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Abstract

BayesBag has been established as a useful tool for robust Bayesian model se-
lection. However, computing BayesBag can be prohibitively expensive for large
datasets. Here, we propose a fast approximation of BayesBag model selection. This
approximation—based on Taylor approximations of the log marginal likelihood—
can achieve results comparable to BayesBag in a fraction of the time.

1 Motivation

A classical result by Berk [1966] established that Bayesian model selection concentrates on whichever
model is closest to the truth in Kullback-Leibler divergence, even if all the models are incorrect.
However, when multiple models are equally incorrect, there is no guarantee that the posterior will
distribute itself in a reasonable manner. Huggins and Miller [2020] showed that the posterior shifts
back-and-forth between models as additional data is considered, placing almost all mass on whichever
model has higher observed likelihood. Similar behavior can occur even if one model is truly better,
so long as the models are sufficiently close [Huggins and Miller, 2020, Giordano, 2020]. Therefore,
Bayesian model selection can be both unreliable and unstable whenever the models are misspecified.

In recent years, BayesBag [Bühlmann, 2014] has emerged as a flexible tool for robust Bayesian
inference. By averaging posteriors across many bootstrapped datasets, BayesBag posteriors account
for both Bayesian uncertainty and frequentist sampling variation. BayesBag thus serves as an effective
safeguard against overconfidence due to model mis-specification, in both model selection [Huggins
and Miller, 2020] and parameter inference [Huggins and Miller, 2019] settings. For model selection,
the averaging across bootstrapped datasets tends to stabilize the posterior, distributing it more evenly
among the plausible models. Given at least 100 bootstrap samples, this approach can be far more
reliable than standard Bayes [Huggins and Miller, 2020].

On the other hand, naïvely computing BayesBag model selection can be much more expensive. If
each bootstrap posterior is computed independently, the difference amounts to roughly two orders of
magnitude. Even with parallelization, this can be prohibitive for large problems. At the very least,
it can slow down one’s workflow considerably. In this work, our goal is to make BayesBag model
selection more accessible and convenient by developing a fast Taylor expansion-based approximation.

2 Problem Statement

We consider Bayesian model selection under the same exchangeable data setting as Huggins and
Miller [2020]. Given N independent draws Y = (y1, . . . , yN ) from an unknown distribution, the
goal is to choose among K candidate models (Mk)k∈[K] defined by

Mk : each yn has distribution fk(yn | θk) for k ∈ [K],
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where θk represents any unknown parameters. Using pk(θk) to denote the prior distribution on θk
and πk to denote the prior probability ofMk, the standard Bayesian model selection posterior for
modelMk is given by P~1(Mk | Y = y). Here, ~1 denotes a vector composed of N ones, and

Pw(Mk | Y = y) :=
πkZk(y | w)∑K
`=1 π`Z`(y | w)

(1)

with Zk(y | w) denoting the marginal w-weighted likelihood of y under modelMk. That is,

Zk(y | w) :=

∫ ( N∏
n=1

fk(yn | θk)wn

)
p(θk)dθk. (2)

For BayesBag model selection, the posterior probabilities are instead given by

Pr(w)(Mk | Y = y) :=
∑
w

Pw(Mk | Y = y)r(w), (3)

where any bootstrap distribution r(w) can be specified by the user. The standard choice for r(w)

is r(w) = Multinomial(M,~1/N), with M ≈ N0.95 providing stable results [Huggins and Miller,
2020]. The entries in w thus encode the number of copies of each observation in a bootstrap sample.

Note, however, that (3) is typically an intractable sum. One can instead Monte Carlo approximate
r(w) using a r̂(w) composed of B ≈ 100 Monte Carlo draws w1, . . . , wB ∼ r(w). Thus, we can
focus on developing a fast approximation technique for the target

Pr̂(w)(Mk | Y = y) := B−1
B∑

b=1

Pwb(Mk | Y = y). (4)

The challenge in computing (4) stems from the fact that Pwb(Mk | Y = y)—as defined in (1)—
usually lacks a closed form. Instead, each summand must be approximated using techniques that can
be very expensive in high-dimensional settings, such as reversible jump MCMC [Green, 1995] or
direct marginal likelihood approximation [Llorente et al., 2020] for each k ∈ [K]. Accordingly, our
goal is to reduce the number of b’s for which Pwb(Mk | Y = y) must be explicitly computed.

