
Inference in generalized bilinear models

Jeffrey W. Miller∗

Department of Biostatistics, Harvard University
and

Scott L. Carter
Division of Computational Biology, Dana–Farber Cancer Institute

October 9, 2020

Abstract

Latent factor models are widely used to discover and adjust for hidden variation
in modern applications. However, most methods do not fully account for uncertainty
in the latent factors, which can lead to miscalibrated inferences such as overconfident
p-values. In this article, we develop a fast and accurate method of uncertainty quan-
tification in generalized bilinear models, which are a flexible extension of generalized
linear models to include latent factors as well as row covariates, column covariates,
and interactions. In particular, we introduce delta propagation, a general technique
for propagating uncertainty among model components using the delta method. Fur-
ther, we provide a rapidly converging algorithm for maximum a posteriori GBM
estimation that extends earlier methods by estimating row and column dispersions.
In simulation studies, we find that our method provides approximately correct fre-
quentist coverage of most parameters of interest. We demonstrate on RNA-seq gene
expression analysis and copy ratio estimation in cancer genomics.

Keywords: batch effects, factor analysis, Fisher information, negative-binomial regression,
uncertainty quantification.

∗J.W.M. was supported by the Department of Defense grant W81XWH-18-1-0357, the National Insti-
tutes of Health grant R01GM083084, and the Zhu Family Center for Global Cancer Prevention. S.L.C.
was supported by National Cancer Institute grant 1R01CA227156-01, the Department of Defense grant
W81XWH-18-1-0357, the American Brain Tumor Association, the Wong Family Awards in Translational
Oncology, and the LUNGstrong Fund. S.L.C. is also affiliated with the Department of Biostatistics at
Harvard University and the Broad Institute of MIT and Harvard.

1

1 Introduction

Latent factor models have become an essential tool for analyzing and adjusting for hid-

den sources of variation in complex data. Building on generalized linear model theory,

generalized bilinear models (GBMs) provide a flexible framework incorporating latent fac-

tors along with row covariates, column covariates, and interactions to analyze matrix data

(Choulakian, 1996; Gabriel, 1998; de Falguerolles, 2000; Perry and Pillai, 2013; Hoff, 2015;

Buettner et al., 2017). However, uncertainty quantification is a persistent problem in large

complex models, and GBMs are particularly challenging due to the non-linearity of multi-

plicative terms, constraints and strong dependencies among parameters, inapplicability of

normal model theory, and the fact that the number of parameters grows with the data.

Most latent factor methods do not fully account for uncertainty in the latent factors.

For example, to remove batch effects in gene expression analysis, several methods first

estimate a factorization UV T and then treat V as a known matrix of covariates, accounting

for uncertainty only in U (Leek and Storey, 2007, 2008; Sun et al., 2012; Risso et al.,

2014). In copy number variation detection, it is common to treat the estimated UV T as

known and subtract it off (Fromer et al., 2012; Krumm et al., 2012; Jiang et al., 2015).

In principle, Bayesian inference provides full uncertainty quantification (Carvalho et al.,

2008), however, Markov chain Monte Carlo tends to be slow in large parameter spaces

with strong dependencies, as in the case of GBMs. Variational Bayes approaches are faster

(Stegle et al., 2010; Buettner et al., 2017; Babadi et al., 2018), but rely on factorized

approximations that tend to underestimate uncertainty. Meanwhile, the classical method

of inverting the Fisher information matrix is computationally prohibitive in large GBMs.

In this article, we introduce a novel method for uncertainty quantification in GBMs,

focusing on the case of count data with negative binomial outcomes. The basic idea is

to propagate uncertainty between model components using the delta method, which can

be done analytically using closed-form expressions involving the gradient and the Fisher

information; we refer to this as delta propagation. The method facilitates computation of p-

2

values and confidence intervals with approximately correct frequentist properties in GBMs.

Further, we provide an algorithm for maximum a posteriori GBM estimation that extends

previous work by estimating row- and column-specific dispersion parameters, improving

numerical stability, and explicitly handling identifiability constraints.

In a suite of simulation studies, we find that our methods perform favorably in terms of

consistency, frequentist coverage, computation time, algorithm convergence, and robustness

to the outcome distribution. We then apply our methods to gene expression analysis, (a)

comparing performance with DESeq2 (Love et al., 2014) on a benchmark dataset of RNA-

seq samples from lymphoblastoid cell lines, and (b) testing for age-related genes using

RNA-seq data from the Genotype-Tissue Expression (GTEx) project (Melé et al., 2015).

Finally, we apply our methods to copy ratio estimation in cancer genomics, comparing

performance with the Genome Analysis Toolkit (GATK) (Broad Institute, 2020) on whole-

exome sequencing data from the Cancer Cell Line Encyclopedia (Ghandi et al., 2019).

The article is organized as follows. In Section 2, we define the GBM model and we

address identifiability, interpretability, and residuals. In Sections 3 and 4, we describe

our estimation and inference methods, respectively. In Section 5, we establish theoretical

results, and Section 6 contains simulation studies. In Sections 7 and 8, we apply our

methods to gene expression analysis and copy ratio estimation in cancer genomics. The

supplementary material contains a discussion of previous work and challenges, additional

empirical results, mathematical derivations and proofs, and step-by-step algorithms.

2 Model

In this section, we define the class of models considered in this paper and we provide

conditions guaranteeing identifiability and interpretability of the model parameters. For

i ∈ {1, . . . , I} and j ∈ {1, . . . , J}, suppose Yij ∈ R is a random variable such that

g(E(Yij)) =
K∑
k=1

xikajk +
L∑
`=1

bi`zj` +
K∑
k=1

L∑
`=1

xikck`zj` +
M∑
m=1

uimdmmvjm (2.1)

3

Figure 1: Schematic of the generalized bilinear model (GBM) structure.

where xik and zj` are observed covariates, ajk, bi`, ck`, uim, dmm, and vjm are parameters

to be estimated, and g(·) is a smooth function such that g′ is positive, referred to as the

link function. In matrix form, denoting Y = (Yij) ∈ RI×J , Equation 2.1 is equivalent to

g(E(Y)) = XAT +BZT +XCZT + UDV T (2.2)

where g is applied element-wise to the matrix E(Y). To be able to use capital Y to denote

scalar random variables, we use bold Y to denote the data matrix. We refer to this as a

generalized bilinear model (GBM), following the terminology of Choulakian (1996).

In the genomics applications in Sections 7 and 8, we use negative binomial outcomes

with log link g(µ) = log(µ), and the role of each piece is as follows (see Figure 1): Yij

is the read count for feature i in sample j, X ∈ RI×K contains feature covariates and

A ∈ RJ×K contains the corresponding coefficients, Z ∈ RJ×L contains sample covariates

and B ∈ RI×L contains the corresponding coefficients, C ∈ RK×L contains intercepts and

coefficients for interactions between the x’s and z’s, and UDV T is a low-rank matrix that

captures latent effects due, for example, to unobserved covariates such as batch.

2.1 Identifiability and interpretation

For identifiability and interpretability, we impose certain constraints (Conditions 2.1 and

2.2). The only constraints on the covariates are that X and Z are full-rank, centered,

and include a column of ones for intercepts; see below. The rest of the constraints are

enforced on the parameters during estimation. We write I to denote the identity matrix to

distinguish it from the number of features, I.

4

Condition 2.1 (Identifiability constraints). Assume the following constraints:

(a) XTX and ZTZ are invertible,

(b) XTB = 0, ZTA = 0, XTU = 0, and ZTV = 0,

(c) UTU = I and V TV = I,

(d) D is a diagonal matrix such that d11 > d22 > · · · > dMM > 0, and

(e) the first nonzero entry of each column of U is positive,

where A ∈ RJ×K, B ∈ RI×L, C ∈ RK×L, D ∈ RM×M , U ∈ RI×M , V ∈ RJ×M , X ∈ RI×K,

Z ∈ RJ×L, and M < min{I, J}.

In Theorem 5.1, we show that Condition 2.1 is sufficient to guarantee identifiability of

A, B, C, D, U , and V in any GBM satisfying Equation 2.2. More precisely, letting

η(A,B,C,D, U, V) := XAT +BZT +XCZT + UDV T (2.3)

for some fixed full-rank X and Z, Theorem 5.1 shows that η(·) is a one-to-one function on

the set of parameters satisfying Condition 2.1.

Condition 2.2 (Interpretability constraints). Assume that (a) xi1 = 1 and zj1 = 1 for all

i, j, and (b)
∑I

i=1 xik = 0 and
∑J

j=1 zj` = 0 for all k ≥ 2, ` ≥ 2.

When Condition 2.2(a) holds, we can rearrange the right-hand side of Equation 2.1 as

c11 + aj1 + bi1 +
K∑
k=2

(ck1 + ajk)xik +
L∑
`=2

(c1` + bi`)zj` +
K∑
k=2

L∑
`=2

ck`xikzj` +
M∑
m=1

uimdmmvjm.

Using this and assuming Conditions 2.1 and 2.2, we show in Theorem 5.2 that the interpre-

tation of each parameter is: (1) c11 is the overall intercept, c11 = 1
IJ

∑I
i=1

∑J
j=1 g(E(Yij)),

(2) aj1 is a sample-specific offset and bi1 is a feature-specific offset, (3) ck1 is the mean effect

of the kth feature covariate and ajk is the sample-specific offset of this effect, (4) c1` is the

5

mean effect of the `th sample covariate and bi` is the feature-specific offset of this effect,

and (5) ck` is the effect of the interaction xikzj` for k ≥ 2 and ` ≥ 2.

