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Abstract
Purpose Exposures related to beryllium (Be) are an enduring concern among workers in the nuclear weapons and other 
high-tech industries, calling for regular and rigorous biological monitoring. Conventional biomonitoring of Be in urine is not 
informative of cumulative exposure nor health outcomes. Biomarkers of exposure to Be based on non-invasive biomonitoring 
could help refine disease risk assessment. In a cohort of workers with Be exposure, we employed blood plasma extracellular 
vesicles (EVs) to discover novel biomarkers of exposure to Be.
Methods EVs were isolated from plasma using size-exclusion chromatography and subjected to mass spectrometry-based 
proteomics. A protein-based classifier was developed using LASSO regression and validated by ELISA.
Results We discovered a dual biomarker signature comprising zymogen granule protein 16B and putative protein FAM10A4 
that differentiated between Be-exposed and -unexposed subjects. ELISA-based quantification of the biomarkers in an inde-
pendent cohort of samples confirmed higher expression of the signature in the Be-exposed group, displaying high predic-
tive accuracy (AUROC = 0.919). Furthermore, the biomarkers efficiently discriminated high- and low-exposure groups 
(AUROC = 0.749).
Conclusions This is the first report of EV biomarkers associated with Be exposure and exposure levels. The biomarkers 
could be implemented in resource-limited settings for Be exposure assessment.
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Introduction

Beryllium (Be) is widely used in industry and occupa-
tional exposure to the low-density metal continues to 
be a serious concern due to its deleterious health effects 
(National-Research-Council 2008). Its physicochemi-
cal properties—such as being lighter in weight than other 
metals and having a unique combination of high thermal 
stability, heat-absorbing capacity, and electrical conductiv-
ity—make Be a valuable material in the aerospace, energy, 
defense, electronics, and automotive industries (National-
Research-Council 2008). According to the US Department 
of Energy, emissions from coal-fired thermal power plants 
result in 100–1000 times higher Be concentration in the air 
compared to the typical ambient concentration (National-
Research-Council 2008). Beryllium exposure can lead to 
beryllium sensitization (BeS), a cell-mediated immune 
response in susceptible individuals, which can progress to 
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chronic beryllium disease (CBD), a granulomatous lung dis-
ease with no known cure (Occupational-Safety-and-Health-
Administration 2017). Severe CBD can result in impaired 
quality of life, end-stage fibrotic lung disease, and death, 
especially in those with higher Be exposure. Exposure to Be 
is also associated with an increased risk of lung cancer, and 
the International Agency for Research on Cancer (IARC) 
lists Be as a group 1 carcinogen (Occupational-Safety-and-
Health-Administration 2017). Very recently, the U.S. Occu-
pational Safety and Health Administration (OSHA) revised 
the Be standard and reduced the Permissible Exposure Limit 
(PEL) for Be to 0.2 µg/m3 averaged over 8 h along with 
additional provisions such as medical screening and sur-
veillance to protect workers exposed to Be. Unfortunately, 
despite the regulations, Be-induced lung disease continues to 
occur (Frye et al. 2021). The exposure–response relationship 
in sensitization and disease appears to be nonlinear; in some 
studies, higher exposures were associated with higher rates 
of CBD (Van Dyke et al. 2011a, b). Notably, BeS and CBD 
have been reported in subjects with exposure levels below 
the current National Institute for Occupational Safety and 
Health (NIOSH) Recommended Exposure Limit (REL) of 
0.5 µg/m3 (https:// www. cdc. gov/ niosh/ surve yrepo rts/ pdfs/ 
263- 13a. pdf). Biological monitoring of Be exposure based 
on measurement of Be levels in urine has no application for 
detecting exposure or any potential health effects (Apostoli 
and Schaller 2001; Centers-for-Disease-Control-and-Preven-
tion 2017) as the metal concentrations in these biofluids do 
not reflect exposure associated with health outcomes nor any 
dose-response relationship. Specialized techniques such as 
X-ray fluorescence spectroscopy (XRF), which has been suc-
cessfully used to assess concentration of metals such as lead 
in selective organs, are problematic for elements with atomic 
number less than 9 such as Be (Zawisza 2008). In situ detec-
tion of trace amounts of Be, that has atomic number 4, is not 
feasible using the state-of-the-art XRF. Novel biomarkers 
of Be exposure offers a promising alternative approach to 
estimate Be exposures and, more specifically, the internal 
dose. However, finding an effective biological matrix for 
non-invasive biomonitoring of Be exposure has remained 
a challenge.

