecified. Our
method, by contrast, reveals precisely those subspaces of X where model-data mismatch occurs.

From another perspective, data selection is outside the design-infer-critique loop. An underly-
ing assumption of Box’s loop is that scientists want to model the entire dataset. As datasets get
larger, and measurements get more extensive, this desire has led to more and more complex (and
often difficult to interpret) models. In experimental science, however, scientists have often followed
the opposite trajectory: faced with a complicated natural phenomenon, they attempt to isolate a
simpler example of the phenomenon for close study. Data selection offers one approach to formal-
izing this intuitive idea in the context of statistical analysis: we can propose a simple parametric
model and then isolate a piece of the whole dataset—a subspace XF—to which this model applies.
When working with large, complicated datasets, this provides a method of searching for simpler
phenomena that are hypothesized to exist.

There are several directions for future work and improvement upon our proposed data selection
approach. First, we have focused in our applied examples on discovering subsets of data dimensions.
However, our theoretical results show that one can perform data selection on linear subspaces in
general; for instance, in the context of scRNAseq, we might find that a model can describe a certain
set of linear gene expression programs. Even more generally, one might be interested in discovering
nonlinear features of the data that the model can explain—such as a set of nonlinear gene expression
programs—and this would require extending our approach, perhaps by (1) applying a nonlinear
volume-preserving map to the data, and then (2) performing standard linear data selection.

Second, we have focused on choosing one best XF from among a finite set of possibilities.
A future direction is to provide rigorous asymptotic guarantees when there are infinitely many
possible choices of XF , such as the set of all linear subspaces of X . Another future direction is to
provide uncertainty quantification of XF , rather than just point estimation. Here, it is important
to consider the uncertainty due to having finite data as well as non-identifiability, since there may
exist multiple optimal values of XF ; for instance, this can occur if the model is well specified over
marginals of the data but not over the joint distribution of the data.

Third, in many applications, researchers will be interested in inferring the parameters θ of the
foreground model when applied to the selected subspace XF . On finite data, it is conceivable that
foreground subspaces XF that are more likely to be selected are also more likely to have certain
values of θ, which could create a “post- data selection bias” in conclusions about θ, analogous to
the bias that occurs in post-selection inference (Yekutieli, 2012). The data selection problem does
not fit neatly in the framework of post-selection inference, however, so further investigation will be
required to understand if, when, and to what extent such bias occurs.

Finally, in comparison to the augmented model marginal likelihood, the SVC makes different
judgments as to what types of model-data mismatch are important. The nksd and the kl di-
vergence are quite different and do not, in general, coincide or tightly bound one another, so a
model-data mismatch that looks big to one divergence may not look big to the other, and vice
versa (Matsubara et al., 2021). The preference of the nksd for certain types of errors is not es-
sential to achieving consistent data selection and nested data selection, but is very relevant to
the practical use and interpretation of the SVC. One could use another divergence instead of the
nksd in the definition of the SVC, and this would typically be expected to yield consistent model
selection and nested model selection (Appendix B.1 and Miller, 2021), however, consistent data
selection and nested data selection are more challenging, and depend on a combination of special
properties that our nksd estimator possesses (Section 3). Developing data selection approaches
with different model-data mismatch preferences, therefore, remains an open challenge. In summary,
Bayesian data selection is a rich area for future work.
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Appendix A. Methods details

A.1 Calibrating T

The SVC contains a hyperparameter T > 0. To choose an appropriate value of T , we aim, roughly,
to match the coverage of the generalized posterior

πsvcN (θ)dθ =
1

zN
exp
(
− N

T
n̂ksd(p0(x))∥q(x|θ))

)
π(θ)dθ

to the coverage of the standard Bayesian posterior

πklN (θ)dθ =
1

q(X(1:N))
exp
( N∑

i=1

log q(X(i)|θ)
)
π(θ)dθ

when the model is well-specified.
Let θ∗ be the true parameter value, such that p0(x) = q(x|θ∗) almost everywhere. Let

Gkl(θ) := ∇2
θEX∼p0 [− log q(X|θ)] and let θklN := argmax

∑N
i=1 log q(X

(i)|θ) be the maximum likeli-
hood estimator. Let hklN be the density of

√
N(θ− θklN ) when θ ∼ πklN . Under regularity conditions

(Miller, 2021), according to the Bernstein–von Mises theorem, hklN converges to a normal distribu-
tion in total variation, ∫

Rm

∣∣∣hklN (x)−N
(
x | 0, Gkl(θ∗)

−1
)∣∣∣dx a.s.−−−−→

N→∞
0.

According to Theorem 9, the generalized posterior associated with the SVC has analogous behavior.
Let Gsvc(θ) := ∇2

θ
1
T nksd(p0(x)∥q(x|θ)) and let θsvcN := argmin n̂ksd(p0(x)∥q(x|θ)). Let hsvcN be

the density of
√
N(θ − θsvcN ) when θ ∼ πsvcN . Then by Theorem 9, hsvcN converges to a normal

distribution in total variation,∫
Rm

∣∣∣hsvcN (x)−N
(
x | 0, Gsvc(θ∗)

−1
)∣∣∣dx a.s.−−−−→

N→∞
0.

For the uncertainty in each posterior to be roughly the same order of magnitude, we want

detGkl(θ∗) ≈ detGsvc(θ∗),

or equivalently,

T ≈

(
det
[
∇2

θ

∣∣
θ=θ∗

nksd(p0(x)∥q(x|θ))
]

det
[
∇2

θ

∣∣
θ=θ∗

EX∼p0 [− log q(X|θ)]
])1/m

.

To choose a single T value, we simulate true parameters from the prior, generate data from
each simulated true parameter, and take the median of the estimated T values. That is, we use the
median T̂ across samples drawn as

θ∗ ∼ π(θ)

X(i) iid∼ q(x|θ∗)

T̂ =

(
| det

[
∇2

θ

∣∣
θ=θ∗

n̂ksd(p0(x)∥q(x|θ))
]
|

|det
[
∇2

θ

∣∣
θ=θ∗

1
N

∑N
i=1− log q(X(i)|θ)

]
|

)1/m

.

(55)

In practice, we find that the order of magnitude of T̂ is stable across samples θ∗ from π(θ). See
Section D.3 for an example.
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A.2 Kernel recommendations

To obtain subsystem independence (Proposition 6), we suggest using a kernel that factors across
subspaces, such that k(X,Y ) = kF (XF , YF )kB(XB, YB) where kF and kB are integrally strictly
positive definite kernels. In the applications in Sections 7 and 8, we use the following kernel.

Definition 18 The factored inverse multiquadric (IMQ) kernel is defined as

k(x, y) =

d∏
i=1

(
c2 + (xi − yi)

2
)β/d

for x, y ∈ Rd, where β ∈ [−1/2, 0) and c > 0.

Note that this kernel factors across any subset of dimensions, that is, if S ⊆ {1, . . . , d} and Sc =
{1, . . . , d}\S, then we can write k(x, y) = kS(xS , yS)kSc(xSc , ySc). Thus, if the foreground subspace
XF is the span of a subset of the standard basis, such that xF = V ⊤x = xS for some S ⊆ {1, . . . , d},
then it follows that k factors as k(x, y) = kF (xF , yF )kB(xB, yB). Along with this observation, the
next result shows that the factored IMQ satisfies the conditions of Theorem 9 that pertain to k
alone.

Proposition 19 The factored IMQ kernel is symmetric, positive, bounded, integrally strictly pos-
itive definite, and has continuous and bounded partial derivatives up to order 2.

Proof It is clear that k(x, y) = k(y, x) and k(x, y) > 0. Next, we show that k has continuous and
bounded partial derivatives up to order 2. Note that we can write k(x, y) =

∏d
i=1 ψ(xi − yi) where

ψ(r) = (c2 + r2)β/d for r ∈ R. Differentiating, we have

ψ′(r) =
β

d

2r

c2 + r2
ψ(r)

ψ′′(r) =
(β2
d2

− β

d

)( 2r

c2 + r2

)2
ψ(r) +

β

d

2

c2 + r2
ψ(r).

Since r2 ≥ 0 and β < 0, |ψ(r)| ≤ c2β/d for all r ∈ R. Further, it is straightforward to verify that
|ψ′(r)| and |ψ′′(r)| are bounded on R by using the fact that |r|/(c2 + r2) ≤ 1/(2c). By the chain
rule, it follows that for all i, j, the functions k(x, y), |∂k/∂xi|, and |∂2k/∂xi∂yj | are bounded. Thus,
we conclude that k, ∥∇k∥, and ∥∇2k∥ are bounded.

Finally, we show that k is integrally strictly positive definite. First, for any d, for x, y ∈ Rd,
the function (x, y) 7→ (c2 + ∥x − y∥22)β/d is an integrally strictly positive definite kernel (see, for
example, Section 3.1 of Sriperumbudur et al., 2010); we refer to this as the standard IMQ kernel.
Since the factored IMQ is a product of one-dimensional standard IMQ kernels, it defines a kernel
on Rd (Lemma 4.6 of Steinwart and Christmann, 2008) and is positive definite (Theorem 4.16
of Steinwart and Christmann, 2008). By Bochner’s theorem (Theorem 3 of Sriperumbudur et al.,
2010), a continuous positive definite kernel can be expressed in terms of the Fourier transform of a
finite nonnegative Borel measure. In particular, applying Bochner’s theorem to ψ(r), we have

k(x, y) = Ψ(x− y) :=

d∏
i=1

ψ(xi − yi) =

d∏
i=1

∫
R
exp
(
−
√
−1(xi − yi)ωi

)
dΛ0(ωi)

=

∫
Rd

exp
(
−
√
−1(x− y)⊤ω

)
dΛ(ω)
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by Fubini’s theorem, where Λ0 is the finite nonnegative Borel measure on R associated with ψ(r)
and Λ = Λ0 × · · · × Λ0 is the resulting product measure on Rd. Applying Bochner’s theorem in
the other direction, we see that Ψ is a positive definite function. Moreover, since the standard
IMQ kernel is characteristic (Theorem 7 of Sriperumbudur et al., 2010), it follows that the support
of Λ0 is R (Theorem 9 of Sriperumbudur et al., 2010), and thus the support of Λ is Rd. This
implies that the factored IMQ kernel k is characteristic (Theorem 9 of Sriperumbudur et al., 2010)
and, since k is also translation invariant, k must be integrally strictly positive definite (Section 3.4
of Sriperumbudur et al., 2011).