GBMs can be decomposed in terms of the sum-of-squares of each component’s contribu-

tion to the overall model fit, enabling one to interpret the proportion of variation explained

by each component. Specifically, in Theorem 5.3, we show that

SS(XAT +BZT +XCZT + UDV T) = SS(XAT) + SS(BZT) + SS(XCZT) + SS(UDV T)

whenever Condition 2.1(b) holds, where SS(Q) :=
∑

i,j q
2
ij denotes the sum of squares of

the entries of a matrix. This extends a similar result by Takane and Shibayama (1991).

2.2 Outcome distributions

For the distribution of Yij, we focus on discrete exponential dispersion families (Jørgensen,

1987; Agresti, 2015). Specifically, suppose Yij ∼ f(y | θij, rij) where for y ∈ Z,

f(y | θ, r) = exp(θy − rκ(θ))h(y, r) (2.4)

is a probability mass function for all θ ∈ Θ and r ∈ R; this is referred to as a discrete

EDF. Here, Θ ⊆ R, R ⊆ (0,∞), and Z denotes the integers. For any discrete EDF, the

mean and variance are E(Y) = rκ′(θ) and Var(Y) = rκ′′(θ) (Jørgensen, 1987); also see

Section S4. We refer to r as the inverse dispersion parameter, and 1/r is the dispersion.

Discrete EDFs can be translated into standard EDFs of the form exp(r[θy − κ(θ)])h(y, r)

via the transformation y 7→ ry. We refer to a GBM with EDF outcomes as an EDF-GBM.

Negative binomial (NB) outcomes. In the applications in Sections 7 and 8, we

use negative binomial outcomes: Yij ∼ NegBin(µij, rij) where µij is the mean and 1/rij

is the dispersion. This is a discrete EDF as in Equation 2.4 with θ = log(µ/(µ + r)) and

κ(θ) = − log(1−exp(θ)); thus, E(Y) = µ and Var(Y) = µ+µ2/r. The NB distribution is an

overdispersed Poisson since if Y |λ ∼ Poisson(λ) and λ ∼ Gamma(r, r/µ), then integrating

6

out λ, we have Y ∼ NegBin(µ, r). We refer to a GBM with NB outcomes as an NB-GBM.

We parametrize the dispersions as 1/rij = exp(si + tj + ω) and work in terms of S =

(s1, . . . , sI)
T ∈ RI , T = (t1, . . . , tJ)T ∈ RJ , and ω ∈ R, subject to the identifiability

constraints 1
I

∑
i e
si = 1 and 1

J

∑
j e

tj = 1. Note that this makes 1
IJ

∑
i,j 1/rij = exp(ω).

2.3 Residuals and adjusting out selected effects

Residuals are useful for many purposes, such as visualization, model criticism, and down-

stream analyses. We define GBM residuals as εij := g(Yij + ε) − ηij where η =

η(A,B,C,D, U, V) ∈ RI×J as in Equation 2.3 and ε is a small constant to make εij well-

defined; for NB-GBMs, we use ε = 1/8 as a default. A model-based estimate of the

variance of εij is given by σ2
ijg
′(µij)

2 where µij and σ2
ij are the mean and variance of Yij

under the model. This formula can be derived either from the Fisher information or from

a first-order Taylor approximation to g. It turns out that the corresponding precisions

wij := 1/(σ2
ijg
′(µij)

2) play a key role in our GBM estimation and inference algorithms. In

the NB case with g(µ) = log(µ), these residual precisions are wij = rijµij/(rij + µij).

Often, it is useful to adjust out some effects but not others. Let Rx, Rz, and Ru be the

indices of the columns of X, Z, and U (or V) that one does not wish to adjust out. We

define the partial residuals εRij := ηRij + εij where ηR ∈ RI×J is defined as in Equation 2.3

but with xik, zj`, and uim replaced by xik1(k ∈ Rx), zj`1(` ∈ Rz), and uim1(m ∈ Ru).

3 Estimation

We provide a general algorithm for estimating the parameters of a discrete EDF-GBM

(Equations 2.2 and 2.4), and we augment the algorithm to estimate the NB-GBM dispersion

parameters as well. Here, we only give an outline; see Section S7 for step-by-step details.

Inputs. The required inputs are Y ∈ ZI×J , X ∈ RI×K , Z ∈ RJ×L, and M ∈ {0, 1, 2, . . .}.

Optional inputs are the maximum step size ρ > 0, prior precisions λa, λb, λc, λd, λu, λv > 0,

prior means and precisions ms,mt, λs, λt for the log-dispersions in the NB-GBM case, and

7

the convergence criterion. As defaults, we use ρ = 5, λa = λb = λc = λd = λu = λv = 1,

ms = mt = 0, λs = λt = 1, convergence tolerance τ = 10−6 for the relative change in

log-likelihood+log-prior, and a maximum of 50 iterations.

Preprocessing.

(1) Ensure that X and Z satisfy Condition 2.1(a) and Condition 2.2.

(2) Unless the covariates are already on a common scale in terms of units, standardize

X and Z such that 1
I

∑I
i=1 x

2
ik = 1 and 1

J

∑J
j=1 z

2
j` = 1 for all k ≥ 2 and ` ≥ 2.

(3) Precompute the pseudoinverses X+ = (XTX)−1XT and Z+ = (ZTZ)−1ZT.

Initialization.

(1) Solve for A, B, and C to minimize the sum-of-squares of the GBM residuals εij.

(2) Randomly initialize D, U , and V by computing the truncated singular value decom-

position (of rank M) of a random matrix with i.i.d. N (0, 10−16) entries.

(3) In the case of NB-GBMs, iteratively update S, T , and ω for a few iterations.

Iteration. In each iteration, we cycle through the components of the model, updating each

in turn using an optimization-projection step, consisting of an unconstrained optimization

step and a likelihood-preserving projection onto the constrained parameter space. We use

a bounded, regularized version of Fisher scoring to perform the unconstrained optimization

step for each of A, B, C, D, UD, and V D, separately, holding all the other parameters

fixed. For a generic parameter vector β, the (unbounded) regularized Fisher scoring step

is β ← β + (E(−∇2
βL) + λI)−1(∇βL − λβ) where L is the log-likelihood and λ > 0 is

a regularization parameter. This arises from optimizing the log-likelihood plus the log-

prior, where the prior on β is π(β) = N (β | 0, λ−1I), since then the gradient and Fisher

information are ∇β(L+ log π) = ∇βL−λβ and E(−∇2
β (L+ log π)) = E(−∇2

βL) +λI. Since

these Fisher scoring steps occasionally diverge, for numerical stability we bound them using

ξ ← (E(−∇2
βL) + λI)−1(∇βL − λβ)

β ← β + ξmin{1, ρ
√

dim(ξ)/‖ξ‖}
(3.1)

8

where ‖ξ‖ = (
∑

i |ξi|2)1/2 is the Euclidean norm. The idea is that ξmin{1, ρ
√

dim(ξ)/‖ξ‖}

points in the same direction as ξ, but its root-mean-square is capped at ρ. Similarly, for

S and T in the NB-GBM, we use bounded regularized Newton steps for the unconstrained

optimizations, since the (expected) Fisher information for S and T is not closed form.

See Section S7 for full step-by-step details. See Section 5 for time complexity analysis.

4 Inference

In this section, we introduce our methodology for computing approximate standard errors

for the parameters of a GBM. Since the standard technique of inverting the Fisher infor-

mation matrix does not work well on GBMs, we develop a novel technique for propagating

uncertainty from one part of the model to another; see Section 4.1. We provide an outline

of our inference algorithm in Section 4.2, and step-by-step details are in Section S8.

4.1 Delta propagation method

In fixed-dimension parametric models, the asymptotic covariance of the maximum likeli-

hood estimator is equal to the inverse of the Fisher information matrix. Thus, classically,

approximate standard errors are given by the square roots of the diagonal entries of the

inverse Fisher information. However, in GBMs, inverting the full (constraint-augmented)

Fisher information does not work well for two reasons: (1) it is computationally intractable

for large data matrices, and (2) it does not yield well-calibrated standard errors in terms of

coverage, presumably because the number of parameters grows with the amount of data.

Meanwhile, the inverse Fisher information for each component individually (for instance,

F−1
a for A) is computationally efficient, but severely underestimates uncertainty since it

treats the other components as known, and thus, can be thought of as representing the

conditional uncertainty in each component given the other components.

We propose a general technique for approximating, for each model component, the

additional variance due to uncertainty in the other components. By adding this to the

9

conditional variance (that is, diag(F−1
a) in the case of A), we obtain approximate variances

that are better calibrated, empirically. The basic idea is to write the estimator for each

component as a function of the other components, and propagate the variance of the other

components through this function using the same idea as the delta method.

In general, suppose we have a model with parameters θ ∈ Rd and ν ∈ Rk, and we wish

to quantify the uncertainty in θ due to uncertainty in ν. Suppose the true values are θ0

and ν0, and let θ̂ and ν̂ be the maximum likelihood estimators. Define

h(ν) := θ0 + F (θ0, ν)−1g(θ0, ν)

where g(θ, ν) := ∇θL is the gradient of the log-likelihood and F (θ, ν) := E(−∇2
θL) is the

Fisher information matrix for θ, evaluated at (θ, ν). The interpretation is that θ̂ ≈ h(ν̂),

since h(ν̂) is a Fisher scoring step on θ starting at θ0, when the current estimate of ν is ν̂.