Circulating proteins and metabolites (primary and sec-
ondary organic compounds) have been the most common 
types of biomolecules considered for use as biomarkers 
of exposure and disease. However, highly abundant blood 
proteins (~ 75 mg/ml) significantly interfere with protein 
biomarker discovery (Tu et al. 2010). Although immune-
depletion strategies for high-abundance blood proteins have 
been proposed, they have been less efficient in discovery 
of low-abundance biomarkers in blood (Lee et al. 2019). 
Extracellular vesicles, involved in intercellular signaling, are 
a rich ‘multi-omic’ matrix comprising the transcriptome, 
proteome, lipidome, and metabolome. Most cell types in 

the body typically release around 6000–15,000 EVs per day 
(Riches et al. 2014; Agarwal et al. 2015; Chiu et al. 2016; 
Patel et al. 2017). We estimate that a single cell sheds about 
1/1000th of its mass daily as EVs which could serve as sur-
rogate nanobiopsy material reflecting the molecular and 
physiological status of the cell. Proteomic profiling of EVs 
is emerging as a promising approach for discovery of novel 
biomarkers and offers a threefold advantage: (1) proteomic 
analysis of EVs circumvents the need to deplete irrelevant 
high-abundance proteins that obscure the detection of low-
abundance biomarker proteins; (2) the proteins enriched in 
circulating EVs from the blood are protected against degra-
dation by the lipid bilayer membrane of the EVs; and (3) it 
is feasible to develop easy-to-adopt downstream quantitative 
assays for EV-based protein biomarkers such as Enzyme-
linked Immunosorbent Assay (ELISA) or chemilumines-
cence-based assays for large-scale epidemiological studies 
without the need for high-end equipment. Thus, we posit that 
circulating EVs may enable researchers to overcome some 
of the key challenges in discovery of novel biomarkers for 
exposure assessments.

Findings from recent studies show that air pollutants 
(Sheller-Miller et  al. 2020), cigarette smoke (Wu et  al. 
2019), alcohol (Crenshaw et al. 2019), obesity (Afrisham 
et al. 2020), nutrition (Maghraby et al. 2021), physical exer-
cise (Fruhbeis et al. 2015), and oxidative stress (Chettimada 
et al. 2018) modify EV trafficking and alter EV composition. 
Monitoring exposure-associated effects (Harischandra et al. 
2017) relying on EV biomarkers were recently reported. 
However, efforts toward discovery of biomarkers of expo-
sure in EVs remain limited. In this study, we explore EVs as 
a biological matrix for discovery of biomarkers of exposure 
to Be. In a cohort of workers with history of occupational 
exposure to Be, we determined whether EV proteins could 
discriminate Be-exposed individuals from unexposed as well 
as distinguish between low and high Be exposure levels. We 
used mass spectrometry-based proteomic profiling of plasma 
EVs to discover biomarkers of Be exposure.

Materials and methods

Study participants

Plasma samples of Be-exposed subjects were collected 
between the years 2001 and 2014 as part of the Beryllium 
BioBank (BBB), a multi-center Department of Energy 
funded repository to study beryllium-related disease, 
and deposited into the chronic beryllium biorepository at 
National Jewish Health (NJH), Denver, Colorado (Newman 
et al. 2012). This study was approved by institutional eth-
ics committee of NJH (#HS 2466) and University of Texas 
Health Science Center at Tyler (IRB #20–019 & #0,000,370). 