Our choice of the factored IMQ kernel is motivated by the analysis of Gorham and Mackey
(2017), which suggests that the standard IMQ is a good default choice for the kernelized Stein
discrepancy, particularly when working with distributions that are (roughly speaking) very spread
out. In particular, it is straightforward to show that the factored IMQ kernel, like the standard
IMQ kernel, meets the conditions of Theorem 3.2 of Huggins and Mackey (2018). However, we do
not pursue further the question of whether the nksd with the factored IMQ detects convergence
and non-convergence since our statistical setting is different from that of Gorham and Mackey
(2017), and we are assuming the data consists of i.i.d. samples from some underlying distribution
rather than correlated samples from an MCMC chain which may or may not converge.

A.3 Exact solution for exponential families

Here, we show that when q(x|θ) is an exponential family, the estimated nksd has the form

n̂ksd(p0(x)∥q(x|θ)) = θ⊤Aθ +B⊤θ + C (56)

where A, B, and C depend on the data but not on θ. Since qθ(x) = q(x|θ) = λ(x) exp(θ⊤t(x)−κ(θ)),
we have sqθ(x) = ∇x log λ(x) + (∇xt(x))

⊤θ where (∇xt(x))ij = ∂ti/∂xj . Thus, we can write

uθ(x, y) := sqθ(x)
⊤sqθ(y)k(x, y) + sqθ(x)

⊤∇yk(x, y) + sqθ(y)
⊤∇xk(x, y) + trace(∇x∇⊤

y k(x, y))

= θ⊤[(∇xt(x))(∇yt(y))
⊤k(x, y)]θ

+ [(∇x log λ(x))
⊤(∇yt(y))

⊤k(x, y) + (∇y log λ(y))
⊤(∇xt(x))

⊤k(x, y)

+ (∇xk(x, y))
⊤(∇yt(y))

⊤ + (∇yk(x, y))
⊤(∇xt(x))

⊤]θ

+ [(∇x log λ(x))
⊤(∇y log λ(y))k(x, y) + (∇y log λ(y))

⊤(∇xk(x, y))

+ (∇x log λ(x))
⊤(∇yk(x, y)) + trace(∇x∇⊤

y k(x, y))]. (57)
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Then the estimated nksd takes the form in Equation 56 if we choose

A :=
1∑

i ̸=j k(X
(i), X(j))

∑
i ̸=j

∇xt(X
(i))∇xt(X

(j))⊤k(X(i), X(j))

B⊤ :=
1∑

i ̸=j k(X
(i), X(j))

∑
i ̸=j

[
(∇x log λ(X

(i)))⊤∇xt(X
(j))⊤k(X(i), X(j))

+ (∇x log λ(X
(j)))⊤∇xt(X

(i))⊤k(X(i), X(j))

+ (∇xk(X
(i), X(j)))⊤∇xt(X

(j))⊤ + (∇yk(X
(i), X(j)))⊤∇xt(X

(i))⊤
]

C :=
1∑

i ̸=j k(X
(i), X(j))

∑
i ̸=j

[
(∇x log λ(X

(i)))⊤(∇x log λ(X
(j)))k(X(i), X(j))

+ (∇x log λ(X
(j)))⊤∇xk(X

(i), X(j))

+ (∇x log λ(X
(i)))⊤∇yk(X

(i), X(j)) + trace(∇x∇⊤
y k(X

(i), X(j)))
]
.

If the prior on θ is N (µ,Σ0), then the SVC is

K =

(
2π

N

)mB/2

(2π)−mF/2(detΣ0)
−1/2

×
∫

exp
(
− N

T
[θ⊤Aθ +B⊤θ + C]

)
exp
(
− 1

2
(θ − µ)⊤Σ−1

0 (θ − µ)
)
dθ

=

(
2π

N

)mB/2

(2π)−mF/2(detΣ0)
−1/2

×
∫

exp

(
− 1

2
θ⊤
(2N
T
A+Σ−1

0

)
θ +

(
− N

T
B⊤ + µ⊤Σ−1

0

)
θ − N

T
C − 1

2
µ⊤Σ−1

0 µ

)
dθ

=

(
2π

N

)mB/2

(detΣ0)
−1/2

(
det
(2N
T
A+Σ−1

0

))−1/2

× exp

(
1

2

(
− N

T
B⊤ + µ⊤Σ−1

0

)⊤(2N
T
A+Σ−1

0

)−1(
− N

T
B⊤ + µ⊤Σ−1

0

)
− N

T
C − 1

2
µ⊤Σ−1

0 µ

)
.

Meanwhile, if q(x|θ) = N (θ,Σ) where Σ is a fixed covariance matrix, then we have ∇x log λ(x) =
−Σ−1x and ∇xt(x) = Σ−1.

A.4 Comparing many foregrounds using approximate optima

Here, we justify the technique described in Section 2.3.3. As in Section 2.3.3, define ℓj(θ) =
n̂ksd(p0(xFj )∥q(xFj |θ)) for j ∈ {1, 2}, and let θN (w) = argminθ L(w, θ) where

L(w, θ) := ℓ1(θ) + w(ℓ2(θ)− ℓ1(θ))

for w ∈ [0, 1]. We assume that the conditions of Theorem 9 are met, over both XF1 and XF2 . Since
(∂L/∂θi)(w, θN (w)) = 0, we have

0 =
∂

∂w

(∂L
∂θi

(w, θN (w))
)
=

∂2L
∂w∂θi

(w, θN (w)) +
∑
j

∂2L
∂θi∂θj

(w, θN (w))
( ∂

∂w
θN,j(w)

)
,

or equivalently, in matrix/vector notation,

0 = ∇w(∇θL(w, θN (w))) = ∇θ∇wL(w, θN ) +∇2
θL(w, θN )∇w(θN (w)).
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Rearranging, we have

∇wθN (w) = −
(
∇2

θL(w, θN )
)−1∇θ∇wL(w, θN ).

At w = 0 we find, plugging back in the definition of L,

∇wθN (0) = −∇2
θℓ1(θN (0))−1(∇θℓ2(θN (0))−∇θℓ1(θN (0)))

= −∇2
θℓ1(θN (0))−1∇θℓ2(θN (0)).

Applying a first-order Taylor series expansion gives us θN (1) ≈ θN (0) + ∇wθN (0), which yields
Equation 13.

Appendix B. Asymptotics of the alternative selection criteria

Theorem 17 shows that the SVC exhibits all four types of consistency: data selection, nested data
selection, model selection, and nested model selection. In this section, we establish the consistency
properties of the alternative criteria considered in Section 3.

B.1 Setup

We first review the asymptotics of the standard marginal likelihood, discussed in depth by Dawid
(2011) and Hong and Preston (2005), for example. Define

fklN (θ) := − 1

N

N∑
i=1

log q(X(i)|θ), θklN := argmin
θ

fklN (θ),

fkl(θ) := −EX∼p0 [log q(X|θ)], θkl∗ := argmin
θ

fkl(θ).

Letm be the dimension of the parameter space. Under suitable regularity conditions (Miller, 2021),
the Laplace approximation to the marginal likelihood is

q(X(1:N)) =

∫
q(X(1:N)|θ)π(θ)dθ ∼

exp
(
−NfklN (θklN )

)
π(θkl∗ )∣∣det∇2

θ f
kl(θkl∗ )

∣∣1/2
(
2π

N

)m/2

(58)

almost surely, where aN ∼ bN indicates that aN/bN → 1 as N → ∞. We can rewrite this as

log q(X(1:N)) +N(fklN (θklN )− fklN (θkl∗ ))

+N(fklN (θkl∗ )− fkl(θkl∗ )) +Nfkl(θkl∗ )

+
m

2
logN − log

(
π(θkl∗ )(2π)m/2∣∣ det∇2

θf
kl(θkl∗ )

∣∣1/2
)

a.s.−−−−→
N→∞

0.

(59)

As shown by Dawid (2011) and Hong and Preston (2005), under regularity conditions,

N(fklN (θklN )− fklN (θkl∗ )) = OP0(1)

N(fklN (θkl∗ )− fkl(θkl∗ )) = OP0(
√
N)

Nfkl(θkl∗ ) = OP0(N)

log

(
π(θkl∗ )(2π)m/2∣∣det∇2

θf
kl(θkl∗ )

∣∣1/2
)

= OP0(1).

(60)
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Figure 10: Behavior of the Stein volume criterion K, the foreground marginal likelihood with a
background volume correction K(a), and the foreground marginal nksd K(b) on toy examples. The
plots show the results for 5 randomly generated datasets (thin lines) and the average over 100
random datasets (bold lines). Here, unlike Figure 2, the Pitman-Yor expression for mB is used
(Equation 3), with α = 0.5, ν = 1, and D = 0.2.

The nksd marginal likelihood has a similar decomposition. Following Section 6, define

fnksdN (θ) :=
1

T
n̂ksd(p0(x)∥q(x|θ)), θnksdN := argmin

θ
fnksdN (θ),

fnksd(θ) :=
1

T
nksd(p0(x)∥q(x|θ)), θnksd∗ := argmin

θ
fnksd(θ).

As shown in Theorem 9,

zN :=

∫
exp(−NfnksdN (θ))π(θ)dθ ∼

exp(−NfnksdN (θnksdN ))π(θnksd∗ )∣∣det∇2
θf

nksd(θnksd∗ )
∣∣1/2

(
2π

N

)m/2
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almost surely as N → ∞. As above, we can rewrite this as

log zN +N(fnksdN (θnksdN )− fnksdN (θnksd∗ ))

+N(fnksdN (θnksd∗ )− fnksd(θnksd∗ )) +Nfnksd(θnksd∗ )

+
m

2
logN − log

(
π(θnksd∗ )(2π)m/2∣∣det∇2

θf
nksd(θnksd∗ )

∣∣1/2
)

a.s.−−−−→
N→∞

0.