By a Taylor approximation to h at ν0, we have h(ν̂) ≈ h(ν0) + h′(ν0)T(ν̂ − ν0) where

h′(ν) ∈ Rk×d such that h′(ν)ij = ∂hj/∂νi. Define the random element ϕ = (h(ν0), h′(ν0)),

where the randomness comes from the data. Assuming ν̂|ϕ ≈ N (ν0,Σν) for some Σν , we

have h(ν̂)|ϕ ≈ N (h(ν0), h′(ν0)TΣνh
′(ν0)). Meanwhile, under standard regularity condi-

tions, E(h(ν0)) = θ0 and Cov(h(ν0)) = F (θ0, ν0)−1. Then, by the law of total covariance,

Cov(h(ν̂)) = Cov(E(h(ν̂)|ϕ)) + E(Cov(h(ν̂)|ϕ)) ≈ F (θ0, ν0)−1 + E(h′(ν0)TΣνh
′(ν0)).

The interpretation of this decomposition is that F (θ0, ν0)−1 represents the uncertainty in

θ given ν, and E(h′(ν0)TΣνh
′(ν0)) represents the uncertainty in θ due to uncertainty in ν.

Since θ̂ ≈ h(ν̂), plugging in empirical estimates leads to the approximation

Cov(θ̂) ≈ F (θ̂, ν̂)−1 + ĥ′(ν̂)TΣ̂ν ĥ
′(ν̂), (4.1)

where ĥ(ν) = θ̂ + F (θ̂, ν)−1g(θ̂, ν).

10

C

A U, V B

S T

Figure 2: Diagram of uncertainty propagation scheme for GBM inference.

To compute the Jacobian matrix h′(ν)T, observe that the ith column of h′(ν)T is

∂h

∂νi
=
∂F−1

∂νi
g + F−1 ∂g

∂νi
= −F−1∂F

∂νi
F−1g + F−1 ∂g

∂νi
(4.2)

by Bishop (2006, Eqn C.21), where F = F (θ0, ν), g = g(θ0, ν), and ∂/∂νi is applied element-

wise. Equation 4.2 also holds for ∂ĥ/∂νi, but with θ̂ in place of θ0; this facilitates computing

ĥ′(ν̂) in Equation 4.1. To obtain standard errors for each element of θ, computation is

simplified by the fact that we only need the diagonal of Cov(θ̂), and to simplify computation

even further we use a diagonal matrix for Σ̂ν when we apply this technique to GBMs.

Additionally, since we use maximum a posteriori estimates, we use the regularized Fisher

information and the gradient of the log-posterior in the formulas above.

4.2 Outline of inference algorithm

Here we outline our procedure for computing GBM standard errors; see Section S8 for

step-by-step details. The strategy is to handle U and V jointly by inverting the regular-

ized, constraint-augmented Fisher information matrix for (U, V) and then employ delta

propagation for A, B, C, S, and T ; see Figure 2. Empirically, we find that some of the

delta propagation terms are negligible, thus, these have been excluded.

For notational convenience, we vectorize the parameter matrices as follows. For Q ∈

Rm×n, define vec(Q) := (q11, q21, . . . , qm1, q12, q22, . . . , qm2, , qmn) ∈ Rmn. Denote ~a :=

vec(AT), ~b := vec(BT), ~c := vec(C), ~d := diag(D), ~u := vec(UT), and ~v := vec(V T). It is

11

easier to work with the vectorized transposes of A, B, U , and V (that is, vec(AT) rather than

vec(A)), since then the Fisher information matrices have a block diagonal structure. We

write Fa, Fb, Fc, Fd, Fu, and Fv to denote the regularized Fisher information for ~a, ~b, ~c, ~d,

~u, and ~v, respectively, for instance, Fa = E(−∇2
~a (L+ log π)). We write Fs,obs and Ft,obs for

the regularized, observed Fisher information for S and T , that is, Fs,obs = −∇2
S (L+ log π).

Inputs. The required inputs are Y , X, Z, and the estimates of A, B, C, D, U , V , S, T ,

and ω. Optional inputs are the prior parameters (λa, λb, λc, λd, λu, λv, λs, λt,ms,mt).

Compute conditional uncertainty for each component.

(1) Compute F−1
c and the diagonal blocks of F−1

a , F−1
b , F−1

u , and F−1
v .

(2) Compute the diagonals of F−1
s,obs and F−1

t,obs.

Compute joint uncertainty in (U, V) accounting for constraints.

(1) Compute F̃(u,v), the regularized constraint-augmented Fisher information for
[
~u
~v

]
.

(2) Compute diag(F̃−1
(u,v)). (It is key to do this in a computationally efficient way.)

(3) Define v̂aru and v̂arv to be the entries of diag(F̃−1
(u,v)) corresponding to U and V .

Propagate uncertainty between components using delta propagation.

(1) Propagate uncertainty in (U, V) to A and B, to obtain v̂ar(u,v)→a and v̂ar(u,v)→b, the

additional variance of the estimators of A and B due to uncertainty in (U, V).

(2) Propagate uncertainty in A and B through to C, to obtain v̂ar(a,b)→c.

(3) Propagate uncertainty in A, B, U , V to S and T , to get v̂ar(a,b,u,v)→s and v̂ar(a,b,u,v)→t.

Compute approximate standard errors.

(1) ŝea ← sqrt(diag(F−1
a) + v̂ar(u,v)→a) and ŝeb ← sqrt(diag(F−1

b) + v̂ar(u,v)→b)

(2) ŝec ← sqrt(diag(F−1
c) + v̂ar(a,b)→c)

(3) ŝeu ← sqrt(v̂aru) and ŝev ← sqrt(v̂arv)

(4) ŝes ← sqrt(diag(F−1
s,obs) + v̂ar(a,b,u,v)→s) and ŝet ← sqrt(diag(F−1

t,obs) + v̂ar(a,b,u,v)→t)

12

Here, sqrt(·) is the element-wise square root. We do not provide standard errors for D and

ω, since it seems difficult to estimate them without non-negligible bias. See Section S8 for

the complete step-by-step algorithm. See Section 5 for computation time complexity.

5 Theory

In this section, we provide theoretical results on GBMs. The proofs are in Section S10.

Theorem 5.1 (Identifiability). If (A1, B1, C1, D1, U1, V1, X, Z) and (A2, B2, C2, D2, U2, V2,

X, Z) satisfy Condition 2.1 and

XAT
1 +B1Z

T +XC1Z
T + U1D1V

T
1 = XAT

2 +B2Z
T +XC2Z

T + U2D2V
T

2 , (5.1)

then A1 = A2, B1 = B2, C1 = C2, D1 = D2, U1 = U2, and V1 = V2. In particular, for

any GBM satisfying Equation 2.2 for some X, Z, and M , if Condition 2.1 holds, then A,

B, C, D, U , and V are identifiable in the sense that they are uniquely determined by the

distribution of Y ; in fact, they are uniquely determined by E(Y).

Theorem 5.2 (Interpretation of parameters). If Conditions 2.1 and 2.2 hold and µij :=

E(Yij) satisfies Equation 2.1, then:

(a)
∑J

j=1 ajk = 0 and
∑I

i=1 bi` = 0 for all k ∈ {1, . . . , K}, ` ∈ {1, . . . , L},

(b)
∑I

i=1 uim = 0 and
∑J

j=1 vjm = 0 for all m ∈ {1, . . . ,M},

(c) 1
I

∑I
i=1 g(µij) = c11 + aj1 +

∑L
`=2 c1`zj` for all j ∈ {1, . . . , J},

(d) 1
J

∑J
j=1 g(µij) = c11 + bi1 +

∑K
k=2 ck1xik for all i ∈ {1, . . . , I}, and

(e) 1
IJ

∑I
i=1

∑J
j=1 g(µij) = c11.

For a matrix Q ∈ Rm×n, we write SS(Q) :=
∑m

i=1

∑n
j=1 q

2
ij for the sum of squares.

13

Theorem 5.3 (Sum-of-squares decomposition). If Condition 2.1(b) holds, then

SS(XAT +BZT +XCZT + UDV T) = SS(XAT) + SS(BZT) + SS(XCZT) + SS(UDV T).

Theorem 5.4 shows that the projections we use in the estimation algorithm are

likelihood-preserving. The idea is that, for example, Ã is the result of an unconstrained

optimization step on A, and we project (Ã, C) to (A1, C1) to enforce the constraints in Con-

dition 2.1 without affecting the likelihood. To interpret items 3 and 4 of Theorem 5.4, note

that in the algorithm, we optimize with respect to G := UD and H := V D, rather than U

and V . We write Q+ to denote the pseudoinverse. When (QTQ)−1 exists, Q+ = (QTQ)−1QT.

Theorem 5.4 (Likelihood-preserving projections). Suppose (A,B,C,D, U, V,X, Z) satis-

fies Condition 2.1. Fix X and Z and define η(·) as in Equation 2.3.

1. Let Ã ∈ RJ×K. Define A1 = Ã − Z(Z+Ã) and C1 = C + (Z+Ã)T. Then η(A1, B,

C1, D, U, V) = η(Ã, B, C,D, U, V) and (A1, B, C1, D, U, V) satisfies Condition 2.1.

2. Let B̃ ∈ RI×L. Define B1 = B̃ − X(X+B̃) and C1 = C + (X+B̃). Then η(A,B1,

C1, D, U, V) = η(A, B̃, C,D, U, V) and (A,B1, C1, D, U, V) satisfies Condition 2.1.