https://www.cdc.gov/niosh/surveyreports/pdfs/263-13a.pdf
https://www.cdc.gov/niosh/surveyreports/pdfs/263-13a.pdf
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Plasma of healthy age-matched unexposed subjects was 
obtained from biorepository of Discovery Life Sciences, 
Huntsville, Alabama. The study was conducted on a total 
of 143 subjects including 31 healthy subjects not exposed 
to Be (hereafter referred as ‘unexposed’) and 112 subjects 
exposed to Be (hereafter referred as ‘exposed’). The set of 
exposed subjects consisted of 36 healthy exposed subjects 
without beryllium health effects (HE), 38 BeS, and 38 CBD. 
The 31 unexposed subjects selected for the study belonged 
to general population not engaged in occupations or indus-
tries involving Be compounds. Subjects were divided into 
discovery and validation cohorts. For each cohort, exposed 
subjects were randomly selected, and then unexposed sub-
jects matching demographic variables such as age and gen-
der were manually selected. A total of 64 subjects consist-
ing of 48 exposed and 16 unexposed were considered as 
discovery cohort. On this cohort, the protein signature was 
identified using mass spectrometry-based proteomic profil-
ing. The remaining 64 exposed and 15 unexposed subjects 
were considered for biomarker validation (validation cohort) 
by ELISA. Peripheral blood was previously collected from 
participants in EDTA tubes after informed consent. Plasma 
was separated from blood no later than 1 h from the time of 
collection by centrifugation at 1100×g for 10 min at room 
temperature and stored at − 80 °C. Age, gender, and ethnic-
ity were collected from the BBB. Lifetime cumulative expo-
sures were determined using methods previously described 
(Newman et al. 2012; Crooks et al. 2021) and expressed as 
µg/m3. The work histories of Be-exposed subjects were col-
lected using an interviewer-administered questionnaire and 
company work history records. To ensure that uniform data 
were obtained from all subjects, BBB staff provided train-
ing to those administering the questionnaires. This included 
training from an Industrial Hygienist in the administration of 
the exposure questionnaire. Information collected included 
facility, hire and termination dates, job titles with dates held, 
and longest job held. The longest held job title was catego-
rized into one of 14 job categories as follows: machinist; 
IH/safety; administration; custodial/maintenance; construc-
tion worker; in plant trades person; engineer/research and 
development; inspector/quality control; industrial produc-
tion (non-machinist); non-production in plant; decontami-
nation and decommissioning (D&D); laboratory; security; 
and management. Past and current industrial hygiene data 
and information, historical industry data, published data, and 
data collected for regulatory purposes were used to calculate 
facility specific exposure estimates for each of the 14 job 
categories. An arithmetic mean of the available exposure 
measurements was calculated for each category within time 
periods based on years of data collection. Cumulative expo-
sure estimates for each participant were calculated by multi-
plying the work-time in each job category by corresponding 
time period exposure estimate.

Preparation of extracellular vesicle samples

Plasma was clarified by serial centrifugations at 2500g, 
10,000g, and 30,000g, each for 15 min at 4 °C. EVs were 
isolated using size-exclusion chromatography with qEV 
original 35 nm pore size columns and automated fraction 
collector V1 setup (Izon Science US Ltd, MA, USA), as 
per manufacturer’s recommendation. Briefly, columns were 
equilibrated with degassed 1X phosphate-buffered saline 
(PBS) at pH 7.4 and 500 µL of clarified plasma was allowed 
to enter the column by gravity flow. The buffer reservoir was 
filled with fresh PBS and 3 mL of void volume and four EV 
fractions of 500 µL each were collected. The fractions were 
pooled together and concentrated using 300 KDa centrifugal 
filters (Pall corp, NY, USA) at 3500 g at 4 °C and stored in 
aliquots at − 80 °C prior to analysis.

Cryo‑electron microscopy of extracellular vesicles

Three to four microliters of the EV solution (1:20 dilution) 
was added to Lacey carbon grids (300-mesh; Ted Pella, Inc., 
Redding, CA, USA) that were negatively glow-discharged 
for 80 s at 30 mA. Excess sample was removed by blotting 
once for 3 s with Vitrobot filter paper (Ted Pella, Inc, Red-
ding, CA, USA) and then the grid was plunge-frozen in liq-
uid ethane cooled by liquid nitrogen using a Vitrobot plunge-
freezer (ThermoFisher Scientific, Hillsboro, OR, USA).

The vitrified vesicle samples were imaged using a Talos 
Arctica 200 kV transmission electron microscope (Ther-
moFisher Scientific, Hillsboro, OR, USA) equipped with a 
Gatan K3 camera (Gatan, Inc., Pleasanton, CA, USA) The 
SerialEM software was used to collect images under low-
dose conditions at 36,000 × magnification corresponding 
to a pixel size of 1.14 Å/pixel. For each image, 50 frames 
were recorded over 2.5 s exposure time at a dose rate of 
35 electrons/pixel/s. The movie frames were aligned using 
MotionCorr2 (2) under Relion (Zivanov et al. 2018).