(61)

By Theorem 12, we have

N(fnksdN (θnksdN )− fnksdN (θnksd∗ )) = OP0(1),

N(fnksdN (θnksd∗ )− fnksd(θnksd∗ )) = OP0(
√
N),

Nfnksd(θnksd∗ ) = OP0(N),

log

(
π(θnksd∗ )(2π)m/2∣∣ det∇2

θf
nksd(θnksd∗ )

∣∣1/2
)

= OP0(1),

(62)

and further, when the model is well-specified, such that nksd(p0(x)∥q(x|θnksd∗ )) = 0,

N(fnksdN (θnksd∗ )− fnksd(θnksd∗ )) = OP0(1). (63)

For ease of reference, here are the various scores that we consider for model/data selection.
Marginal likelihood of the augmented model (foreground+background):

q̃(X(1:N)|F) =

∫ ∫
q(X

(1:N)
F |θ) q̃(X(1:N)

B |X(1:N)
F , ϕB)π(θ)πB(ϕB)dθdϕB.

Foreground marginal nksd, background volume correction (a.k.a. the SVC):

K :=

(
2π

N

)mB/2 ∫
exp
(
− N

T
n̂ksd(p0(xF )∥q(xF |θ))

)
π(θ)dθ.

Foreground marginal likelihood, background volume correction:

K(a) :=

(
2π

N

)mB/2

q(X
(1:N)
F ).

Foreground marginal nksd:

K(b) :=

∫
exp

(
−N
T
n̂ksd(p0(xF )∥q(xF |θ))

)
π(θ)dθ.

Foreground marginal kl, background volume correction:

K(c) :=

(
2π

N

)mB/2 ∫
exp

(
−N k̂l(p0(xF )∥q(xF |θ))

)
π(θ)dθ.

Foreground nksd, background volume correction:

K(d) :=

(
2π

N

)mB/2

exp

(
−N
T

min
θ

n̂ksd(p0(xF )∥q(xF |θ))
)
.

Foreground nksd, foreground and background volume correction (a.k.a. BIC for SVC)

KBIC :=

(
2π

N

)(mF+mB)/2

exp
(
− N

T
min
θ

n̂ksd(p0(xF )∥q(xF |θ))
)
.
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B.2 Data selection

Assume mBj = o(N/ logN) for j ∈ {1, 2}. By Equations 59 and 60,

1

N
log

K(a)
1

K(a)
2

P0−−−−→
N→∞

EX∼p0 [− log q(XF2 |θkl2,∗)]− EX∼p0 [− log q(XF1 |θkl1,∗)] (64)

= kl(p0(xF2)∥q(xF2 |θkl2,∗)) +HF2 − kl(p0(xF1)∥q(xF1 |θkl1,∗))−HF1 ,

so K(a) does not satisfy data selection consistency. The SVC satisfies data selection consistency by
Theorem 17 (part 1). We show that the other scores also satisfy data selection consistency. Since
K(b) = (2π/N)−mB/2K where K is the SVC, by Theorem 17 (part 1),

1

N
log

K(b)
1

K(b)
2

P0−−−−→
N→∞

1

T
nksd(p0(xF2)∥q(xF2 |θnksd2,∗ ))− 1

T
nksd(p0(xF1)∥q(xF1 |θnksd1,∗ )). (65)

By Equation 64 and the fact that K(c) = exp(NHF )K(a), we have

1

N
log

K(c)
1

K(c)
2

P0−−−−→
N→∞

kl(p0(xF2)∥q(xF2 |θkl2,∗))− kl(p0(xF1)∥q(xF1 |θkl1,∗)). (66)

Since K(d) = (2π/N)mB/2 exp(−NfnksdN (θnksdN )), then by Equation 62,

1

N
log

K(d)
1

K(d)
2

P0−−−−→
N→∞

1

T
nksd(p0(xF2)∥q(xF2 |θnksd2,∗ ))− 1

T
nksd(p0(xF1)∥q(xF1 |θnksd1,∗ )). (67)

Similarly, since KBIC = (2π/N)mF/2K(d),

1

N
log

KBIC
1

KBIC
2

P0−−−−→
N→∞

1

T
nksd(p0(xF2)∥q(xF2 |θnksd2,∗ ))− 1

T
nksd(p0(xF1)∥q(xF1 |θnksd1,∗ )). (68)

These methods therefore satisfy data selection consistency. For the marginal likelihood of the
augmented model, suppose mB1 and mB2 do not depend on N . Then by Equation 59,

1

N
log

q̃(X(1:N)|F1)

q̃(X(1:N)|F2)

P0−−−−→
N→∞

EXF2
∼p0 [− log q(XF2 |θkl2,∗)] + EX∼p0 [− log q̃(XB2 |XF2 , ϕ

kl
2,∗)] (69)

− EXF1
∼p0 [− log q(XF1 |θkl1,∗)]− EX∼p0 [− log q̃(XB1 |XF1 , ϕ

kl
1,∗)]

]
We can rewrite this in terms of the KL divergence. First note the decomposition,

H = −
∫
p0(x) log p0(x)dx = −

∫
p0(xFj ) log p0(xFj )dxFj −

∫
p0(x) log p0(xBj |xFj )dx

for j ∈ {1, 2}. Adding and subtracting the entropy H in Equation 69, and using the fact that the
background model is well-specified,

1

N
log

q̃(X(1:N)|F1)

q̃(X(1:N)|F2)

P0−−−−→
N→∞

kl(p0(xF2)∥q(xF2 |θkl2,∗)) + kl(p0(xB2 |xF2)∥q̃(xB2 |xF2 , ϕ
kl
2,∗))

− kl(p0(xF1)∥q(xF1 |θkl1,∗))− kl(p0(xB1 |xF1)∥q̃(xB1 |xF1 , ϕ
kl
1,∗))

= kl(p0(xF2)∥q(xF2 |θkl2,∗))− kl(p0(xF1)∥q(xF1 |θkl1,∗)). (70)
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B.3 Nested data selection

In nested data selection, we are concerned with situations in which XF2 ⊂ XF1 and the model is
well-specified over both XF1 and XF2 . Assume further that mB2 − mB1 does not depend on N .
First, consider K(d) and KBIC. Since K(d) = (2π/N)mB/2 exp(−NfnksdN (θnksdN )) and by Theorem 12,
fnksdN (θnksdN ) = OP0(1/N), we have

1

logN
log

K(d)
1

K(d)
2

P0−−−−→
N→∞

mB2 −mB1

2
. (71)

Likewise, since KBIC = (2π/N)mF/2K(d), it follows that

1

logN
log

KBIC
1

KBIC
2

P0−−−−→
N→∞

mF2 +mB2 −mF1 −mB1

2
. (72)

As in Section 6.4, it is natural to assume mB2 > mB1 and mF2 +mB2 > mF1 +mB1 , in which case
these criteria satisfy nested data selection consistency.

None of K(a), K(b), and K(c) are guaranteed to satisfy nested data selection consistency, because
the contribution of background model complexity is negligible or nonexistent. To see this, note that
assuming mBj = o(N/ logN), by Equation 64 we have

1

N
log

K(a)
1

K(a)
2

P0−−−−→
N→∞

HF2 −HF1 . (73)

Meanwhile, since K(b) = (2π/N)−mB/2K then by Theorem 17 (part 2),

1

logN
log

K(b)
1

K(b)
2

P0−−−−→
N→∞

mF2 −mF1

2
. (74)

Since XF2 ⊂ XF1 , we have mF2 ≤ mF1 except perhaps in highly contrived scenarios. If mF2 < mF1

then Equation 74 shows that log(K(b)
1 /K(b)

2 )
P0−→ −∞. On the other hand, if mF2 = mF1 , then by

Equations 61 and 62, log(K(b)
1 /K(b)

2 ) = OP0(1), so it is not possible to have log(K(b)
1 /K(b)

2 )
P0−→ ∞.

Therefore, K(b) does not satisfy nested data selection consistency.

Since K(c) = eNHFK(a) = eNHF (2π/N)mB/2q(X
(1:N)
F ), then by Equations 59 and 60,

1√
N

log
K(c)

1

K(c)
2

=
√
N

(
1

N

N∑
i=1

log
p0(X

(i)
F1
)

p0(X
(i)
F2
)
− E

(
log

p0(XF1)

p0(XF2)

))
+OP0(N

−1/2 logN). (75)

If σ2 := VP0(log p0(XF1)/p0(XF2)) is positive and finite, then by the central limit theorem and

Slutsky’s theorem, N−1/2 log(K(c)
1 /K(c)

2 )
D−→ N (0, σ2). Thus, K(c) randomly selects F1 or F2 with

equal probability, and therefore, it does not satisfy nested data selection consistency.
For the marginal likelihood of the augmented model, supposemB1 andmB2 do not depend on N .

The marginal likelihood achieves nested data selection consistency because the augmented models
are both well-specified and describe the complete data space X ; this guarantees that the OP0(

√
N)

terms in the marginal likelihood decomposition cancel. Specifically, p0(x) = q(x | θklj,∗, ϕklj,∗,Fj) for
j ∈ {1, 2}, and thus, by Equations 59 and 60 applied to the augmented model,

1

logN
log

q̃(X(1:N)|F1)

q̃(X(1:N)|F2)

P0−−−−→
N→∞

mF2 +mB2 −mF1 −mB1

2
. (76)

Nested data selection consistency follows assuming mF2 +mB2 > mF1 +mB1 as before. This can
be contrasted with Equation 75, where although both foreground models are well-specified, they

describe different data (X
(1:N)
F1

versus X
(1:N)
F2

), so the OP0(
√
N) terms remain.
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B.4 Model selection

All of the criteria we consider satisfy model selection consistency. To see this, we apply the same
asymptotic analysis as used for data selection in Section B.2, under the same conditions on mB,
obtaining

1

N
log

q̃1(X
(1:N)|F)

q̃2(X(1:N)|F)

P0−−−−→
N→∞

kl(p0(xF )∥q2(xF |θkl2,∗))− kl(p0(xF )∥q1(xF |θkl1,∗)), (77)

1

N
log

K(a)
1

K(a)
2

P0−−−−→
N→∞

kl(p0(xF )∥q2(xF |θkl2,∗))− kl(p0(xF )∥q1(xF |θkl1,∗)), (78)

1

N
log

K(b)
1

K(b)
2

P0−−−−→
N→∞

1

T
nksd(p0(xF )∥q2(xF |θnksd2,∗ ))− 1

T
nksd(p0(xF )∥q1(xF |θnksd1,∗ )), (79)

1

N
log

K(c)
1

K(c)
2

P0−−−−→
N→∞

kl(p0(xF )∥q2(xF |θkl2,∗))− kl(p0(xF )∥q1(xF |θkl1,∗)), (80)

1

N
log

K(d)
1

K(d)
2

P0−−−−→
N→∞

1

T
nksd(p0(xF )∥q2(xF |θnksd2,∗ ))− 1

T
nksd(p0(xF )∥q1(xF |θnksd1,∗ )), (81)

1

N
log

KBIC
1

KBIC
2

P0−−−−→
N→∞

1

T
nksd(p0(xF )∥q2(xF |θnksd2,∗ ))− 1

T
nksd(p0(xF )∥q1(xF |θnksd1,∗ )). (82)

Note that in contrast to the data selection case, K(a) satisfies model selection consistency since the
entropy termsHFj cancel due to the fact that F is fixed. We can think of this as a consequence of the
kl divergence’s subsystem independence; if we are just interested in modeling a fixed foreground
space, there is no problem considering the foreground marginal likelihood alone (Caticha, 2004,
2011; Rezende, 2018).