3. Let G̃ ∈ RI×M . Define G0 = G̃ − X(X+G̃) and let U1D1V
T

1 be the compact SVD

(of rank M) of G0V
T. Assume the singular values are distinct and positive, and

choose the SVD in such a way that Conditions 2.1(d) and 2.1(e) are satisfied. Define

A0 = A+V (X+G̃)T, A1 = A0−Z(Z+A0), and C1 = C+ (Z+A0)T. Then η(A1, B, C1,

D1, U1, V1) = η(A,B,C, I, G̃, V) and (A1, B, C1, D1, U1, V1) satisfies Condition 2.1.

4. Let H̃ ∈ RJ×M . Define H0 = H̃ − Z(Z+H̃) and let U1D1V
T

1 be the compact SVD (of

rank M) of UHT
0 . Assume the singular values are distinct and positive, and choose the

SVD in such a way that Conditions 2.1(d) and 2.1(e) are satisfied. Define B0 = B+

U(Z+H̃)T, B1 = B0−X(X+B0), and C1 = C+X+B0. Then η(A,B1, C1, D1, U1, V1) =

η(A,B,C, I, U, H̃) and (A,B1, C1, D1, U1, V1) satisfies Condition 2.1.

14

Table 1: Computation time complexity of each update in the estimation algorithm.

Operation Time complexity

Computing η O(IJ max{K,L,M})
Updating A O(IJK2)

Updating B O(IJL2)

Updating C O(IJ max{K2, L2})
Updating D, U , and V O(IJM2)

Updating S and T O(IJ)

Total per iteration O(IJ max{K2, L2,M2})

Table 2: Computation time complexity of the inference algorithm.

Operation Time complexity

Preprocessing O(IJ max{K,L,M})
Conditional uncertainty for each component O(IJ max{K2, L2,M2})
Joint uncertainty in (U, V) accounting for constraints O(IJ2M3)

Propagate uncertainty between components O(IJ max{K3, L3,M3})
Compute approximate standard errors O(IJ)

Total O(IJ max{K3, L3, JM3})

Next, we provide the computation time complexity of our estimation and inference

algorithms in Sections 3 and 4. To simplify the expressions, here we assume

max{K2, L2,M} ≤ min{I, J}. (5.2)

For the estimation algorithm, preprocessing and initialization take O(IJ max{K,L,M})

time, and Table 1 summarizes the computation time for updating each model component.

The table first breaks out the time required to compute η (Equation 2.3), which is a

prerequisite within each other update, and then lists the time required for each update

given η. In total, it takes O(IJ max{K2, L2,M2}) time to perform each overall iteration.

For the inference algorithm, Table 2 shows the computation time assuming Equation 5.2

and also assuming I ≥ J . These are one-time costs since there are not repeated iterations.

When M > 0, the most expensive operation tends to be computing the joint uncertainty

in (U, V), and as J grows this dominates the cost. We have experimented extensively but

have not found a faster alternative that provides well-calibrated standard errors.

15

Figure 3: Scatterplots of estimated versus true parameters for a typical simulated data matrix.

6 Simulations

In this section, we present simulation studies assessing (a) consistency and statistical effi-

ciency, (b) accuracy of standard errors, (c) computation time and algorithm convergence,

and (d) robustness to the outcome distribution. See Section S2 for more simulation results.

In each simulation run, the data are generated as follows; see Section S2 for full details.

We generate the covariates using one of three schemes, Normal, Gamma, or Binary, then

we generate the true parameters using either a Normal or Gamma scheme, and finally we

generate the outcome data using the log link and a NB (negative binomial), LNP (log-normal

Poisson), Poisson, or Geometric distribution. For brevity, we refer to each combination of

choices by the triplet of outcomes/covariates/parameters, for instance, NB/Binary/Normal.

Typical example. Figure 3 shows scatterplots of the estimated versus true parameters

for an NB/Normal/Normal simulation with I = 1000, J = 100, K = 4, L = 2, and M = 3.

Each dot represents a single univariate parameter, for example, the plot for A contains JK

dots, one for each entry ajk. The error bars are ±2 ŝe. Visually, the estimates are close to

true values, and the standard errors look appropriate. Since the likelihood and prior are

16

Figure 4: Relative mean-squared error between estimated and true parameter values. Each plot
contains 50 thin lines, one for each run, along with the median over the 50 runs (thick blue line).

invariant to permutations and sign changes of the latent factors, in this section we permute

and flip signs to find the correct assignment to the true latent factors. Note that the si

estimates are biased upward when the true value of si is very low; this is because very low

values of si make row i roughly Poisson, and in this case any value of si from −∞ to ≈ −2

could yield a reasonable fit. The prior on si prevents the estimate from diverging, but also

leads to an upward bias when the true value is very low.

6.1 Consistency and statistical efficiency

In many applications, I is much larger than J . One would hope that for any J , the estimates

of A, C, V , and T would be consistent as I → ∞ since then these parameters have fixed

dimension. Meanwhile, one cannot hope for consistency in B, U , and S as I →∞.

To assess consistency and efficiency, for each I ∈ {100, 316, 1000, 3162, 10000} we use

the NB/Normal/Normal simulation scheme to generate 50 data matrices with J = 100,

K = 4, L = 2, and M = 3, each with a different set of covariates and parameters. For

each data matrix, we run our NB-GBM estimation algorithm with convergence tolerance

τ = 10−8. Figure 4 shows the relative mean-squared error (MSE) between the estimates and

the true values for A, C, V , and T . For T , we measure the relative MSE in the dispersion

parametrization (rather than log-dispersion) since there is little difference between, say,

tj = −5 and tj = −100; both make column j approximately Poisson distributed.

We see that for A, C, V , and T , the relative MSE is decreasing to zero, suggesting

17

that the estimates of these parameters are consistent as I → ∞. Further, for A and V ,

the relative MSE appears to be O(1/I), which is the optimal rate of convergence even for

fixed-dimension parametric models. For B, U , and S (Figure S1), the relative MSE hovers

around a small nonzero value, but does not appear to be trending to zero, as expected. For

D and ω (Figure S1), the relative MSE is small and the trend is suggestive but less clear.

6.2 Accuracy of standard errors

Next, we assess the accuracy of the standard errors produced by our inference algorithm, in

terms of the coverage. Ideally, a 95% confidence interval would contain the true parameter

95% of the time, but even when the model is correct, this is not guaranteed since intervals

are usually based on an approximation to the distribution of an estimator. To assess

coverage, for each I ∈ {100, 1000, 10000}, we use the NB/Normal/Normal scheme to generate

50 data matrices with J = 100, K = 4, L = 2, and M = 3, each with a different set

of covariates and parameters. For each data matrix, we run our NB-GBM estimation

algorithm (with tolerance τ = 10−8) and then we run our NB-GBM inference algorithm to

obtain approximate standard errors. We construct Wald-type confidence intervals for each

univariate parameter, for example, the 95% confidence interval for ajk is âjk±1.96 ŝe where

ŝe is the approximate standard error for âjk.

Figure 5 shows actual coverage versus target coverage, estimated by combining across

all 50 runs and across all entries of each parameter matrix/vector. Perfect coverage would

be a straight line on the diagonal. We exclude c11, D, and ω in these coverage results since

it seems challenging to estimate them without non-negligible bias, skewing the results. We

see in Figure 5 that the actual coverage for A, B, C, U , and S is excellent at every target

coverage level from 0% to 100%. For V and T , the coverage is reasonably good for the

smaller values of I but appears to degrade when I increases.

18

Figure 5: Coverage of confidence intervals for the entries of each parameter matrix/vector.

Figure 6: Computation time of our GBM algorithms as a function of I and J .

6.3 Computation time and algorithm convergence

Computation time. For each combination of I ∈ {100, 316, 1000, 3162, 10000} and

J ∈ {15, 30, 60, 120, 240}, we generate 10 data matrices using the NB/Normal/Normal sim-

ulation scheme with K = 4, L = 2, and M = 3. For each I and J , Figure 6 shows the

average computation time per iteration of the estimation algorithm, along with the aver-

age computation time for the inference algorithm. These empirical results agree with our

theory in Section 5 showing that the time per iteration scales like IJ (that is, linearly with

the size of the data matrix) and the time for inference scales like IJ2.

Algorithm convergence. Next, we evaluate the number of iterations required for

19

the estimation algorithm to converge. Similarly to before, for I ∈ {100, 1000, 10000}, we

run the NB/Normal/Normal scheme 25 times with J = 100, K = 4, L = 2, and M = 3.

Figure S2 shows the log-likelihood+log-prior (plus a constant) versus iteration number

for each simulation run. In these simulations, the log-likelihood+log-prior levels off after

around 5 or fewer iterations, indicating that the algorithm converges rapidly.

6.4 Robustness to the outcome distribution

To assess the robustness of the NB-GBM to the assumption that the outcome distribution

is negative binomial, we rerun the experiments in Sections 6.1 and 6.2 using the following

data simulation schemes: (a) LNP/Normal/Normal (b) Poisson/Normal/Normal, and (c)

Geometric/Normal/Normal. The results in Figures S3, S4, and S5 show that the algorithms

are quite robust to misspecification of the outcome distribution.

7 Application to gene expression analysis

In this section, we evaluate our GBM algorithms on RNA-seq gene expression data. An

RNA-seq dataset consists of a matrix of counts in which entry (i, j) is the number of

high-throughput sequencing reads that were mapped to gene i for sample j. These read

counts are related to gene expression level, but there are many biases – both sample-

specific and gene-specific. More generally, there are often significant sources of unwanted

variation—both biological and technical—that obscure the signal of interest. Most methods

use pipelines that adjust for each bias sequentially, rather than in an integrated way. GBMs

enable one to use a single coherent model that adjusts for gene covariates and sample

covariates as well as unobserved factors such as batch effects.