Before proceeding, it is important to recognize that many strategies for approximating (1) (e.g.
[Green, 1995, Geyer, 1994, Dai et al., 2020]) rely on generating posterior draws from the distribution
of θk | Y = y as a byproduct. Access to these draws turn out to be very helpful going forward, as
they allow us to evaluate useful posterior expectations without any additional posterior sampling.

3 Method: Taylor Expansions

Before computing BayesBag, suppose that we have already computed standard Bayesian model
selection over the K candidate models. We thus have access to accurate estimates of P~1(Mk |
Y = y) for all k ∈ [K]. Suppose we also have access to requisite posterior draws for computing
expectations E~1

(
αT `k(θk)

)
and Var~1

(
αT `k(θk)

)
—for any α ∈ RN—where `k(θk) denotes the

vector (log(fk(y1 | θk)), . . . , log(fk(yN | θk))) of log likelihoods under model Mk. E~1(·) and
Var~1(·) denote the expectation and variance respectively under the standard posterior given Y = y.

Borrowing an insight from Campbell and Beronov [2019], we can interpret log(Zk(y | w)) as the log
partition function of an exponential family distribution for θk with parameter vector w and sufficient
statistics `k(θk). It immediately follows that

d log(Zk(y | w)))

dw

∣∣∣∣
w=~1

= E~1 (`k(θk)) and
d2 log(Zk(y | w)))

dw2

∣∣∣∣
w=~1

= Cov~1 (`k(θk)) .

Recalling that each P~1(Mk | Y = y) is proportional to Zk(y | w = ~1) via (1), we can compute
second order Taylor approximations of the marginal likelihoods (log(Zk(y | wb)))k∈[K] up to a
common additive constant for each bootstrap draw. That is, for some Cb ∈ R,

log(Zk(y | wb)) ≈ log
(
P~1(Mk | Y = y)

)
− log(πk) + tk1(~1, wb) +

1

2
tk2(~1, wb) + Cb,

where tk1(~1, w) := E~1

(
(w −~1)T `k(θk)

)
and tk2(~1, w) := Var~1

(
(w −~1)T `k(θk)

)
.
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These approximations can in turn be plugged into (1) to derive the approximation

P̂wb(Mk | Y = y) =
P~1(Mk | Y = y) exp

(
tk1(~1, wb) + 1

2 t
k
2(~1, wb)

)
∑K

r=1 P~1(Mr | Y = y) exp
(
tr1(~1, wb) + 1

2 t
r
2(~1, wb)

) . (5)

We illustrate in Section 4 that the above approximation can be quite accurate. Therefore, using it for
each summand in (4) is often enough to accurately approximate BayesBag model selection without
doing any explicit posterior computation beyond that of standard Bayes.

To assess the accuracy of this BayesBag approximation, we propose a workflow in which one
explicitly performs posterior computation for a few bootstrap samples, then checks if the results agree
with the approximation in (5). When choosing which b’s to check, we prioritize those with highest ∆b

scores, where ∆b denotes the absolute difference between (5) and an analogous approximation based
on a first order Taylor expansion. A large ∆b suggests that log(Zk(y | wb)) is not well approximated
by a Taylor expansion centered at log(Zk(y | w = ~1)). We briefly elaborate on this in Section 5.

Finally, it is worth acknowledging that our approach resembles Laplace’s method [Tierney and
Kadane, 1986] in that we use a Taylor expansion to approximate the marginal likelihood. However,
our approach expands log(Zk(y | w)) around w = ~1 rather `k(θk) around the MAP of θk.

4 Simulations

For our first experiment, we consider a variable selection task for linear regression. We generate N =
1000 synthetic observations yn∈[N ] from a linear regression model with ten covariates x1, . . . , x10.
These covariate values are all generated independently from a standard normal distribution. Likewise,
the values for the intercept, the regression coefficients for β1, . . . , β9, and the noise terms are also
generated from a standard normal. We manually set β10 = 1 to ensure a nontrivial value.