B.5 Nested model selection

In nested model selection, since both models are well-specified, we have qj(xF |θklj,∗) = p0(xF ) =
qj(xF |θnksdj,∗ ) for j ∈ {1, 2}. Thus, the estimated divergences cancel:

n̂ksd(p0(xF )∥q1(xF |θnksd1,∗ )) = n̂ksd(p0(xF )∥q2(xF |θnksd2,∗ )),

N∑
i=1

log q1(X
(i)
F |θkl1,∗) =

N∑
i=1

log q2(X
(i)
F |θkl2,∗),

k̂l(p0(xF )∥q1(xF |θkl1,∗)) = k̂l(p0(xF )∥q2(xF |θkl2,∗)).

Using this along with Equations 59–63, under the same conditions on mB as in Section B.2,

1

logN
log

q̃1(X
(1:N)|F)

q̃2(X(1:N)|F)

P0−−−−→
N→∞

mF ,2 −mF ,1

2
, (83)

1

logN
log

K(a)
1

K(a)
2

P0−−−−→
N→∞

mF ,2 −mF ,1

2
, (84)

1

logN
log

K(b)
1

K(b)
2

P0−−−−→
N→∞

mF ,2 −mF ,1

2
, (85)
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1

logN
log

K(c)
1

K(c)
2

P0−−−−→
N→∞

mF ,2 −mF ,1

2
, (86)

log
K(d)

1

K(d)
2

= OP0(1), (87)

1

logN
log

KBIC
1

KBIC
2

P0−−−−→
N→∞

mF ,2 −mF ,1

2
, (88)

where we are using the assumption that the background model is the same in the two augmented
models q̃1 and q̃2 and so mB,1 = mB,2. Only K(d) fails to satisfy nested model selection consistency.

Appendix C. Proofs

C.1 Proofs of NKSD properties

Proof of Proposition 3 By assumption, the kernel is bounded, say |k(x, y)| ≤ B, and sp, sq ∈
L1(P ). Thus, by the Cauchy–Schwarz inequality,∣∣∣∣ ∫

X

∫
X
(sq(x)− sp(x))

⊤(sq(y)− sp(y))k(x, y)p(x)p(y)dxdy

∣∣∣∣
≤ B

(∫
X ∥sq(x)− sp(x)∥p(x)dx

)2
<∞.

Since the kernel is integrally strictly positive definite and |k(x, y)| ≤ B,

0 <

∫
X

∫
X
k(x, y)p(x)p(y)dxdy ≤ B <∞. (89)

Thus, the nksd is finite. Equation 30 follows from Theorem 3.6 of Liu et al. (2016).

Proof of Proposition 4 The denominator of the nksd is positive since k is integrally strictly
positive definite. Defining δ(x) = sq(x)− sp(x), the numerator of the nksd is∫

X

∫
X
δ(x)⊤δ(y)k(x, y)p(x)p(y)dxdy =

d∑
i=1

∫
X

∫
X
δi(x)δi(y)k(x, y)p(x)p(y)dxdy. (90)

If δi(x)p(x) = 0 almost everywhere with respect to Lebesgue measure on X , then the ith term
on the right-hand side is zero. Meanwhile, if δi(x)p(x) is not a.e. zero, then

∫
X |δi(x)|p(x)dx > 0,

and hence, the ith term is positive since k is integrally strictly positive definite and δi ∈ L1(P ) by
assumption. Hence, the nksd is nonnegative, and equals zero if and only if δ(x)p(x) = 0 almost
everywhere.

Suppose δ(x)p(x) = 0 almost everywhere. Since p(x) > 0 on X by assumption, this implies
sp(x) = sq(x) a.e., and in fact, sp(x) = sq(x) for all x ∈ X by continuity. Since X is open and
connected, then by the gradient theorem (that is, the fundamental theorem of calculus for line in-
tegrals), p(x) ∝ q(x), and hence, p(x) = q(x) on X . Conversely, if p(x) = q(x) almost everywhere,
then δ(x)p(x) = 0 almost everywhere.

Proof of Proposition 6 Define

δ1(x1) := ∇x1 log q(x)−∇x1 log p(x) = ∇x1 log q(x1)−∇x1 log p(x1)

δ2(x2) := ∇x2 log q(x)−∇x2 log p(x) = ∇x2 log q(x2)−∇x2 log p(x2).
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Let X,Y ∼ p(x) independently. Note that E[k1(X1, Y1)] > 0 and E[k2(X2, Y2)] > 0 since k1 and k2
are integrally strictly positive definite by assumption. Therefore,

nksd(p(x)∥q(x)) = E[(∇x log q(X)−∇x log p(X))⊤(∇x log q(Y )−∇x log p(Y ))k(X,Y )]

E[k(X,Y )]

=
E[δ1(X1)

⊤δ1(Y1)k1(X1, Y1)]E[k2(X2, Y2)]

E[k1(X1, Y1)]E[k2(X2, Y2)]
+

E[δ2(X2)
⊤δ2(Y2)k2(X2, Y2)]E[k1(X1, Y1)]

E[k1(X1, Y1)]E[k2(X2, Y2)]

=
E[δ1(X1)

⊤δ1(Y1)k1(X1, Y1)]

E[k1(X1, Y1)]
+

E[δ2(X2)
⊤δ2(Y2)k2(X2, Y2)]

E[k2(X2, Y2)]

= nksd(p(x1)∥q(x1)) + nksd(p(x2)∥q(x2)).

The following modified version applies to the estimator n̂ksd(p∥q) (Equation 5).

Proposition 20

n̂ksd(p(x)∥q(x)) = nksd(p(x1)∥q(x1)) + nksd(p(x2)∥q(x2)) (91)

where

nksd(p(x1)∥q(x1)) :=
∑

i ̸=j u1(X
(i)
1 , X

(j)
1 )k2(X

(i)
2 , X

(j)
2 )∑

i ̸=j k1(X
(i)
1 , X

(j)
1 )k2(X

(i)
2 , X

(j)
2 )

u1(x1, y1) :=sq(x1)
⊤sq(y1)k1(x1, y1) + sq(x1)

⊤∇y1k1(x1, y1) + sq(y1)
⊤∇x1k1(x1, y1)

+ trace(∇x1∇⊤
y1k1(x1, y1))

sq(x1) :=∇x1 log q(x1),

and vice versa for nksd(p(x2)∥q(x2)) with the roles of 1 and 2 swapped.

Proof Recall the definition of n̂ksd(p(x)∥q(x)) in Equation 5. Note that ∇x1k(x, y) =
k2(x2, y2)∇x1k1(x1, y1) and ∇x1 log q(x) = ∇x1 log q(x1). Examining u(x, y) term-by-term,

∇x log q(x)
⊤∇y log q(y)k(x, y) =

[
∇x1 log q(x1)

⊤∇y1 log q(y1)k1(x1, y1)
]
k2(x2, y2)

+
[
∇x2 log q(x2)

⊤∇y2 log q(y2)k2(x2, y2)
]
k1(x1, y1),

∇x log q(x)
⊤∇yk(x, y) =[∇x1 log q(x1)

⊤∇y1k1(x1, y1)]k2(x2, y2)

+ [∇x2 log q(x2)
⊤∇y2k2(x2, y2)]k1(x1, y1),

∇xk(x, y)
⊤∇y log q(y) =[∇x1k1(x1, y1)

⊤∇y1 log q(y1)]k2(x2, y2),

+ [∇x2k2(x2, y2)
⊤∇y2 log q(y2)]k1(x1, y1)

trace(∇x∇⊤
y k(x, y)) = trace(∇x1∇⊤

y1k1(x1, y1))k2(x2, y2),

+ trace(∇x2∇⊤
y2k2(x2, y2))k1(x1, y1).

Thus, defining u1 and u2 as in Proposition 20, we have

u(x, y) = u1(x1, y1)k2(x2, y2) + u2(x2, y2)k1(x1, y1),

k(x, y) = k1(x1, y1)k2(x2, y2).
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The result follows.

To interpret Proposition 20, note that

EX,Y∼p[u1(X1, Y1)k2(X2, Y2)]

EX,Y∼p[k1(X1, Y1)k2(X2, Y2)]
=

EX1,Y1∼p(x1)[u1(X1, Y1)]

EX1,Y1∼p(x1)[k1(X1, Y1)]
= nksd(p(x1)∥q(x1)),

so nksd(p(x1)∥q(x1)) is an estimator of nksd(p(x1)∥q(x1)), and likewise for nksd(p(x2)∥q(x2)).

C.2 Proof of Theorems 9 and 11

Our proofs in this section build on the proof of Theorem 3 of Barp et al. (2019).

Proposition 21 Under the assumptions of Theorem 9, for any compact convex C ⊆ Θ,

sup
θ∈C

|fN (θ)− f(θ)| a.s.−−→ 0. (92)

Proof First, we establish almost sure convergence for the denominator of fN (θ). Since k is assumed
to be bounded and to have bounded derivatives up to order two, we can choose B < ∞ such that
B ≥ |k|+ ∥∇xk∥+ ∥∇x∇⊤

y k∥. In particular, the expected value of the kernel is finite:∫
X

∫
X
|k(x, y)|P0(dx)P0(dy) ≤ B <∞. (93)

By the strong law of large numbers for U-statistics (Theorem 5.4A of Serfling, 2009),

1

N(N − 1)

∑
i ̸=j

k(X(i), X(j))
a.s.−−−−→

N→∞

∫
X

∫
X
k(x, y)P0(dx)P0(dy). (94)

Note that the limit is positive since k(x, y) > 0 for all x, y ∈ X . For the numerator, we establish
bounds on uθ and ∇θuθ. Let C ⊆ Θ be compact and convex. By Equation 5, for all θ ∈ C and all
x, y ∈ X ,

|uθ(x, y)| ≤ |sqθ(x)
⊤sqθ(y)k(x, y)|+ |sqθ(x)

⊤∇yk(x, y)|
+ |sqθ(y)

⊤∇xk(x, y)|+ | trace(∇x∇⊤
y k(x, y))|

≤ ∥sqθ(x)∥∥sqθ(y)∥B + ∥sqθ(x)∥B + ∥sqθ(y)∥B +Bd

≤ g0,C(x)g0,C(y)B + g0,C(x)B + g0,C(y)B +Bd

=: h0,C(x, y).