20

7.1 Comparing to DESeq2 on lymphoblastoid cell lines

As a test of our GBM methods, we compare with DESeq2 (Love et al., 2014), a leading

method for RNA-seq differential expression analysis. We first consider a benchmark dataset

used by Love et al. (2014) consisting of 161 samples from lymphoblastoid cell lines (Pickrell

et al., 2010). We use the subset of 20,815 genes with nonzero median count across samples.

In both DESeq2 and the GBM, we adjust for two sample covariates: sequencing center

(Argonne or Yale) and cDNA concentration. To adjust for GC content, which is often the

most important gene covariate, in the GBM we construct theX matrix using a natural cubic

spline basis with knots at the 2.5%, 25%, 50%, 75%, and 97.5% quantiles of GC content.

DESeq2 does not have a built-in capacity to adjust for gene covariates, so for DESeq2, we

adjust for GC using their recommended approach of pre-computing normalization factors

using CQN (Hansen et al., 2012), which uses the same spline basis. Since DESeq2 does not

adjust for latent factors, we first set M = 0 for direct comparison; later, we set M = 2.

It is natural to use negative binomial (NB) outcomes for sequencing data since the

technical variability is close to Poisson (Marioni et al., 2008), and biological variability

introduces overdispersion (Robinson et al., 2010). These modeling choices yield an NB-

GBM with I = 20,815, J = 161, K = 7, and L = 3. DESeq2 also uses an NB model,

so the main difference between DESeq2 and this particular GBM is the way that the

parameters and standard errors are estimated. Using a 1.8GHz processor, GBM estimation

and inference took 42 seconds, whereas DESeq2+CQN took 105 seconds.

Correctness of p-values under mock null comparisons. First, we assess the

calibration of p-values for testing for differential expression between two conditions. Under

the null hypothesis of no difference, the p-values would ideally be uniformly distributed on

[0, 1]. Since the Pickrell samples appear to be relatively homogeneous (when adjusting for

sequencing center and cDNA concentration), we can assess how well this ideal is attained

by randomly splitting the samples into two groups and testing for differential expression.

To this end, we add a sample covariate zj4 consisting of a dummy variable for the

21

Figure 7: Comparison of p-value distributions on Pickrell data using DESeq2 and the GBM. (Left)
CDFs of p-values for mock null comparisons over 50 random splits. (Middle) Same, but zoomed in
to region shaded in left-hand figure. (Right) CDFs of p-values for testing for a difference between
sequencing centers. The x-axis ends at the significance threshold for controlling FWER at 0.05.

assignment of samples to the two random groups. Thus, the null hypothesis of no difference

for gene i is bi4 = 0 and the alternative is bi4 6= 0. The (two-sided) p-value for gene

i is pi := 2
(
1 − Φ(|b̂i4/ŝe(bi4)|)

)
where Φ(x) is the standard normal CDF (cumulative

distribution function). Figure 7 shows the p-value CDF over all genes, aggregating over 50

random splits into two groups containing 80 and 81 samples, respectively. Both DESeq2

and the GBM yield p-values that are very close to the ideal uniform distribution. This

indicates that both methods are accurately controlling the false positive rate.

Sensitivity to detect actual differences. To compare sensitivity, we test for differen-

tial expression between sequencing centers by computing p-values pi = 2
(
1−Φ(|b̂i`/ŝe(bi`)|)

)
where ` is the index of the sequencing center covariate. Using Bonferroni to control the

family-wise error rate (FWER) at 0.05, the number of genes detected as differentially ex-

pressed by the GBM and DESeq2 are 1038 and 892, respectively. Figure 7 shows the lower

tail of the p-value CDFs. In these results, the GBM yields equal or greater sensitivity.

Visualization using GBM latent factors. The latent factors of the GBM provide

a model-based approach to visualizing high-dimensional count data, while adjusting for

covariates. To illustrate, we modify the model to use M = 2. Figure 8 shows a scatterplot

of vj2 versus vj1 for the estimated V matrix. Observe that this yields very tightly grouped

clusters of samples from the same subject. This is analogous to plotting the first two

22

Figure 8: Visualization of Pickrell data using GBM latent factors, adjusting for covariates. Each
dot represents one of the 161 samples, and each subject ID is indicated by a different combination
of color and shape (by cycling through 32 colors and 3 shapes).

scores in principal components analysis (PCA). Thus, for comparison, Figure S15 shows

the PCA plots based on (a) log-transformed TPMs (Transcripts per Million), specifically,

log(TPMij + 1), and (b) the variance stabilizing transform (VST) in the DESeq2 package,

using the GC adjustment from CQN. The DESeq2 model does not estimate latent factors,

which is why PCA is used in DESeq2. The TPM plot is very noisy in terms of subject ID

clusters. The VST plot is better than TPMs, but still not quite as clean as the GBM plot.

Overall, in terms of sensitivity, controlling false positives, computation time, and visu-

alization, these results suggest that the GBM performs very well. When J is very small, it

may be beneficial to augment the GBM to use DESeq2-like shrinkage estimates for si.

7.2 Analyzing GTEx data for aging-related genes

Next, we test our methods on an application of scientific interest, using RNA-seq data

from the Genotype-Tissue Expression (GTEx) project (Melé et al., 2015), consisting of

8,551 samples from 30 tissues in the human body, obtained from 544 subjects. We apply

23

Figure 9: Visualization of GTEx data using NB-GBM latent factors, adjusting for covariates.
Each dot represents one of the 8,551 samples, and the color indicates the tissue type.

the GBM to find genes whose expression changes with age, adjusting for technical biases.

See Jia et al. (2018) and Zeng et al. (2020) for studies of age-related genes using GTEx.

We use the GTEx RNA-seq data from recount2 (Collado-Torres et al., 2017),1 normal-

ized using the scale counts function in the recount R library. We use the subset of 8,551

samples that passed GTEx quality control, and the subset of genes in chromosomes 1–22

that have an HGNC-approved gene symbol and have nonzero median across all samples.

To visualize the samples, we take a random subset of 5,000 genes and estimate an

NB-GBM with two latent factors and no sample covariates. For the gene covariates, we

use log(lengthi), gci, and (gci − gc)2 where lengthi is the sum of the exon lengths and

gci is the GC content of gene i. Thus, in this initial model for visualization, I = 5,000,

J = 8,551, K = 4, L = 1, and M = 2. Figure 9 shows the latent factors (vj2 versus

1Downloaded from https://jhubiostatistics.shinyapps.io/recount on 8/7/2020.

24

https://jhubiostatistics.shinyapps.io/recount

vj1), similarly to Figure 8. The samples tend to fall into clusters according to the tissue

from which they were taken. Some tissues, such as brain and blood, clearly contain two or

more subclusters which turn out to correspond to subtissue types (Figure S16). Meanwhile,

when more latent factors are used (that is, M > 2), some clusters that overlap in Figure 9

become well-separated in higher latent dimensions. For comparison, running PCA on the

log TPMs is not nearly as clear in terms of tissue/subtissue clusters (Figure S17).

Testing for age-related genes. To find genes that are related to aging, we add subject

age as a sample covariate. Each gene then has a coefficient describing how its expression

changes with age, and we compute a p-value for each gene to test whether its coefficient is

nonzero. Due to the heterogeneity of tissue/subtissue types, we analyze each subtissue type

separately. To perform both exploratory analysis and valid hypothesis testing, we used a

random subset of 108 subjects during an exploratory model-building phase and then used

the remaining 436 subjects during a testing phase with the selected model.

In the exploratory phase, we considered adjusting for various technical sample covariates

and gene covariates, and varied M from 0 to 10. For each model and each subtissue type,

we used the GBM to find the set of genes exhibiting a significant association with age,

controlling FWER at 0.05 using the Bonferroni correction. To score the relevance of each

of these gene sets in terms of aging biology, we computed its F1 score for overlap with

the set of aging-related genes identified by De Magalhães et al. (2009).2 Based on this

exploratory analysis, we chose to keep log(lengthi), gci, and (gci−gc)2 as gene covariates,

and use smexncrt (exonic rate, the fraction of reads that map within exons) as well as age

(subject age, coded as a numerical value in {25, 35, . . . , 75}) as sample covariates. For each

subtissue, we chose the M that yielded the highest F1 score on the exploratory data.

In the testing phase, we apply the selected model for each subtissue to test for age-

associated genes. For illustration, we present results for the “Heart - Left Ventricle” sub-

tissue (Heart-LV), which had the highest F1 score across all subtissues on the exploratory

data. We ran the GBM on the 176 Heart-LV samples in the test set, using the 19,853 genes

2From https://genomics.senescence.info/gene_expression/signatures.html on 8/11/2020.

25

https://genomics.senescence.info/gene_expression/signatures.html

Figure 10: Estimated PCMT1 expression based on log counts, log TPMs, and GBM residuals.

with nonzero median across these samples, with M = 3 based on the exploratory phase.

Thus, in this model, I = 19,853, J = 176, K = 4, L = 3, and M = 3.