Nanoparticle tracking analysis (NTA) of extracellular 
vesicles

Concentration and size range of plasma EV preparations 
were measured using Zetaview Quatt instrument (Particle 
Metrix, Germany) in scatter mode using 520 nm laser and 
sCMOS camera. Instrument calibration was performed 
with 100 nm fluorescent polystyrene beads. PBS filtered 
through 0.2 μm syringe filter was used for diluting the 
EVs to appropriate concentration. Data were acquired at 
the following settings for each channel: sensitivity = 80; 
shutter = 100; track length = 15; minimum brightness = 20; 
cycles/position = 2/11.
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Lysis of extracellular vesicles protein estimation

The EV fractions from SEC were concentrated down to 
50 µL in vacuum at 30 °C, lysed in RIPA buffer (Sigma 
Aldrich, USA), incubated on ice for 10 min and at 95 °C for 
10 min, and sonicated for 2 min in an ultrasonic bath sonica-
tor (Branson Ultrasonics Corp, CT, USA). The supernatants 
containing the EV proteins were collected after centrifuga-
tion at 30,000g for 15 min at 4 °C. The protein concentration 
was estimated using a Pierce BCA protein assay kit (Thermo 
Fisher Scientific, MA, USA) using bovine serum albumin 
as standard.

Western blot

Western blots were performed following SDS PAGE using 
standard protocols involving anti-CD81 antibody (Cat# 
ab232390) from Abcam, Waltham, MA, USA; anti-TSG101 
antibody (Cat# SC-7964), anti-HSP70 antibody (Cat# 
SC-24) and anti-Calnexin antibody (Cat# SC-23954) from 
Santa Cruz Biotechnology, CA, USA. Following incubation 
with appropriate secondary antibody, proteins were detected 
by chemiluminescence using Clarity Max ECL substrate 
(Bio-Rad Laboratories, Hercules, California, USA) on a 
Chemidoc-MP Gel imaging system (Bio-Rad Laboratories, 
Hercules, California, USA).

Liquid chromatography–mass spectrometry/mass 
spectrometry analysis

Samples were digested overnight with trypsin (Pierce, Rock-
ford, IL, USA) following reduction and alkylation with DTT 
and iodoacetamide (Sigma–Aldrich, St. Louis, MO, USA). 
The samples then underwent solid-phase extraction cleanup 
with an Oasis HLB plate (Waters, Milford, MA, USA) and 
were subsequently dried and reconstituted in 10 µL of 2% 
ACN, 0.1% TFA. 5 µL of these samples was injected onto 
a QExactive HF mass spectrometer coupled to an Ultimate 
3000 RSLC-Nano liquid chromatography system. Samples 
were injected onto a 75 µm i.d., 15-cm-long EasySpray col-
umn (Thermo Scientific, San Jose, CA, USA) and eluted 
with a gradient from 0 to 28% buffer B over 90 min with a 
flow rate of 250 nL/min. Buffer A contained 2% (v/v) ACN 
and 0.1% formic acid in water, and buffer B contained 80% 
(v/v) ACN, 10% (v/v) trifluoroethanol, and 0.1% formic 
acid in water. The mass spectrometer operated in positive 
ion mode with a source voltage of 2.2 kV and an ion trans-
fer tube temperature of 275 °C. MS scans were acquired 
at 120,000 resolution in the Orbitrap and up to 20 MS/MS 
spectra were obtained for each full spectrum acquired using 
higher energy collisional dissociation (HCD) for ions with 
charges 2–8. Dynamic exclusion was set for 20 s after an ion 
was selected for fragmentation.

Raw MS data files were analyzed using Proteome Dis-
coverer v2.4 (Thermo Scientific, San Jose, CA, USA), with 
peptide identification performed using Sequest HT searching 
against the human protein database from UniProt (down-
loaded on March 12, 2020). Fragment and precursor tol-
erances of 10 ppm and 0.02 Da were specified, and three 
missed cleavages were allowed. Carbamidomethylation 
of Cys was set as a fixed modification, with oxidation of 
Met set as a variable modification. The false-discovery rate 
(FDR) cutoff was 1% for all peptides.

Enzyme‑linked immunosorbent assay (ELISA)

Standard sandwich ELISA was performed for ZG16B (Aviva 
Systems Biology, CA, USA) and ST13P4 (Abbexa LLC, TX, 
USA) as per manufacturer’s instructions and the microplates 
were read at 450 nm on a Synergy microplate reader (BioTek 
Instruments Ltd, VT, USA).