(95)

Similarly, for all θ ∈ C and all x, y ∈ X ,

∥∇θuθ(x, y)∥ ≤ ∥∇θ(sqθ(x)
⊤sqθ(y))k(x, y)∥+ ∥∇θ(sqθ(x)

⊤∇yk(x, y))∥
+ ∥∇θ(sqθ(y)

⊤∇xk(x, y))∥+ ∥∇θ trace(∇x∇⊤
y k(x, y))∥

≤ g0,C(x)g1,C(y)B + g0,C(y)g1,C(x)B + g1,C(x)B + g1,C(y)B

=: h1,C(x, y).

(96)

Note that h0,C and h1,C are continuous and belong to L1(P0 × P0).
Let S1 ⊆ S2 ⊆ · · · ⊆ X be a sequence of compact sets such that ∪∞

M=1SM = X . Note
that this implies ∪∞

M=1SM × SM = X × X . Suppose for the moment that, for each M , the
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following collections of functions are equicontinuous on C: (A) (θ 7→ uθ(x, y) : x, y ∈ SM ) and (B)(
θ 7→

∫
uθ(x, y)P0(dy) : x ∈ SM

)
. Assuming this, Theorem 1 of Yeo and Johnson (2001) shows

that

sup
θ∈C

∣∣∣∣ 1

N(N − 1)

∑
i ̸=j

uθ(X
(i), X(j))−

∫
X

∫
X
uθ(x, y)P0(dx)P0(dy)

∣∣∣∣ a.s.−−−−→
N→∞

0, (97)

and that θ 7→
∫
X
∫
X uθ(x, y)P0(dx)P0(dy) is continuous. (Note that although Yeo and Johnson

(2001) assume X = R, their proof goes through without further modification for any nonempty
X ⊆ Rd.) Combining Equations 94 and 97, we have

supθ∈C
∣∣ 1
N(N−1)

∑
i ̸=j uθ(X

(i), X(j))−
∫ ∫

uθ(x, y)P0(dx)P0(dy)
∣∣

1
N(N−1)

∑
i ̸=j k(X

(i), X(j))

a.s.−−−−→
N→∞

0.

Thus, it follows that supθ∈C |fN (θ)−f(θ)| → 0 a.s. by Equations 94 and 95. To complete the proof,
we must show that (A) and (B) are equicontinuous on C.

(A) Since θ 7→ uθ(x, y) is differentiable on C, then by the mean value theorem, we have that
for all θ1, θ2 ∈ C and all x, y ∈ SM ,

|uθ1(x, y)− uθ2(x, y)| ≤ ∥∇θ|θ=θ̃ uθ(x, y)∥∥θ1 − θ2∥
≤ h1,C(x, y)∥θ1 − θ2∥

≤
(

sup
x,y∈SM

h1,C(x, y)
)
∥θ1 − θ2∥ <∞

where θ̃ = γθ1 + (1− γ)θ2 for some γ ∈ [0, 1]. Here, the second inequality holds since θ̃ ∈ C by the
convexity of C, and the supremum is finite because a continuous function on a compact set attains
its maximum. Therefore, (θ 7→ uθ(x, y) : x, y ∈ SM ) is equicontinuous on C.

(B) To see that
(
θ 7→

∫
uθ(x, y)P0(dy) : x ∈ SM

)
is equicontinuous on C, first note that∫

|uθ(x, y)|P0(dy) ≤
∫
h0,C(x, y)P0(dy) <∞.

Further, due to Equations 95 and 96, we can apply the Leibniz integral rule (Folland, 1999, Theorem
2.27) and find that ∇θ

∫
uθ(x, y)P0(dy) exists and is equal to

∫
∇θuθ(x, y)P0(dy). Now we apply

the mean value theorem and the same reasoning as before to find that for all θ1, θ2 ∈ C and all
x ∈ SM , ∣∣∣∫ uθ1(x, y)P0(dy)−

∫
uθ2(x, y)P0(dy)

∣∣∣ ≤ ∥∥∇θ|θ=θ̃

∫
uθ(x, y)P0(dy)

∥∥∥θ1 − θ2∥

≤ ∥θ1 − θ2∥
∫ ∥∥∇θ|θ=θ̃ uθ(x, y)

∥∥P0(dy)

≤ ∥θ1 − θ2∥ sup
x∈SM

∫
h1,C(x, y)P0(dy) <∞

where θ̃ = γθ1 + (1− γ)θ2 for some γ ∈ [0, 1]. The supremum is finite since x 7→
∫
h1,C(x, y)P0(dy)

is continuous, which can easily be seen by plugging in the definition of h1,C . Therefore,
(
θ 7→∫

uθ(x, y)P0(dy) : x ∈ SM
)
is equicontinuous on C.

Proposition 22 Under the assumptions of Theorem 9, (f ′′′N : N ∈ N) is uniformly bounded on E.
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Proof First, for any x, y ∈ X , if we define g(θ) = sqθ(x) and h(θ) = sqθ(y) then uθ = (g⊤h)k +
g⊤(∇yk) + h⊤(∇xk) + trace(∇x∇⊤

y k). By differentiating, applying Minkowski’s inequality to the
resulting sum of tensors, and applying the Cauchy–Schwarz inequality to each term, we have

∥∇3
θuθ(x, y)∥ ≤ ∥∇3g∥∥h∥k + 3∥∇2g∥∥∇h∥k + 3∥∇g∥∥∇2h∥k + ∥g∥∥∇3h∥k

+ ∥∇3g∥∥∇yk∥+ ∥∇3h∥∥∇xk∥.

Using the symmetry of the kernel to combine like terms, this yields that∥∥∥∑
i ̸=j

∇3
θuθ(X

(i), X(j))
∥∥∥

≤
∑
i ̸=j

(
2∥∇3

θsqθ(X
(i))∥∥sqθ(X

(j))∥B + 6∥∇2
θsqθ(X

(i))∥∥∇θsqθ(X
(j))∥B + 2∥∇3

θsqθ(X
(i))∥B

)
where B <∞ such that B ≥ |k|+ ∥∇xk∥+ ∥∇x∇⊤

y k∥. Since fN (θ) = 0 when N = 1 by definition,

we can assume without loss of generality that N ≥ 2, so 1
N−1 = 1

N (1 + 1
N−1) ≤ 2/N . Since each

term is non-negative, we can add in the i = j terms,∥∥∥ 1

N(N − 1)

∑
i ̸=j

∇3
θuθ(X

(i), X(j))
∥∥∥

≤ 2B

N2

∑
i,j

(
2∥∇3

θsqθ(X
(i))∥∥sqθ(X

(j))∥+ 6∥∇2
θsqθ(X

(i))∥∥∇θsqθ(X
(j))∥+ 2∥∇3

θsqθ(X
(i))∥

)
= 4B

( 1

N

∑
i

∥∇3
θsqθ(X

(i))∥
)( 1

N

∑
j

∥sqθ(X
(j))∥

)
(98)

+ 12B
( 1

N

∑
i

∥∇2
θsqθ(X

(i))∥
)( 1

N

∑
j

∥∇θsqθ(X
(j))∥

)
+ 4B

( 1

N

∑
i

∥∇3
θsqθ(X

(i))∥
)
.

By assumption,
{

1
N

∑
i ∥∇2

θsqθ(X
(i))∥ : N ∈ N, θ ∈ E

}
is bounded with probability 1, and sim-

ilarly for
{

1
N

∑
i ∥∇3

θsqθ(X
(i))∥ : N ∈ N, θ ∈ E

}
. We show the same for 1

N

∑
i ∥sqθ(X(i))∥ and

1
N

∑
i ∥∇θsqθ(X

(i))∥. By Equation 40, we have∫
sup
θ∈Ē

∥sqθ(x)∥P0(dx) ≤
∫
g0,Ē(x)P0(dx) <∞.

Hence, by Theorem 1.3.3 of Ghosh and Ramamoorthi (2003), 1
N

∑
i ∥sqθ(X(i))∥ converges uniformly

on Ē, almost surely. In particular, 1
N

∑
i ∥sqθ(X(i))∥ is uniformly bounded on E, almost surely. The

same argument holds for 1
N

∑
i ∥∇θsqθ(X

(i))∥ using g1,Ē(x). Therefore, by Equation 98, it follows

that ∥ 1
N(N−1)

∑
i ̸=j ∇3

θuθ(X
(i), X(j))∥ is uniformly bounded on E. Since k is positive by assumption,

1
N(N−1)

∑
i ̸=j k(X

(i), X(j)) > 0 for allN ≥ 2 and by Equations 93 and 94, 1
N(N−1)

∑
i ̸=j k(X

(i), X(j))
converges a.s. to a finite quantity greater than 0. We conclude that almost surely,

∥f ′′′N (θ)∥ =
1

T

∥ 1
N(N−1)

∑
i ̸=j ∇3

θuθ(X
(i), X(j))∥

1
N(N−1)

∑
i ̸=j k(X

(i), X(j))
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is uniformly bounded on E, for N ∈ {2, 3, . . .}. Recall that for N = 1, fN (θ) = 0 by definition.
Therefore, almost surely, (f ′′′N : N ∈ N) is uniformly bounded on E.

Proof of Theorem 9 We show that the conditions of Theorem 3.2 of Miller (2021) are met, from
which the conclusions of this theorem follow immediately.