Results. We found 2,444 genes to be significantly associated with age in Heart-LV,

controlling FWER at 0.05. For comparison, simple linear regression on the log TPMs yields

only 1 significant gene; thus, the GBM has much greater power than a simple standard

approach. To validate the biological relevance of the GBM hits, we compare with what

is known from the aging literature. First, the top GBM hit for Heart-LV is PCMT1

(Entrez gene ID 5110) with a p-value of 1.1× 10−47. PCMT1 is involved in the repair and

degradation of damaged proteins, and is a well-known aging gene, being one of 307 human

genes in the GenAge database (build version 20) from Tacutu et al. (2018). Figure 10 shows

the estimated expression of PCMT1 versus age for the Heart-LV samples. The GBM-

estimated expression exhibits a clear downward linear trend with age. For comparison,

Figure 10 shows that the log TPMs are considerably noiser and the trend is much less

clear. Simple linear regression on the log TPMs yields a p-value of 1.1× 10−3 for PCMT1,

which does not reach the Bonferroni significance threshold of 0.05/I = 2.5×10−6. Here, we

define the GBM-estimated expression as the partial residual ĉ11+âj1+ b̂i1+(ĉ1`+ b̂i`)zj`+εij

where ` is the index of the age column in Z, and εij is the GBM residual (Section 2.3).

To evaluate the GBM hits altogether for biological relevance to aging, we test for en-

richment of Gene Ontology (GO) term gene sets using DAVID v6.8 (Huang et al., 2009a,b).

26

We run DAVID on the top 1000 GBM hits for Heart-LV, using all 19,853 tested genes as

the background list. (DAVID allows at most 1000 genes.) Tables S2 and S3 show the top

20 enriched GO terms in the Biological Process and Cellular Component categories. These

results are highly consistent with known aging biology (López-Ot́ın et al., 2013).

8 Application to cancer genomics

Next, we apply the GBM to estimate copy ratios for sequencing data from cancer cell lines.

Copy ratio estimation is an essential step in detecting somatic copy number alterations

(SCNAs), that is, duplications or deletions of segments of the genome. The input data is

a matrix of counts where entry (i, j) is the number of reads from sample j that map to

target region i of the genome. The goal is to estimate the copy ratio of each region, that

is, the relative concentration of copies of that region in the original DNA sample.

Simple estimates based on row and column normalization are very noisy and are contam-

inated by significant technical biases. State-of-the-art methods employ a panel of normals

(that is, sequencing samples from non-cancer tissues) to estimate technical biases using

principal components analysis (PCA), and then use linear regression to remove these bi-

ases from the cancer samples of interest. We take an analogous approach, first running

a GBM on a panel of normals, and then running a GBM on the cancer samples using a

feature covariate matrix X that includes the U matrix estimated from the panel of normals.

To assess performance, we compare with the state-of-the-art method provided by the

Broad Institute’s Genome Analysis Toolkit (GATK) (Broad Institute, 2020) on the 326

whole-exome sequencing samples from the Cancer Cell Line Encyclopedia (CCLE) (Ghandi

et al., 2019). These samples are from a wide range of cancer types, including lung, breast,

colon, prostate, brain, and many others. We use the subset of 180,495 target regions that

are in chromosomes 1–22 and have nonzero median count across the 326 samples.

Since there are essentially no normal samples in the CCLE dataset, we create a panel

of pseudo-normals by taking a random subset of 163 samples as a training set and de-

27

Figure 11: Copy ratio estimates for an illustrative sample from the CCLE data. The x-axis is
genomic position, and each blue dot is the estimate for one region; moving averages are in red. For
the GBM, regions with high and low precision estimates are plotted in blue and cyan, respectively.

segmenting them to adjust for copy number alterations; see Section S3.2 for details. The

remaining 163 samples are used as a test set. For the GBM, we use log(lengthi), gci,

and (gci − gc)2 as region covariates, no sample covariates, and 5 latent factors. Thus,

I = 180,495, J = 163, K = 4, L = 1, and M = 5 on the training set, while I = 180,495,

J = 163, K = 9, L = 1, and M = 0 on the test set. We define the GBM copy ratio estimates

as the exponentiated residuals Ỹij/µ̂ij where Ỹij := Yij + 1/8; see Section 2.3. The GBM

took 10 minutes and 4.3 minutes to run on the training and test sets, respectively, while

GATK took 3.3 minutes and 28 minutes on training and test, respectively. The slowness

of GATK on the test set is likely due to having to run it separately on every test sample.

Figure 11 shows the GBM and GATK copy ratio estimates for an illustrative sample

from the test set. As a baseline, we also show the simple normalization-based estimates

defined as Ỹij/(αiβj) where αi = 1
J

∑J
j=1 Ỹij and βj = 1

I

∑I
i=1 Ỹij/αi. A major advantage of

28

Figure 12: Performance of the GBM versus GATK on the 163 test samples from the CCLE whole-
exome sequencing dataset. The GBM exhibits better performance in terms of both metrics.

the GBM is that it provides uncertainty quantification. Here, the estimated precision (that

is, the inverse variance) of each log copy ratio estimate is wij (Section 2.3). In the GBM plot

in Figure 11, this is illustrated by using cyan for the regions with low relative precision; see

Section S3.2. By downweighting regions with low estimated precision, downstream analyses

such as SCNA detection can be made more accurate.

To quantify performance, Figure 12 compares the GBM and GATK in terms of two

performance metrics. The local relative standard error quantifies the variability of the log

copy ratio estimates around a weighted moving average, accounting for the precision of

each estimate. Meanwhile, the weighted median absolute difference quantifies the typical

magnitude of the slope of a weighted moving average. On these data, the GBM exhibits

better performance in terms of both metrics; see Section S3.2 for details. Figures S18 and

S19 show the GBM and GATK copy ratio estimates for all 163 test samples. The GBM

estimates are visibly less noisy than the GATK estimates.

Overall, the GBM appears to perform very well in terms of removing technical biases and

denoising, particularly when using uncertainty quantification to downweight low precision

regions. The improved performance appears to be due to (a) model-based uncertainty

quantification and (b) using a robust probabilistic model for count data.

29

9 Conclusion

Generalized bilinear models provide a flexible framework for the analysis of matrix data,

and the delta propagation method enables accurate GBM uncertainty quantification in

modern applications. In future work, it would be interesting to extend to the more general

model of Gabriel (1998), provide theoretical guarantees for delta propagation, and try

applying delta propagation to other models.

Acknowledgments

We would like to thank Jonathan Huggins, Will Townes, Mehrtash Babadi, Samuel Lee,

David Benjamin, Robert Klein, Samuel Markson, Philipp Hähnel, and Rafael Irizarry for

many helpful conversations.

References

Agresti, A. Foundations of Linear and Generalized Linear Models. John Wiley & Sons, 2015.

Babadi, M., Lee, S. K., and Smirnov, A. N. GATK gCNV: accurate germline copy-number variant
discovery from sequencing read-depth data. The International Conference on Probabilistic
Programming (PROBPROG), Oct 2018.

Bishop, C. M. Pattern Recognition and Machine Learning. springer, 2006.

Broad Institute. Genome Analysis Toolkit (GATK) v4.1.8.1, 2020. URL https://gatk.

broadinstitute.org/.

Buettner, F., Pratanwanich, N., McCarthy, D. J., Marioni, J. C., and Stegle, O. f-scLVM: scalable
and versatile factor analysis for single-cell RNA-seq. Genome Biology, 18(1):212, 2017.

Carvalho, C. M., Chang, J., Lucas, J. E., Nevins, J. R., Wang, Q., and West, M. High-dimensional
sparse factor modeling: applications in gene expression genomics. Journal of the American
Statistical Association, 103(484):1438–1456, 2008.

Choulakian, V. Generalized bilinear models. Psychometrika, 61(2):271–283, 1996.

Collado-Torres, L., Nellore, A., Kammers, K., Ellis, S. E., Taub, M. A., Hansen, K. D., Jaffe,
A. E., Langmead, B., and Leek, J. T. Reproducible RNA-seq analysis using recount2. Nature
Biotechnology, 35(4):319–321, 2017.

de Falguerolles, A. GBMs: GLMs with bilinear terms. In COMPSTAT, pages 53–64. Springer,
2000.

30

https://gatk.broadinstitute.org/
https://gatk.broadinstitute.org/

De Magalhães, J. P., Curado, J., and Church, G. M. Meta-analysis of age-related gene expression
profiles identifies common signatures of aging. Bioinformatics, 25(7):875–881, 2009.

Fromer, M., Moran, J. L., Chambert, K., Banks, E., Bergen, S. E., Ruderfer, D. M., Handsaker,
R. E., McCarroll, S. A., O’Donovan, M. C., Owen, M. J., et al. Discovery and statistical geno-
typing of copy-number variation from whole-exome sequencing depth. The American Journal
of Human Genetics, 91(4):597–607, 2012.

Gabriel, K. R. Generalised bilinear regression. Biometrika, 85(3):689–700, 1998.

Ghandi, M., Huang, F. W., Jané-Valbuena, J., Kryukov, G. V., Lo, C. C., McDonald, E. R.,
Barretina, J., Gelfand, E. T., Bielski, C. M., Li, H., et al. Next-generation characterization of
the cancer cell line encyclopedia. Nature, 569(7757):503–508, 2019.

Hansen, K. D., Irizarry, R. A., and Wu, Z. Removing technical variability in RNA-seq data using
conditional quantile normalization. Biostatistics, 13(2):204–216, 2012.

Hoff, P. D. Multilinear tensor regression for longitudinal relational data. The Annals of Applied
Statistics, 9(3):1169, 2015.

Huang, D. W., Sherman, B. T., and Lempicki, R. A. Bioinformatics enrichment tools: paths
toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research, 37
(1):1–13, 2009a.