Biomarker discovery and validation

The biomarker panel was developed using mass spectrom-
etry-based protein quantification of plasma EV proteins. 
For each protein, unpaired t tests were performed on the 
log(n + 1) transformed abundance values to identify differ-
entially expressed EV proteins in different classes (exposed 
vs. unexposed). The Benjamini–Hochberg (BH) multiple 
testing correction was used to control FDR in differential 
expression analysis. Genes exhibiting |log2FC|> 0.585 
(equivalent to > 50% increase or decrease in expression) and 
BH-adjusted p value < 0.05 were considered differentially 
expressed (DE) (log2FC =  log2 fold change). The upregu-
lated DE proteins were subjected to least absolute shrink-
age and selection operator (LASSO) regression to identify 
a biomarker panel discriminating two different classes of 
samples. The LASSO tuning parameter (λ) was optimized 
using tenfold cross-validation. We chose the largest value of 
λ for which the cross-validated error is within one standard 
error of the minimum cross-validation error; this value is 
denoted λ.1se. The receiver-operating characteristic (ROC) 
curve and the area under the ROC curve (AUROC) were 
computed to evaluate the performance of the classifier.

The biomarker panel identified in discovery cohort 
using LASSO regression was validated by ELISA in an 
independent set of samples. For each protein, unpaired 
t-tests were used to detect significant differences in the 
expression between (a) exposed versus unexposed subjects 
and (b) low-exposure versus high-exposure subjects. In 
addition, a classifier was constructed by fitting a logistic 
regression model on the protein concentrations obtained 
via ELISA. The performance of the classifier was evalu-
ated using ROC curves and by calculating AUROC values 
(Hajian-Tilaki 2013). The logistic regression classifier was 
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further evaluated by plotting calibration curves and cal-
culating the concordance index (Frank and Harrell 2015). 
Leave-one-out cross-validation using caret package was 
used to further evaluate the performance of the classifier. 
Nomograms were constructed for binary classification 
to facilitate easy interpretation of the logistic regression 
model. All statistical analyses were performed in the R 
environment (R4.0.3).

Results

Study subjects

Demographic and clinical features of the subjects partici-
pating in the study are shown in Tables 1, 2. The average 
age of the study subjects was 64.13 years with a range of 
33–92 years. The cumulative exposure ranged between 
0.00025 and 62.09 µg/m3 with a mean and median of 4.45 

Table 1  Demographic and 
exposure characteristics of 
workers in discovery cohort

Unexposed Exposed

HE BeS CBD

Total (N) 16 16 16 16
Gender (n) 14 13 16 12
Male 2 3 0 4
Female
 Age 62.3 (33–80) 69.4 (54–84) 57.4 (43–73) 64.6 (43–82)

Smoking (n)
 Never 4 5 7 10
 Former 3 11 6 6
 Current 9 0 3 0
 Cumulative 

exposure (µg/
m3)

4.74 (0.00375–25.2) 5.49 (0.00375–41.51) 5.96 (0.026–51.59)

Cumulative exposure (n)
 Low 3 7 4
 Intermediate 5 1 4
 High 8 8 8

Table 2  Demographic and 
exposure characteristics of 
workers in validation cohort

Unexposed Exposed

HE BeS CBD

Total (N) 15 22 20 22
Gender (n)
 Male 13 15 14 19
 Female 2 7 6 3
 Age 65.1 (45–70) 70.7 (54–85) 59.1 (43–83) 63.5 (43–92)

Smoking (n)
 Never 4 7 13 10
 Former 3 12 6 12
 Current 7 3 1 0
 NA 1 0 0 0
 Cumulative 

exposure (µg/
m3)

2.07 (0.04–10.24) 1.71 (0.014–17.82) 7.26 (0.00025–62.09)

Cumulative exposure
 Low 7 7 7
 Intermediate 8 5 4
 High 7 8 11
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and 0.806 µg/m3, respectively. The study population was 
predominantly male (81.1%) and included former or cur-
rent smokers (57.3%). The study population was divided into 
two cohorts, namely the discovery cohort (Table 1) and the 
validation cohort (Table 2). The discovery cohort consisted 
of 64 subjects, of which 48 were exposed to Be and 16 were 
unexposed. Among the 48 exposed subjects, there were 
equal numbers of subjects belonging to the healthy (HE), 
BeS, and CBD categories. The validation cohort comprised 
15 unexposed subjects and 64 exposed subjects including 
22, 20, and 22 subjects belonging to HE, BeS, and CBD 
categories, respectively.