By Condition 10 and Equation 35, fN has continuous third-order partial derivatives on Θ. Let
E be the set from Condition 10. With probability 1, fN → f uniformly on E (by Proposition 21
with C = Ē) and (f ′′′N ) is uniformly bounded on E (by Proposition 22). Note that f is finite on Θ by
Proposition 3. Thus, by Theorem 3.4 of Miller (2021), f ′ and f ′′ exist on E and f ′′N → f ′′ uniformly
on E with probability 1. Since θ∗ is a minimizer of f and θ∗ ∈ E, we know that f ′(θ∗) = 0 and
f ′′(θ∗) is positive semidefinite; thus, f ′′(θ∗) is positive definite since it is invertible by assumption.

Case (a): Now, consider the case where Θ is compact. Then almost surely, fN → f uniformly
on Θ by Proposition 21 with C = Θ. Since θ∗ is a unique minimizer of f , we have f(θ) > f(θ∗)
for all θ ∈ Θ \ {θ∗}. Let H ⊆ E be an open set such that θ∗ ∈ H and H̄ ⊆ E. We show that
lim infN infθ∈Θ\H̄ fN (θ) > f(θ∗). Since Θ \H is compact,

inf
θ∈Θ\H̄

f(θ)− f(θ∗) =: ϵ > 0.

By uniform convergence, with probability 1, there exists N such that for all N ′ > N ,
supθ∈Θ |fN ′(θ)− f(θ)| ≤ ϵ/2, and thus,

inf
θ∈Θ\H̄

fN ′(θ) ≥ inf
θ∈Θ\H̄

f(θ)− ϵ/2 = f(θ∗) + ϵ/2.

Hence, lim infN infθ∈Θ\H̄ fN (θ) > f(θ∗) almost surely. Applying Theorem 3.2 of Miller (2021), the
conclusion of the theorem follows. Note that f ′′N (θN ) → f ′′(θ∗) a.s. since θN → θ∗ and f ′′N → f ′′

uniformly on E.

Case (b): Alternatively, consider the case where Θ is open and fN is convex on Θ. For all
θ ∈ Θ, with probability 1, fN (θ) → f(θ) (by Proposition 21 with C = {θ}). However, we need to
show that with probability 1, for all θ ∈ Θ, fN (θ) → f(θ). We follow the argument in the proof
of Theorem 6.3 of Miller (2021). Let W be a countable dense subset of Θ. Since W is countable,
with probability 1, for all θ ∈ W , fN (θ) → f(θ). Since fN is convex, then with probability 1,
for all θ ∈ Θ, the limit f̃(θ) := limN fN (θ) exists and is finite, and f̃ is convex (Theorem 10.8
of Rockafellar, 1970). Since fN is convex and f(θ) is finite, f(θ) is also convex. Since f and f̃
are convex, they are also continuous (Theorem 10.1 of Rockafellar, 1970). Continuous functions
that agree on a dense subset of points must be equal. Thus, with probability 1, for all θ ∈ Θ,
fN (θ) → f(θ). Applying Theorem 3.2 of Miller (2021), the conclusion of the theorem follows.

Proof of Theorem 11 Our proof builds on Appendix D.3 of Barp et al. (2019), which establishes
a central limit theorem for the ksd when the model is an exponential family. The outline of the
proof is as follows. First, we establish bounds on sqθ and its derivatives, using the assumed bounds
on ∇xt(x) and ∇x log λ(x). Second, we establish that f ′′(θ) is positive definite and independent of
θ, and that f ′′N (θ) converges to it almost surely; from this, we conclude that f ′′(θ∗) is invertible and
fN (θ) is convex. These results rely on the convergence properties of U-statistics and on Sylvester’s
criterion.
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The assumption that log λ(x) is continuously differentiable on X implies that λ(x) > 0 for
x ∈ X . Since qθ(x) = λ(x) exp(θ⊤t(x)− κ(θ)), we have

sqθ(x) = ∇x log λ(x) + (∇xt(x))
⊤θ

∇θsqθ(x) = (∇xt(x))
⊤ ∈ Rd×m

∇2
θsqθ(x) = 0 ∈ Rd×m×m

where (∇xt(x))ij = ∂ti/∂xj . Thus, sqθ(x) has continuous third-order partial derivatives with
respect to θ, and Equations 41 and 42 are trivially satisfied. Equation 40 holds for all compact
C ⊆ Θ since ∥∇x log λ(x)∥ and ∥∇xt(x)∥ are continuous functions in L1(P0) and

∥sqθ(x)∥ = ∥∇x log λ(x) + (∇xt(x))
⊤θ∥ ≤ ∥∇x log λ(x)∥+ ∥∇xt(x)∥∥θ∥,

∥∇θsqθ(x)∥ = ∥∇xt(x)∥.

Hence, Condition 10 holds. By Equation 36 and Proposition 3,

f(θ) =
1

T
nksd(p0(x)∥q(x|θ)) =

1

TK

∫
X

∫
X
uθ(x, y)P0(dx)P0(dy) (99)

where K :=
∫ ∫

k(x, y)P0(dx)P0(dy). By Equation 57,

uθ(x, y) = θ⊤B2(x, y)θ +B1(x, y)
⊤θ +B0(x, y) (100)

where

B2(x, y) = (∇xt(x))(∇yt(y))
⊤k(x, y),

B1(x, y) = (∇yt(y))(∇x log λ(x))k(x, y) + (∇xt(x))(∇y log λ(y))k(x, y)

+ (∇yt(y))(∇xk(x, y)) + (∇xt(x))(∇yk(x, y)),

B0(x, y) = (∇x log λ(x))
⊤(∇y log λ(y))k(x, y) + (∇y log λ(y))

⊤(∇xk(x, y))

+ (∇x log λ(x))
⊤(∇yk(x, y)) + trace(∇x∇⊤

y k(x, y)).

By Condition 7, |k(x, y)|, ∥∇xk(x, y)∥, and ∥∇x∇⊤
y k(x, y)∥ are bounded by a constant, say, B <∞.

Thus, it is straightforward to check that B2, B1, and B0 belong to L1(P0 × P0) since ∥∇xt(x)∥
and ∥∇x log λ(x)∥ are in L1(P0). Further, 0 < K < ∞ since 0 < k(x, y) ≤ B < ∞ by assumption.
Thus,

f(θ) =
1

TK

∫ ∫ (
θ⊤B2(x, y)θ +B1(x, y)

⊤θ +B0(x, y)
)
P0(dx)P0(dy) ∈ R.

Since k is symmetric, B2(x, y)
⊤ = B2(y, x). Hence, ∇θ(θ

⊤B2(x, y)θ) = (B2(x, y) + B2(y, x))θ, so
by Fubini’s theorem,

f ′(θ) =
1

TK

∫ ∫ (
2B2(x, y)θ +B1(x, y)

)
P0(dx)P0(dy) ∈ Rm,

f ′′(θ) =
2

TK

∫ ∫
B2(x, y)P0(dx)P0(dy) ∈ Rm×m.

Here, differentiating under the integral sign is justified simply by linearity of the expectation.
Note that f ′′(θ) is a symmetric matrix since B2(x, y)

⊤ = B2(y, x). Next, to show f ′′(θ) is positive
definite, let v ∈ Rm\{0}. By assumption, the rows of ∇xt(x) are linearly independent with positive
probability under P0. Thus, there is a set E ⊆ X such that P0(E) > 0 and (∇xt(x))

⊤v ̸= 0 for
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all x ∈ E. Define g(x) = (∇xt(x))
⊤v p0(x) ∈ Rd. Then

∫
X |gi(x)|dx > 0 for at least one i, and∫

X |gi(x)|dx ≤ ∥v∥
∫
X ∥∇xt(x)∥p0(x)dx <∞ for all i. Thus,

v⊤f ′′(θ)v =
2

TK

∫ ∫
g(x)⊤g(y)k(x, y)dxdy =

2

TK

d∑
i=1

∫ ∫
gi(x)gi(y)k(x, y)dxdy > 0

since k is integrally strictly positive definite. Therefore, f ′′(θ) is positive definite. In particular,
f ′′(θ∗) is invertible.

Finally, we show that with probability 1, for all N sufficiently large, fN (θ) is convex. By
Equations 35 and 100,

fN (θ) =
1

T

∑
i ̸=j

[
θ⊤B2(X

(i), X(j))θ +B1(X
(i), X(j))⊤θ +B0(X

(i), X(j))
]∑

i ̸=j k(X
(i), X(j))

.

Thus,

f ′′N (θ) =
2

T

∑
i ̸=j B2(X

(i), X(j))∑
i ̸=j k(X

(i), X(j))
.

By the strong law of large numbers for U-statistics (Theorem 5.4A of Serfling, 2009), we have
f ′′N (θ) → f ′′(θ) almost surely, since

∫
X
∫
X ∥B2(x, y)∥P0(dx)P0(dy) < ∞ and 0 < K < ∞. For a

symmetric matrix A, let λ∗(A) denote the smallest eigenvalue. Since λ∗(A) is a continuous function
of the entries of A, we have λ∗(f

′′
N (θ)) → λ∗(f

′′(θ)) a.s. as N → ∞. Thus, with probability 1, for
all N sufficiently large, f ′′N (θ) is positive definite, and hence, fN is convex. Further, for such N ,
since fN is a quadratic function with positive definite Hessian, we have MN := infθ∈Θ fN (θ) > −∞
and zN =

∫
Θ exp(−NfN (θ))π(θ)dθ ≤ exp(−NMN ) <∞.

C.3 Proof of Theorem 12

To establish Theorem 12, we use the properties of U-statistics described in Chapter 5.5 of Serfling
(2009). When the data distribution matches the model distribution, n̂ksd converges more quickly
than when it does not match; this same property was used by Liu et al. (2016) to develop a
goodness-of-fit test based on the ksd.
Proof We first study the asymptotics of f ′N (θ∗). Denoting ∇θ

∣∣
θ=θ∗

uθ by ∇θuθ∗ for brevity,

f ′N (θ∗) =
1

T

1
N(N−1)

∑
i ̸=j ∇θuθ∗(X

(i), X(j))

1
N(N−1)

∑
i ̸=j k(X

(i), X(j))
.

The denominator converges a.s. to a finite positive constant, as in the proof of Proposition 21. It
is straightforward to verify that EX,Y∼P0 [∥∇θuθ∗(X,Y )∥2] < ∞ since sqθ∗ and ∇θ

∣∣
θ=θ∗

sqθ are in

L2(P0) by assumption. By Theorems 5.5.1A and 5.5.2 of Serfling (2009),

1

N(N − 1)

∑
i ̸=j

∇θuθ∗(X
(i), X(j))− EX,Y∼P0 [∇θuθ∗(X,Y )] = OP0(N

−1/2).