Huang, D. W., Sherman, B. T., and Lempicki, R. A. Systematic and integrative analysis of large
gene lists using DAVID bioinformatics resources. Nature Protocols, 4(1):44, 2009b.

Jia, K., Cui, C., Gao, Y., Zhou, Y., and Cui, Q. An analysis of aging-related genes derived from
the Genotype-Tissue Expression project (GTEx). Cell Death Discovery, 4(1):1–14, 2018.

Jiang, Y., Oldridge, D. A., Diskin, S. J., and Zhang, N. R. CODEX: A normalization and copy
number variation detection method for whole exome sequencing. Nucleic Acids Research, 43
(6):e39–e39, 2015.

Jørgensen, B. Exponential dispersion models. Journal of the Royal Statistical Society: Series B
(Methodological), 49(2):127–145, 1987.

Krumm, N., Sudmant, P. H., Ko, A., O’Roak, B. J., Malig, M., Coe, B. P., Quinlan, A. R.,
Nickerson, D. A., and Eichler, E. E. Copy number variation detection and genotyping from
exome sequence data. Genome Research, 22(8):1525–1532, 2012.

Leek, J. T. and Storey, J. D. Capturing heterogeneity in gene expression studies by surrogate
variable analysis. PLoS Genetics, 3(9):e161, 2007.

Leek, J. T. and Storey, J. D. A general framework for multiple testing dependence. Proceedings
of the National Academy of Sciences, 105(48):18718–18723, 2008.

López-Ot́ın, C., Blasco, M. A., Partridge, L., Serrano, M., and Kroemer, G. The hallmarks of
aging. Cell, 153(6):1194–1217, 2013.

Love, M. I., Huber, W., and Anders, S. Moderated estimation of fold change and dispersion for
RNA-seq data with DESeq2. Genome Biology, 15(12):550, 2014.

31

Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M., and Gilad, Y. RNA-seq: An assessment
of technical reproducibility and comparison with gene expression arrays. Genome Research, 18
(9):1509–1517, 2008.

Melé, M., Ferreira, P. G., Reverter, F., DeLuca, D. S., Monlong, J., Sammeth, M., Young, T. R.,
Goldmann, J. M., Pervouchine, D. D., Sullivan, T. J., et al. The human transcriptome across
tissues and individuals. Science, 348(6235):660–665, 2015.

Perry, P. O. and Pillai, N. S. Degrees of freedom for combining regression with factor analysis.
arXiv preprint arXiv:1310.7269, 2013.

Pickrell, J. K., Marioni, J. C., Pai, A. A., Degner, J. F., Engelhardt, B. E., Nkadori, E., Veyrieras,
J.-B., Stephens, M., Gilad, Y., and Pritchard, J. K. Understanding mechanisms underlying
human gene expression variation with RNA sequencing. Nature, 464(7289):768–772, 2010.

Risso, D., Ngai, J., Speed, T. P., and Dudoit, S. Normalization of RNA-seq data using factor
analysis of control genes or samples. Nature Biotechnology, 32(9):896–902, 2014.

Robinson, M. D., McCarthy, D. J., and Smyth, G. K. edgeR: A Bioconductor package for
differential expression analysis of digital gene expression data. Bioinformatics, 26(1):139–140,
2010.

Stegle, O., Parts, L., Durbin, R., and Winn, J. A Bayesian framework to account for complex
non-genetic factors in gene expression levels greatly increases power in eQTL studies. PLoS
Comput Biol, 6(5):e1000770, 2010.

Sun, Y., Zhang, N. R., and Owen, A. B. Multiple hypothesis testing adjusted for latent variables,
with an application to the AGEMAP gene expression data. The Annals of Applied Statistics,
6(4):1664–1688, 2012.

Tacutu, R., Thornton, D., Johnson, E., Budovsky, A., Barardo, D., Craig, T., Diana, E.,
Lehmann, G., Toren, D., Wang, J., et al. Human ageing genomic resources: New and up-
dated databases. Nucleic Acids Research, 46(D1):D1083–D1090, 2018.

Takane, Y. and Shibayama, T. Principal component analysis with external information on both
subjects and variables. Psychometrika, 56(1):97–120, 1991.

Zeng, L., Yang, J., Peng, S., Zhu, J., Zhang, B., Suh, Y., and Tu, Z. Transcriptome analysis reveals
the difference between “healthy” and “common” aging and their connection with age-related
diseases. Aging Cell, 19(3):e13121, 2020.

32

Supplementary material for “Inference in
generalized bilinear models”

S1 Discussion

S1.1 Previous work

There is an extensive literature on models involving an unknown low-rank matrix, going

by a variety of names including latent factor models, factor analysis models, multiplicative

models, bi-additive models, and bilinear models. In particular, a large number of models

can be viewed as special cases of generalized bilinear models (GBMs). Since a full review

is beyond the scope of this article, we settle for covering the main threads in the literature.

S1.1.1 Normal bilinear models without covariates.

Principal components analysis (PCA) is equivalent to maximum likelihood estimation in a

GBM with only the UDV T term (K = 0, L = 0, M > 0), assuming normally distributed

outcomes with common variance σ2. PCA (or equivalently, the SVD) is often performed af-

ter centering the rows and columns of the data matrix, and from a model-based perspective,

this is equivalent to including intercepts (K = 1, L = 1, M > 0):

Yij = c+ ai + bj +
M∑
m=1

uimdmvjm + εij (S1.1)

where εij is a normal residual. Similarly, scaling the rows and columns is analogous to

using a rank-one factorization of the variance, that is, εij ∼ N (0, σ2
i σ

2
j).

Estimation. Equation S1.1 is often called the AMMI (additive main effects and mul-

tiplicative interaction) model, and a range of techniques for using it have been developed

(Gauch, 1988). The least squares fit of an AMMI model can be obtained by first fitting the

linear terms c + ai + bj ignoring the non-linear term, and then estimating the non-linear

S1

term
∑M

m=1 uimdmvjm using PCA on the residuals (Gilbert, 1963; Gollob, 1968; Mandel,

1969; Gabriel, 1978). Estimation is more difficult when each entry is allowed to have a

different variance, that is, when εij ∼ N (0, σ2
ij) with σ2

ij known; this is sometimes called

a weighted AMMI model (Van Eeuwijk, 1995). To handle this, Gabriel and Zamir (1979)

develop the criss-cross method of estimation, which successively fits the non-linear terms

m = 1, . . . ,M , one by one, using weighted least squares.

Hypothesis testing for model selection. While most applications of PCA only use

the estimates, without any uncertainty quantification, statistical research on the AMMI

model has largely focused on hypothesis testing for which factors m to include in the

model. Early contributions on testing in this model were made by Fisher and Mackenzie

(1923), Cochran (1943), Tukey (1949), Williams (1952), Mandel (1961), Gollob (1968),

and Mandel (1969). Methods of this type are very widely used, particularly in the study

of genotype-environment interactions in agronomy; see reviews by Freeman (1973), Gauch

(2006), and Gauch et al. (2008).

Confidence regions for parameters. Uncertainty quantification for the AMMI

model parameters has also been studied. Asymptotic covariance formulas for the least

squares estimates have been given by Goodman and Haberman (1990), Chadoeuf and De-

nis (1991), Dorkenoo and Mathieu (1993) and Denis and Gower (1996) for the AMMI model

and various special cases. These results are based on inverting the constraint-augmented

Fisher information matrix (Aitchison and Silvey, 1958; Silvey, 1959); we use the same tech-

nique in Section S6 to estimate standard errors for U and V in our more general GBM

model and we extend it using delta propagation.

S1.1.2 Normal bilinear models with covariates.

Estimation. In a wide-ranging article, Tukey (1962) discussed the possibility of combining

regression with factor analysis, by factoring the matrix of residuals after adjusting for

covariates. Indeed, for the case of normal outcomes with common variance, Gabriel (1978,

Cor 3.1) showed that when using a model of the form Y = XAT + BZT + UDV T + ε, the

S2

least squares fit can be obtained simply by first fitting A and B using regression (ignoring

UDV T), then fitting UDV T to the residuals. This can be viewed as a generalization of the

AMMI estimation procedure. Takane and Shibayama (1991) extend the results of Gabriel

(1978) by first fitting Y = XAT + BZT + XCZT + ε using least squares, and then using

PCA to analyze the residuals as well as each fitted component of the model, that is, XÂT,

B̂ZT, XĈZT, ε̂, and combinations thereof.

In a complementary direction, reduced-rank regression (Davies and Tso, 1982) and

CANDELINC (Carroll et al., 1980) use least squares to fit models of the form Y = XAT+ε

and Y = XCZT + ε, respectively, where A and C are constrained to be low-rank.

Hypothesis testing and confidence regions. In the case of normal outcomes with

common variance σ2, for the model with Y = XAT + BZT + UDV T + ε, Perry and Pillai

(2013) show how to perform inference for univariate entries of A and B (and univariate

linear projections, more generally) accounting for the uncertainty in UDV T via an estimate

of the degrees of freedom associated with the latent factors. Further, Perry and Pillai (2013)

show that the problem can be reduced to the covariate-free case, Y = UDV T +ε, enabling

one to use results on hypothesis testing in the AMMI model (Gollob, 1968; Mandel, 1969)

which provide estimates of the degrees of freedom. However, this approach appears to rely

on the assumption of normal outcomes with common variance.

S1.1.3 Generalized bilinear models without covariates.

In many applications, it is unreasonable to use a normal outcome model. A classical ap-

proach is to transform the data and then apply a normal outcome model, however, as

discussed by Van Eeuwijk (1995), there is unlikely to be a transformation that simultane-

ously achieves (a) approximate normality, (b) common variance, and (c) additive effects.