EV characteristics

EVs isolated from plasma using size-exclusion chroma-
tography exhibited an average diameter of 110  nm on 
nanoparticle tracking analysis (Fig. 1a). Plasma contained 
around 2 ×  1010 EVs per mL (Fig. 1a). The EVs were seen 
in spherical shape, possessed a lipid bilayer on cryo-electron 
microscopic examination (Fig. 1b), and were predominantly 
of ~ 100 nm in diameter, further confirming results obtained 
in NTA. In addition, the EV preparations contained the 
tetraspanin transmembrane protein like CD81, and exo-
some luminal protein such as TSG101 and HSP70, while 
they were devoid of Calnexin, an endoplasmic reticulum 

membrane protein (Fig. 1c). Altogether, these results sug-
gest that our EV preparations were predominantly enriched 
with exosomes.

EV‑based biomarker discovery for discriminating 
Be‑exposed subjects from unexposed subjects

Mass spectrometry-based proteomic analysis of plasma 
EVs from the discovery cohort quantified the expression of 
454 proteins across 64 samples. Dimension reduction using 
principal components analysis revealed that plasma EVs 
from exposed subjects exhibited distinct proteomic profiles 
compared to unexposed subjects (Fig. 1d). A schematic rep-
resentation of our biomarker discovery process is depicted 
in (Fig. 2a). Differential expression analysis revealed that 
there were 55 upregulated proteins and 31 downregu-
lated proteins in exposed subjects compared to controls, 
as determined by the set of proteins with BH-adjusted p 
value < 0.05 and |log2FC|> 0.585 (Table S1). Since upregu-
lated proteins tend to be more suitable as biomarkers for 
diagnostic use in clinical settings, we selected upregulated 
proteins for further analysis. We used LASSO regression 
on the 55 upregulated proteins to identify a signature that 
discriminates exposed individuals from unexposed subjects. 
The 1SE rule for choosing the LASSO tuning parameter λ, 
as described above, yielded λ = − 2.1, which produced a 
classifier employing two proteins, namely zymogen granule 
protein 16B (ZG16B) and putative protein (ST13P4), for 
discriminating exposed from unexposed subjects (Fig. 2b). 
To assess the efficacy of the two-protein biomarker panel 
that was identified in the discovery cohort (ZG16B and 
ST13P4), we evaluated the performance of a logistic regres-
sion model using these two proteins on the discovery cohort. 
ROC curves based on the logistic regression model yielded 
an AUROC of 0.992 (95% CI: 0.979–1.0) suggesting that the 
biomarker signature has excellent efficiency in identification 
of exposed subjects (Fig. 2c).

Validation of EV protein signature by ELISA 
in an independent cohort

To evaluate the clinical utility of the two-protein sig-
nature, in an independent cohort of samples (validation 
cohort), we measured the expression levels of these pro-
teins in plasma EVs using ELISA. The proteins ZG16B 
and ST13P4 were 2.1 (p = 0.0001) and 1.5 (p = 0.048)-
fold higher, respectively, in exposed subjects compared 
to unexposed (Fig. 3a). We further examined whether the 
biomarker levels were influenced by disease states. The 
expression of these two proteins was not significantly dif-
ferent between HE, BeS and CBD groups (Figure S1A). 
To evaluate the performance of these two proteins for 
discriminating between exposed and unexposed subjects, 

a b

c d

Fig. 1  EV characterization and principal components analysis of EV 
proteomes. a Size and quantification of plasma EVs measured by 
nanoparticle tracking analysis against 0.1  μm fluorescent polysty-
rene beads standard. Graph shows EV concentration after 3000 times 
dilution. b Representative cryo-electron micrograph of EVs isolated 
from peripheral blood plasma of participants in the study. c Detec-
tion of common EV markers using Western blot for two representa-
tive plasma samples. d Principal components analysis of proteomic 
profiles of control and exposed subjects
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we performed logistic regression and constructed ROC 
curves (Fig. 3b). The protein signature exhibited an excel-
lent AUROC value of 0.919, with 95% sensitivity at 98% 
specificity. We performed leave-one-out cross-validation 
to further test the performance of the signature to dis-
criminate exposed and unexposed subjects. Out of 79 
cohort samples analyzed in the logistic regression model, 
70 (88.6%) were correctly classified in cross-validation 
while two unexposed and seven exposed samples were 
misclassified. For easier graphical interpretation of the 
logistic regression model, we constructed a nomogram for 
the two-protein classifier (Fig. 3c). To assess the calibra-
tion of logistic regression model, we plotted calibration 
plot showing predicted and actual probabilities on X and 
Y axis, respectively (Fig. 3d). Our model showed excel-
lent consistency in discriminating between the two groups. 
Furthermore, the concordance index of the model was cal-
culated using 200 bootstrap samples to evaluate the pre-
dictive accuracy. Our logistic regression model obtained 
a concordance index value of 0.86 (95% CI: 0.81–0.93) 

suggesting that it differentiates exposed and unexposed 
subjects with high accuracy.