Further, by the Leibniz integral rule (Folland, 1999, Theorem 2.27),

EX,Y∼P0 [∇θuθ∗(X,Y )] = ∇θ

∣∣
θ=θ∗

EX,Y∼P0 [uθ(X,Y )] = T EX,Y∼P0 [k(X,Y )]f ′(θ∗) = 0,
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using the fact that f ′(θ∗) = 0 since θ∗ is a minimizer of f . Thus,

f ′N (θ∗) = OP0(N
−1/2). (101)

Next, we examine the convergence of θN to θ∗. For all N sufficiently large, f ′N (θN ) = 0 by
Theorem 9 (part 1), and thus, by Taylor’s theorem,

0 = f ′N (θN ) = f ′N (θ∗) + f ′′N (θ+N )(θN − θ∗),

where θ+N is on the line between θN and θ∗. As in the proof of Theorem 9, f ′′N → f ′′ uniformly on
the set E defined in Condition 10. Thus, since f ′′N is continuous on E and θ+N → θ∗,

f ′′N (θ+N )
a.s.−−−−→

N→∞
f ′′(θ∗). (102)

In particular, f ′′N (θ+N ) is invertible for all N sufficiently large, since f ′′(θ∗) is invertible by assump-
tion. Hence,

θN − θ∗ = −f ′′N (θ+N )−1f ′N (θ∗), (103)

and therefore, by Equation 101,

∥θN − θ∗∥ ≤ ∥f ′′N (θ+N )−1∥∥f ′N (θ∗)∥ = OP0(N
−1/2). (104)

This result matches Theorem 4 in Barp et al. (2019). By Taylor’s theorem,

fN (θ∗)− fN (θN ) = f ′N (θN )⊤(θ∗ − θN ) +
1

2
(θ∗ − θN )⊤f ′′N (θ++

N )(θ∗ − θN )

=
1

2
(θ∗ − θN )⊤f ′′N (θ++

N )(θ∗ − θN )

for all N sufficiently large, where θ++
N is on the line between θN and θ∗. Therefore, using the same

reasoning as for Equations 102 and 104,

|fN (θ∗)− fN (θN )| ≤ 1

2
∥f ′′N (θ++

N )∥∥θ∗ − θN∥2 = OP0(N
−1). (105)

This proves the first part of the theorem (Equation 43). Next, consider fN (θ∗)− f(θ∗). Recall that

fN (θ∗) =
1

T

1
N(N−1)

∑
i ̸=j uθ∗(X

(i), X(j))

1
N(N−1)

∑
i ̸=j k(X

(i), X(j))
.

It is straightforward to verify that EX,Y∼P0 [|uθ∗(X,Y )|2] <∞ since sqθ∗ is in L2(P0). By Theorems
5.5.1A and 5.5.2 of Serfling (2009),

1

N(N − 1)

∑
i ̸=j

uθ∗(X
(i), X(j))− EX,Y∼P0 [uθ∗(X,Y )] = OP0(N

−1/2).

Similarly, since k is bounded,

1

N(N − 1)

∑
i ̸=j

k(X(i), X(j))− EX,Y∼P0 [k(X,Y )] = OP0(N
−1/2).

It is straightforward to check that the second part of the theorem (Equation 44) follows.
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For the third part, our argument follows that of the proof of Theorem 4.1 of Liu et al. (2016).
Suppose nksd(p0(x)∥q(x|θ∗)) = 0, and note that P0(x) = Qθ∗(x) by Proposition 4. Given a
differentiable function g : Rd → Rd, define ∇⊤

x g(x) :=
∑d

i=1 ∂gi(x)/∂xi. Then

EX∼P0 [uθ∗(X, y)] = sp0(y)
⊤
∫
X

(
(∇xp0(x))k(x, y) + p0(x)(∇xk(x, y))

)
dx

+

∫
X

(
(∇xp0(x))

⊤∇yk(x, y) + p0(x)(∇⊤
x∇yk(x, y))

)
dx

= sp0(y)
⊤
∫
X
∇x

(
p0(x)k(x, y)

)
dx+

∫
X
∇⊤

x∇y(p0(x)k(x, y))dx. (106)

The first term on the right-hand side of Equation 106 is zero since, by assumption, k is in the
Stein class of P0 (Condition 2). The second term is also zero since, by the Leibniz integral rule
(Folland, 1999, Theorem 2.27),

∫
∇⊤

y ∇x(p0(x)k(x, y))dx = ∇⊤
y

∫
∇x(p0(x)k(x, y))dx, which again

equals zero because k is in the Stein class of P0. Therefore, EX∼P0 [uθ∗(X, y)] = 0 for all y ∈ X ,
and in particular, the variance of this expression is also zero: VY∼P0 [EX∼P0 [uθ∗(X,Y )]] = 0. By
Theorem 5.5.2 of Serfling (2009), it follows that

1

N(N − 1)

∑
i ̸=j

uθ∗(X
(i), X(j)) = OP0(N

−1) (107)

since EX,Y∼P0 [uθ∗(X,Y )] = 0. Although Serfling (2009) requires VX,Y∼P0 [uθ∗(X,Y )] > 0, Equa-
tion 107 holds trivially if VX,Y∼P0 [uθ∗(X,Y )] = 0. As before, since the denominator of fN (θ∗)
converges a.s. to a finite positive constant, we have that fN (θ∗) = OP0(N

−1). Equation 45 follows
since f(θ∗) = 0 when nksd(p0(x)∥q(x|θ∗)) = 0.

C.4 Proof of Theorem 17

Proof Applying Theorem 9 (part 3) to each foreground model j ∈ {1, 2}, we have

log zj,N +Nfj,N (θj,N )− log π(θj,∗) + log |det f ′′j (θj,∗)|1/2 −
1

2
mFj ,j log(2π/N)

a.s.−−−−→
N→∞

0.

Since Kj,N = (2π/N)
mBj

/2
zj,N , this implies

logKj,N +Nfj,N (θj,N )− 1

2
(mFj ,j +mBj ) log(2π/N) + Cj

a.s.−−−−→
N→∞

0

where Cj is a constant that does not depend on N . Hence,

log
K1,N

K2,N
+N(f1,N (θ1,N )− f2,N (θ2,N ))

− 1

2
(mF1,1 +mB1 −mF2,2 −mB2) log(2π/N) + C1 − C2

a.s.−−−−→
N→∞

0. (108)

By Theorem 12, fj,N (θj,N )
P0−→ fj(θj,∗), and therefore,

1

N
log

K1,N

K2,N
+ f1(θ1,∗)− f2(θ2,∗)

P0−−−−→
N→∞

0.
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Plugging in the definition of fj (Equation 36), this proves part 1 of the theorem.
For part 2, suppose f1(θ1,∗) = f2(θ2,∗) = 0 and mB2 −mB1 does not depend on N . Then by

Theorem 12, fj,N (θj,N ) = OP0(N
−1). Using this in Equation 108, we have

1

logN
log

K1,N

K2,N
+

1

2
(mF1,1 +mB1 −mF2,2 −mB2)

P0−−−−→
N→∞

0. (109)

For part 3, suppose f1(θ1,∗) = f2(θ2,∗) and mBj = cBj

√
N . Then by Theorem 12, fj,N (θj,N ) =

fj(θj,∗) +OP0(N
−1/2). Using this in Equation 108, we have

1√
N logN

log
K1,N

K2,N
+

1

2
(cB1 − cB2)

P0−−−−→
N→∞

0. (110)

Appendix D. Additional probabilistic PCA details

D.1 Optimizing the NKSD

Computing the Laplace or BIC approximation to the SVC requires finding the minimizer of
n̂ksd(p0(x)∥q(x|θ)) with respect to θ. In this section, we describe how components of the nksd
can be pre-computed to speed up this optimization process. The generative model used for pPCA
can be rewritten using the properties of multivariate normal distributions as

X ∼ N (0, HH⊤ + vId). (111)

The Stein score function for the pPCA model is then

sqθ(x) = ∇x log q(x|H, v) = −(HH⊤ + vId)
−1x.

Define the matrices

Kij := I(i ̸= j) k(X(i), X(j)),

K̇jb :=
N∑
i=1

I(i ̸= j)
∂k

∂xb
(X(i), X(j)),

where I(E) is the indicator function, which equals 1 when E is true and is 0 otherwise. Define the
scalars

K̄ :=

N∑
i,j=1

Kij ,

K̈ :=

N∑
i,j=1

d∑
b=1

I(i ̸= j)
∂2k

∂xb∂yb
(X(i), X(j)).

Letting X ∈ RN×d be the data matrix, the NKSD can be written as

n̂ksd(p0(x)∥q(x|H, v)) =
1

K̄

[
trace(X⊤KX(HH⊤ + vId)

−1(HH⊤ + vId)
−1)

− 2 trace(X⊤K̇(HH⊤ + vId)
−1) + K̈

]
,

57



Weinstein and Miller

where we have used the fact that the kernel is symmetric. The terms X⊤KX and X⊤K̇ are the
only ones that include sums over the entire dataset; these can be pre-computed, before optimizing
the parameters H and v.

To compute the matrix inversion (HH⊤ + vId)
−1 we follow the strategy of Minka (2001),

(HH⊤ + vId)
−1 − v−1Id = (HH⊤ + vId)

−1(Id − v−1(HH⊤ + vId))

= −(HH⊤ + vId)
−1HH⊤v−1

= −(U(L− vIk)U
⊤ + vId)

−1U(L− vIk)U
⊤v−1.

Thus, applying the Woodbury matrix identity and using IdU = U = UIkIk = UIkU
⊤U ,

(HH⊤ + vId)
−1 − v−1Id = −

[
v−1Id − v−2U

(
(L− vIk)

−1 + v−1
)−1

U⊤]U(L− vIk)U
⊤v−1

= −U [v−1Ik − v−2((L− v)−1 + v−1)−1](L− vIk)U
⊤v−1

= −UL−1(L− vIk)U
⊤v−1

= U(L−1 − v−1Ik)U
⊤.

Therefore,

(HH⊤ + vId)
−1 = U(L−1 − v−1Ik)U

⊤ + v−1Id.