To define the selection task, we treat x10 as unobserved. Instead, we generate new covariates x11 and
x12 such that Corr(x10, x11) = Corr(x10, x12) = Corr(x11, x12) = 0.9. Our task is then to choose
between two conjugate linear regression models:M1 containing x11, orM2 containing x12. Each
model also contains an intercept, coefficients for x1, . . . , x9, and an unknown noise variance σ2. To
facilitate ground truth comparisons, we employ conjugate priors: σ2 ∼ InverseGamma(1, 1) and
βd ∼ N(0, σ2) for all d. Figure 1(a) demonstrates the accuracy of our approximation for B = 100.

For a second experiment, we generate data using the same set-up as above, except with the regression
noise following a t-distribution with df = 3. Figure 1(b) depicts the results of this experiment.
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Figure 1: Plots comparing the Taylor expansion-based probability approximation (vertical axis) to
the ground truth (horizontal axis) where each point depicts a single bootstrap sample. The solid
lines mark the average along each axis, and the dashed diagonal line marks the realm of perfect
approximation. To illustrate the heuristic discussed in Section 3, each point is colored by ∆b.
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For a final experiment, we consider model selection in logistic regression. We generate N = 1000
binary observations yn∈[N ] according to a contaminated logistic regression model with nine unit
variance covariates x1, . . . , x9. The covariates are multivariate normal distributed—the first six are
independent, while x7, x8, and x9 share pairwise correlations of 0.9. The true regression coefficients
for x1, . . . , x6 are also normally distributed. We manually set β0 = −5, β7 = β8 = 1, and β9 = 0.5.
Finally, we randomly select one percent of the y observations to zero out as contamination.

Our corresponding model selection task concerns four candidate logistic regression models: M1

contains the intercept and covariates x1 through x7,M2 includes the intercept and x1 through x8,
M3 includes the intercept and all covariates but x8, andM4 includes everything. All parameters
have standard normal priors, except the intercept’s prior has variance of 3. Each model has prior
probability of πk = 0.25. Figure 2 depicts the approximation accuracy results1 for this experiment.
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Figure 2: Plots comparing the Taylor expansion-based probability approximation (vertical axis) to the
ground truth (horizontal axis) for each bootstrap sample in Experiment 3. The four potential models
are separated by panel. Otherwise, the format follows that of Figures 1(a) and 1(b).

5 Conclusions and Remarks

Our Taylor expansion-based approximation achieved accurate results in all three experiments. Some
b’s in Experiment 2 exhibited downward bias, but not enough to drastically impact the mean. More-
over, the offending b’s mostly exhibited larger values of ∆b, and could thus be flagged for full
computation. Our diagnostic ∆b is closely related to the Fisher information metric [Amari, 2016].

Our technique may not be practical in all cases, such as when the E~1 (`k(θk)) terms are not directly
computable from the MCMC draws. This can occur if a Gibbs update is used to impute observation-
specific auxiliary variables, leaving evaluation of `k(θk) intractable.

Furthermore, our technique can have problems if the standard posterior probabilities are computed
using a MCMC algorithm over all models (e.g. high dimensional variable selection). If the chain
takes a prohibitively long time to visit all low-probability models, some will be left with “zero”
estimated probability in the standard posterior. This would guarantee zero probabilities in their Taylor
approximations, even if they truly exhibit high probability under a bootstrapped dataset. A possible
workaround would be to expand around a power posterior [Miller and Dunson, 2018] instead.

Finally, it is worth noting that the exact speed-up factor of our strategy depends on the relative
expense of (A): computing Equation (1), versus (B): computing the expectations required for the
Taylor expansions. Our approximation will provide the most savings when (B)’s cost is negligible
relative to (A), such as those involving high dimensional non-conugate posteriors [Linderman et al.,
2016, Oaks et al., 2019]. Our approximation has less utility for simple problems where conjugate
priors are available. Note that in order to demonstrate accuracy by comparing against the ground
truth, our simulations in Section 4 considered cases where the marginal likelihoods are available in
closed form. As such, we did not include direct time comparisons.

1To compute our ground truth posterior probabilities for Experiment 3, we implemented a Pólya-Gamma
[Polson et al., 2013] augmented Gibbs sampler over the models
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