Two‑protein signature could be useful 
in differentiating between subjects with high 
and low levels of cumulative Be exposure

Encouraged by the predictive accuracy of the two-protein 
biomarker signature of exposure to Be in an independent 
validation cohort, we next investigated whether the same 
protein signature could also differentiate subjects with 
high-exposure level from low-exposure level. Subjects 
with cumulative exposure levels below 0.25 µg/m3 and 
above 1.0 µg/m3 were classified as having low and high 
exposure, respectively. Subjects with intermediate cumu-
lative exposure levels between 0.25 µg/m3 and 1.0 µg/m3 
were excluded from this analysis since we anticipated the 
protein expression patterns in this intermediate group to 
overlap with the high or low-exposure groups. There were 
21 and 26 subjects with low- and high-exposure level, 
respectively, in the validation cohort. The levels of ZG16B 
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and ST13P4 were 1.7 (p = 0.05) and 1.8 (p = 0.004)-fold 
higher, respectively, in high-exposure subjects compared 
to low-exposure (Fig. 4a). Logistic regression models fol-
lowed by ROC curves were constructed to evaluate the 
performance of these two proteins for discriminating 
between high- and low-exposure groups (Fig. 4b). The 
protein signature showed an AUROC value of 0.749, with 
81% sensitivity at 80% specificity. We performed leave-
one-out cross-validation to further test the performance 
of the signature in discriminating low- and high-exposure 
levels. Among the 47 samples analyzed in the logistic 
regression model, 32 samples (68.1%) were correctly 
classified in cross-validation while seven samples in low-
exposure category and eight in high-exposure category 
were misclassified. Further, we constructed a nomogram 
for this logistic regression model comprising the two pro-
teins (Fig. 4c) and plotted the calibration curve (Fig. 4d). 
The biomarker signature showed good consistency in dis-
crimination of high versus low exposure. Furthermore, 

the model obtained a concordance index of 0.68 (95% CI: 
0.59–0.78) after 200 bootstrap samples, suggesting that 
the two-protein signature had a good predictive power in 
discriminating exposure levels.

Discussion

Due to new industrial applications of beryllium com-
pounds, occupational exposure to Be is likely to continue 
(National-Research-Council 2008). There is considerable 
dispute about which factors increase the risk for develop-
ing Be-related illnesses. There has been considerable inter-
est in understanding the genetic factors that predispose an 
individual to develop BeS or CBD and few disease-specific 
genetic markers have been studied previously (Richeldi 
et al. 1993; Richeldi et al. 1997; Maier et al. 1999; Wang 
et al. 1999; Maier et al. 2001; Saltini et al. 2001; Wang 
et al. 2001; Maier et al. 2002; Rossman et al. 2002; Maier 
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et al. 2003; McCanlies et al. 2004). Studies have dem-
onstrated that a linear dose–response does not appear to 
occur in the case of Be, since exposure to very low levels 
of Be has been reported to cause BeS and CBD in some 
individuals (National-Research-Council 2008). Further, 
while overall, there are clear genetic and environmental 
factors involved in susceptibility to Be-related illnesses, 
the specifics as well as the ability to predict risk for indi-
vidual workers are not well defined. Therefore, early detec-
tion of Be exposure could improve clinical management of 
Be-related health hazards and may help prevent or delay 
disease onset.

Historically, assessment of exposure to Be has relied on 
direct measurements by personal monitoring in occupational 
microenvironments and indirect estimates based on time-
activity information from questionnaires and interviews 
(Occupational-Safety-and-Health-Administration 2017). 
Although monitoring Be exposure based on personal breath-
ing zone air samples that reflect the airborne exposure may 
provide short-term exposure measurements, extrapolation of 

the short-term exposure data to lifetime exposure measure-
ments for risk assessment purposes is not straight forward. 
Furthermore, exposure is only a proxy for quantifying the 
internal dose, which is the amount of Be deposited within 
the body. Thus, although personal monitoring over longer 
periods of time and at regular intervals may provide a better 
exposure assessment, in reality, this is not feasible for work-
places and significantly different internal doses may result 
from the same exposure. Further, biomonitoring by directly 
measuring Be levels in accessible biological fluids do not 
reflect cumulative exposure or internal dose (Apostoli and 
Schaller 2001). Previously, changes in the serum cytokine 
levels of TNFα and IL-6 along with their respective soluble 
receptor levels have been investigated from the context of 
differential diagnosis of Be-related disease (Tinkle and New-
man 1997). However, to date, no blood- or urine-based bio-
markers of exposure to Be that reflect lifetime work exposure 
have been reported. Thus, discovery and development of 
novel biomarkers that accurately reflect lifetime cumulative 
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exposure with a potential step towards risk assessment could 
be very valuable.