Computing L−1 is trivial since the matrix is diagonal. Returning to the nksd we have

n̂ksd(p0(x)∥q(x|U,L, v))

=
1

K̄

[
trace

(
X⊤KX[U(L−1 − v−1Ik)

2U⊤ + 2v−1U(L−1 − v−1Ik)U
⊤ + v−2Id]

)
− 2 trace

(
X⊤K̇[U(L−1 − v−1Ik)U

⊤ + v−1Id]
)
+ K̈

]
=

1

K̄

[
trace

(
U⊤X⊤KXU(L−1 − v−1Ik)

2
)

+ trace
(
U⊤[2v−1X⊤KX − 2X⊤K̇]U(L−1 − v−1Ik)

)
+ v−1 trace

(
v−1X⊤KX − 2X⊤K̇

)
+ K̈

]
.

We optimized U , L and v using the trust region method implemented in pymanopt (Townsend
et al., 2016).

D.2 Data selection with the SVC

We used the approximate optimum technique in Section 2.3.3 to estimate the SVC for different
foreground subspaces. Following Section A.2, we used the factored IMQ kernel with β = −0.5 and
c = 1.

We focused on foreground subspaces that correspond to subsets of the data dimensions. More
specifically, recall that XF = V ⊤X; then, we impose the restriction that each column of V is a

standard basis vector e(b) ∈ Rd, where e
(b)
b = 1 and e

(b)
b′ = 0 for b′ ̸= b. A subspace XF is then

characterized by the set of included dimensions SF ⊆ {1, . . . , d}. The marginal distribution of the
model q(xF |H, v) is now straightforward to compute based on Equation 111 and the properties of
multivariate normals:

XF ∼ N (0, HSFH
⊤
SF + vI|SF |)
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pPCA

T̂
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Figure 11: Estimated T for increasing number of data samples, for 10 independent parameter
samples from the prior. The median value at N = 2000 is T̂ = 0.052.

where HSF is the submatrix consisting of rows of H indexed by SF , and |SF | is the size of the set
SF .

In the projected model, some of the parameters are nuisance variables with no contribution to
the likelihood. Since the dimension of a d×k matrix on the Stiefel manifold is dk−k(k+1)/2, the
total dimension of the foreground model (including contributions from parameters U , L and v) is
mF = |SF |k − k(k + 1)/2 + k + 1, assuming |SF | ≥ k.

Code is available at https://github.com/EWeinstein/data-selection.

D.3 Calibration

The T hyperparameter was calibrated as in Section A.1. In detail, we sampled 10 independent true
parameter values from the prior, with α = 1 and d = 6. (We used a slightly less disperse prior than
during inference, where we set α = 0.1, to avoid numerical instabilities in the T̂ estimate.) Then,
for each of the true parameter values, we simulated N = 2000 datapoints. For each simulated
true parameter value, we tracked the trend in the T̂ estimator (Equation 55) with increasing N
(Figure 11). The median estimated T value at N = 2000 was 0.052 across the 10 runs.

D.4 Pólya tree model

In this section, we describe the Pólya tree model (Ferguson, 1974; Mauldin et al., 1992; Lavine,
1992) following the construction of Berger and Guglielmi (2001). Let

¯
ϵn := (ϵ1, . . . , ϵn) denote a

vector of length n, where each ϵj ∈ {0, 1}. Each
¯
ϵn vector indexes an interval in R, given by

B
¯
ϵn :=

(
F̃−1

(∑n
j=1 ϵj/2

j
)
, F̃−1

(∑n
j=1 ϵj/2

j + 1/2n
)]
,

where F̃−1 is the inverse c.d.f. of some probability distribution. For all n ∈ {0, 1, 2, . . .} and all

¯
ϵn ∈ {0, 1}n, let

Y
¯
ϵn ∼ Beta(ξ

¯
ϵn0, ξ

¯
ϵn1),

59

https://github.com/EWeinstein/data-selection


Weinstein and Miller

where the ξ’s are hyperparameters. We say that a random variable X ∈ R is distributed according
to a Pólya tree model if

P (X ∈ B
¯
ϵn) =

n∏
j=1

(Y
¯
ϵj−1)

I(ϵj=0)(1− Y
¯
ϵj−1)

I(ϵj=1),

where I(E) is the indicator function, which equals 1 when E is true and is 0 otherwise. We follow
Berger and Guglielmi (2001) and use

µ(B
¯
ϵn) := F

(
F̃−1

(∑n
j=1 ϵj/2

j + 1/2n
))

− F
(
F̃−1

(∑n
j=1 ϵj/2

j
))
,

ρ(
¯
ϵn) :=

1

η

(
f(F̃−1(

∑n
j=1 ϵj/2

j + 1/2n+1))

µ(B
¯
ϵn)

)2

,

ξ
¯
ϵn0 := ρ(

¯
ϵn)

√
µ(B

¯
ϵn0)

µ(B
¯
ϵn1)

,

ξ
¯
ϵn1 := ρ(

¯
ϵn)

√
µ(B

¯
ϵn1)

µ(B
¯
ϵn0)

,

where F and f are the c.d.f. and p.d.f. respectively of some probability distribution, and η > 0 is
a scale hyperparameter. We denote this complete model as X ∼ PolyaTree(F, F̃, η).

D.5 Datasets and preprocessing

We downloaded two publicly available datasets. The first dataset was from human periph-
eral blood mononuclear cells (PBMCs), available at: https://support.10xgenomics.com/

single-cell-gene-expression/datasets/1.1.0/pbmc3k. This is a standard dataset used
in the tutorials for Seurat (Stuart et al., 2019) and Scanpy (Wolf et al., 2018), for exam-
ple. The second was taken from a dissociated extranodal marginal zone B-cell tumor, specifi-
cally a mucosa-associated lymphoid tissue (MALT) tumor: https://support.10xgenomics.com/
single-cell-gene-expression/datasets/3.0.0/malt_10k_protein_v3.

We pre-processed the data using Scprep (Gigante et al., 2020), following its example: we nor-
malized the total expression of each cell to match the median total expression in the dataset, to
account for variability in library size, and then square-root transformed the resulting normalized
counts.

Appendix E. Additional glass model details

E.1 Glass model inference

We place a standard normal prior on each entry of Hj and a Laplace prior on each entry of Jjj′ with
scale 0.1 to encourage sparsity. To enforce that µ ≥ 0 (since scRNAseq counts are nonnegative)
and τ > 0, we place priors on a transformed version of these parameters, as follows:

µ̃ ∼ N (0, 1)

µ = log(1 + exp(µ̃))

τ̃ ∼ N (0, 1)

τ = log(1 + exp(τ̃)) + 1.
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Figure 12: Posterior mean interaction energies ∆Ejj′ for all selected genes, sorted. Dotted lines
show the thresholds for strong interactions (set by visual inspection).

For posterior inference, we employ a mean-field variational approximation: independent normal
distributions for the entries of Hj , normal distributions for µ̃ and τ̃ , and Laplace distributions for
each entry of Jjj′ . We use the factored IMQ kernel for the NKSD, with β = −0.5 and c = 1.

To optimize the variational approximation (Equation 14), we construct stochastic estimates of
its gradient. At each optimization step, the expectation Erζ

[
n̂ksd(p0(xF )∥q(xF |θ))

]
is estimated

using a minibatch of 200 randomly selected datapoints and a single sample from the variational ap-
proximation rζ . The rest of the variational inference algorithm follows standard practice in stochas-
tic variational inference, as implemented in Pyro: automatic differentiation to compute gradients,
reparameterization estimators for Monte Carlo expectations over the variational distribution, and
the Adam optimizer (Kingma and Ba, 2015; Bingham et al., 2019).

We also used stochastic optimization to perform data selection, as follows. Let I = (I1, . . . , Id)
⊤

be an indicator variable that specifies for each gene j whether it is included in the foreground
subspace (Ij = 1) or not (Ij = 0). We place a distribution on I such that Ij ∼ Bernoulli(1/(1 +
exp(−ϕj))) for j = 1, . . . , d independently. Then, to perform data selection over all possible subsets
of genes, we optimize

argmaxϕ E(K(I) | ϕ) (112)

where the expectation is taken with respect to I, whereK(I) is the (estimated) SVC when genes with
Ij = 1 are included in the foreground space, and ϕ = (ϕ1, . . . , ϕd)

⊤ ∈ Rd is a vector of log-odds. This
stochastic approach to discrete optimization has been used extensively in reinforcement learning
and related fields. We use the Leave-One-Out REINFORCE (LOORF) estimator as described in
Section 2.1 of Dimitriev and Zhou (2021) to estimate gradients of ϕ, using 8 samples per step.

We interleave updates to the variational approximation and to ϕ, using the Adam optimizer
with step size 0.01 for each. We ran the procedure with 4 random initial seeds, taking the result
with the largest final estimated SVC. We halt optimization using the stopping rule proposed in
Grathwohl et al. (2020), stopping when the estimated mean minus the estimated variance of the
SVC begins to decrease, based on the average over 2000 steps.

Code is available at https://github.com/EWeinstein/data-selection.
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Figure 13: Posterior mean interaction energies ∆Ejj′ for the glass model applied to all 200 genes
in the MALT dataset (rather than the selected 187). Genes shown are the same as in Figure 8, for
visual comparison.

E.2 Datasets and preprocessing

In addition to the two datasets in D.5, we also explored a dataset of E18 mouse neurons: https://
support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/neuron_10k_v3.

We preprocessed each dataset using Scprep (Gigante et al., 2020) in the same way as in Sec-
tion D.5. After preprocessing, we used the top 200 most highly expressed genes from among the top
500 most variable genes, according to the Scprep variability score. We log transform the counts,
that is we define xij = log(1 + cij) where cij is the expression count for gene j in cell i.
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Figure 14: Comparison of the 187 selected genes and 13 excluded genes using data selection. (a)
Violin plot of σ̄j over all excluded and selected genes j, respectively, when applying the model to
all 200 genes, where σ̄j is the mean posterior standard deviation of the interaction energies ∆Ejj′

for gene j, that is, σ̄j := 1
d−1

∑
j′ ̸=j std(∆Ejj′ | data). (b) Violin plot of fj over all excluded and

selected genes j, respectively, where fj is the fraction of cells with count equal to zero for gene j.
The data selection procedure excluded all genes with more than 85% zeros and selected all genes
with fewer than 85% zeros.
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