Leveraging an extensive repository of plasma samples 
from a well-characterized cohort of workers with history of 
occupational exposure to Be, we discovered and developed 
a robust biomarker panel that can be analyzed by ELISA to 
determine whether exposure to Be had occurred as well as 
predict a relative internal dose. This assay does not require 
sophisticated laboratory infrastructure and can be performed 
in a clinical laboratory. We show that EVs provide a bio-
marker signature with excellent power for differentiating Be-
exposed individuals from unexposed. We acknowledge that 
the biomarker panel misclassified a few individuals mostly 
in the low-exposure category as being unexposed. Since the 
archived plasma samples used in this study were collected 
years after cessation of Be exposure, it is possible that the 
imperfect classification performance on low-exposure indi-
viduals could be attributed to the Be kinetics and related 
variables affecting internal dose. Currently, specific infor-
mation related to the exact composition of the Be mixture, 
internal doses in the exposed cohort, and general informa-
tion on organ-wise clearance kinetics of Be in humans is 
unknown or undetermined.

Interestingly, we found that the same two-protein sig-
nature could distinguish between low and high cumulative 
exposure groups. Our biomarker evaluations show that the 
classifier can stratify individuals based on the exposure 
level and it exhibited an exposure–biomarker response rela-
tionship. Since cumulative exposure is known to be a good 
predictor of CBD risk, improved estimates of cumulative 
exposure may help in risk stratification of workers. Further, 
since biomarkers are likely to be more informative of inter-
nal dose than exposure monitoring, it is possible that the 
biomarker signature may be even more effective than these 
performance evaluations would suggest. We envisage future 
use of physiologically based pharmacokinetic/pharmacody-
namic (PBPK/PD) models in conjunction with the predictive 
power of the EV biomarkers for making accurate measure-
ments of Be internal dose.

Our study had some limitations inherent to retrospective 
studies characterizing the exposure–biomarker relationship. 
First, a common limitation of job-exposure matrix-based 
retrospective exposure assessment is that the time-activity 
profiles (time spent in various jobs) based on which lifetime 
cumulative exposures are estimated, in many instances, does 
not account for spatial and temporal variability in ambient 
metal concentrations. Therefore, the lifetime cumulative 
exposure assessment may not reflect true total exposure. 
Second, to delineate the exposure–biomarker relation-
ship, we made the fundamental assumption that ambient 
exposure metal concentrations are a surrogate for personal 
exposure as well as internal dose. However, the amount 
of internal dose would depend on several factors such as 

inhaled concentration, ventilation rate, and fractional depo-
sition. Furthermore, due to inadequate data on the biokinet-
ics and bioavailability of Be in humans, our study lacked 
sufficient information to determine the internal dose. For 
these reasons, this biomarker panel should be validated in 
large prospective cohorts to establish the reproducibility of 
biomarkers. Lastly, this study was conducted on workers in 
nuclear weapons facility exposed to pure form of Be. There-
fore, these biomarkers need to be validated in occupational 
settings involving other Be compounds. Despite these limita-
tions, the biomarker panel described in this study may help 
in developing a screening test for detecting exposure to pure 
Be and potentially identify workers in the US with a high 
propensity for developing CBD (Van Dyke et al. 2011a, b).

Conclusions

Biological monitoring is a valuable approach to assess the 
potential health risk from exposure to hazardous agents. 
Lack of reliable biomarkers is a major challenge facing 
biological monitoring of Be, which otherwise could aid in 
monitoring health status of individuals exposed to Be at 
workplace. The direct measurement of Be in biofluids such 
as urine or blood does not reflect the total body burden. 
Our study demonstrates the feasibility of mass spectrom-
etry analysis of EVs to discover novel protein biomarkers 
for identifying Be-exposed individuals and stratifying them 
based on the exposure levels. Expansion of this proof-of-
concept biomarker paradigm could provide a framework for 
measuring cumulative exposures of other hazardous agents 
posing threats to human health.
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