A more principled approach is to extend the generalized linear model (GLM) framework

to handle latent factors, as suggested by Gower (1989). Goodman’s RC models are early

contributions in this direction (Goodman, 1979, 1981, 1986, 1991), consisting of count mod-

els with multinomial or Poisson outcomes where log(E(Yij)) = c+ai+bj+
∑M

m=1 uimdmvjm.

S3

More generally, Van Eeuwijk (1995) develops the generalized AMMI (GAMMI) model,

which is a GLM version of the AMMI model in Equation S1.1, specifically, g(E(Yij)) =

c + ai + bj +
∑M

m=1 uimdmvjm. Van Eeuwijk (1995) introduces a coordinate descent algo-

rithm and discusses approaches for choosing M , however, he does not consider uncertainty

quantification for parameters, does not estimate dispersion parameters, and only demon-

strates the method on very small datasets (11× 5 and 17× 12).

Correspondence analysis (Benzécri, 1973; Greenacre, 1984) is an SVD-based exploratory

analysis method for matrices of categorical data, and has been reinvented under many

names, such as reciprocal averaging and dual scaling (de Falguerolles, 2000). Correspon-

dence analysis bears resemblence to estimation methods for the GAMMI model, however,

it is primarily descriptive in perspective, and thus typically does not involve quantification

of uncertainty.

S1.1.4 Generalized bilinear models with covariates.

Choulakian (1996) defines a class of GBMs of the same form as in this article, where

g(E(Y)) = XAT + BZT + XCZT + UDV T and g is the (a) canonical, (b) identical, or

(c) logarithmic link function. For the case of no covariates (that is, the GAMMI model),

Choulakian (1996) proposes an estimation algorithm that involves univariate Fisher scoring

updates, which is attractive for its simplicity, but may exhibit slow convergence or failure

to converge due to strong dependencies among parameters. While the defined model class

is general, some limitations of the paper by Choulakian (1996) are that uncertainty quan-

tification is not addressed, the estimation algorithm is for the special case of GAMMI, a

single common dispersion is assumed and estimation of dispersion is not addressed, identi-

fiability constraints are not enforced, no initialization procedure is provided, and only very

small datasets are considered (10× 7 and 11× 11× 2).

Gabriel (1998) considers a very general class of models of the form g(E(Y)) =∑K
k=1XkΘkZk, where Xk and Zk are observed matrices (for instance, covariates) and Θk is a

low-rank matrix of parameters for each k = 1, . . . , K. He extends the criss-cross estimation

S4

algorithm of Gabriel and Zamir (1979) to this model. While the model of Gabriel (1998)

is very elegant, some limitations are that estimation is performed using a vectorization

approach that is computationally prohibitive on large matrices, uncertainty quantification

is not addressed, a common dispersion parameter is assumed for all entries, and only very

small datasets are considered (10× 9 and 17× 2). Also, it is not clear what identifiability

constraints are assumed on the Θk matrices.

In recent work, Townes (2019) considers a model of the form g(E(Y)) = XAT +BZT +

UDV T + 1δT where 1 is a vector of ones and δ ∈ RJ is a vector of fixed column-specific

offsets. Townes (2019) derives diagonal approximations to Fisher scoring updates for `2-

penalized maximum likelihood estimation, and in a postprocessing stage, enforces orthog-

onality constraints to aid interpretability. Other differences compared to the present work

are that only estimation is considered (uncertainty quantification is not addressed) and

overdispersion parameters are not estimated.

The overview by de Falguerolles (2000) provides an interesting and insightful discussion

of several threads in the literature.

S1.1.5 Recent applications of bilinear models.

Several authors have used bilinear models or GBMs in genetics and genomics, usually to

remove unwanted variation such as batch effects. However, most of these methods do

not fully account for uncertainty in the latent factors, which may lead to miscalibrated

inferences such as overconfident p-values. For example, to remove batch effects in gene

expression analysis, several approaches involve first estimating UDV T and then treating

V as a known matrix of covariates, accounting for uncertainty only in UD using standard

regression (Leek and Storey, 2007, 2008; Sun et al., 2012; Risso et al., 2014); this is also

done to adjust for population structure in genetic association studies (Price et al., 2006).

In copy number variation detection, it is common to simply treat the estimated UDV T as

known and subtract it off (Fromer et al., 2012; Krumm et al., 2012; Jiang et al., 2015).

S5

Carvalho et al. (2008) use a Bayesian sparse factor analysis model with covariates,

employing evolutionary stochastic search for model selection and Markov chain Monte

Carlo (MCMC) for posterior inference within models. Stegle et al. (2010), Buettner et al.

(2017), and Babadi et al. (2018) use complex hierarchical models that can be viewed as

Bayesian GBMs with additional prior structure, and they employ variational methods for

approximate posterior inference. Another application in which bilinear models have seen

recent use is longitudinal relational data such as networks, for which Hoff (2015) employs

an interesting Bayesian model with Yt = AXtB
T + ε, where Xt is a matrix of observed

covariates that depend on time t.

S1.2 Challenges and solutions

Estimation and inference in large GBMs is complicated by a number of nontrivial challenges.

In this section, we discuss several issues and how we resolve them.

Estimating the dispersion parameters. There are several issues with estimating

the negative binomial (NB) dispersions 1/rij. First, since there is insufficient information

to estimate all IJ dispersions individually, we use the rank-one parametrization 1/rij =

exp(si + tj + ω). Second, the choice of identifiability constraints matters — the natural

choice of contraints,
∑

i si = 0 and
∑

j tj = 0, leads to noticeably biased estimates of si

and tj, particularly for higher values; see Figure S6. Instead, we constrain 1
I

∑
i e
si = 1

and 1
J

∑
j e

tj = 1, which effectively mitigates this bias, empirically. Third, the maximum

likelihood estimates sometimes exhibit a severe downward bias, particularly for low values

of log-dispersion; we use a simple heuristic bias correction to deal with this. Fourth, to

avoid arithmetic underflow/overflow in the log-dispersion update steps, we develop carefully

constructed expressions for the gradient and Hessian. Finally, to prevent occasional lack

of convergence due to oscillating estimates, we employ an adaptive maximum step size.

Inapplicability of standard GLM methods. Since XAT +BZT +XCZT is linear in

the parameters, one could vectorize and write it as vec(XAT +BZT +XCZT) = X̃β where

S6

β = (vec(A)T, vec(B)T, vec(C)T)T ∈ RJK+IL+KL and X̃ ∈ RIJ×(JK+IL+KL) is a function

of X and Z. In principle, one could then apply standard GLM estimation methods for

estimating β to construct a joint update to (A,B,C). However, this vectorization approach

is only computationally feasible for small data matrices since computing the matrix inverse

(X̃TX̃)−1 takes on the order of (JK+ IL+KL)3 time. Further, this update would need to

be done repeatedly since D, U , V , S, T , and ω also need to be simultaneously estimated,

and the vectorization approach does not help estimate these parameters.

Inapplicability of the singular value decomposition. At first glance, it might

appear that the singular value decomposition (SVD) would make it straightforward to

estimate U , D, and V given the other parameters. However, when used for estimation, the

SVD implicitly assumes that every entry has the same variance. This is far from true in

GBMs, and consequently, naively using the SVD to update UDV T leads to poor estimation

accuracy. The criss-cross algorithm of Gabriel and Zamir (1979) yields a low-rank matrix

factorization that accounts for entry-specific variances, and our algorithm provides another

way of doing this while adjusting for covariates in a GBM. In our algorithm, we only directly

use the SVD for enforcing the identifiability constraints, not for estimation of UDV T.

Computational efficiency. The genomics applications in Sections 7 and 8 involve

large count matrices Y ∈ RI×J where the number of features I is on the order of 104 to 106

and the number of samples J can be as large as 104 or more. Consequently, computational

efficiency is essential for practical usage of the method. For estimation, we exploit the

special structure of the GBM to derive computationally efficient Fisher scoring updates

to each component of the model. For inference, we develop a novel method for efficiently

propagating uncertainty between components of the model. Assuming max{K2, L2,M} ≤

J ≤ I, our estimation algorithm takes O(IJ max{K2, L2,M2}) time per iteration, and our

inference algorithm requires O(IJ max{K3, L3, JM3}) time, making them computationally

feasible on large data matrices.

Numerical stability. Using a good choice of initialization is crucial for numerical

stability. To initialize the estimation algorithm, we analytically solve for values of A, B,

S7

and C to approximate the data matrix and then, for NB-GBMs, we iteratively update S and

T for a few iterations. Even with a good initialization, optimization methods occasionally

diverge. In a large GBM, there are so many parameters that even occasional divergences

cause the algorithm to fail with high probability. We reduce the frequency of divergences

to be negligible by enforcing a bound on the norm of the optimization steps; see Section 3.

Enforcing identifiability constraints. Rather than performing constrained opti-

mization steps, we use a combination of unconstrained optimization steps and likelihood-

preserving projections onto the constrained parameter space. Although the construction

of likelihood-preserving projections in a GBM is not obvious, we show that they can be

efficiently computed using simple linear algebra operations. This optimization-projection

approach has a number of advantages; see Section S1.3 for further discussion.

Dependencies in latent factors. Optimizing the latent factor term UDV T is chal-

lenging due to the dependencies among U , D, and V as well as the orthonormality contraints

UTU = I and V TV = I. Consequently, updating U , D, and V individually does not seem

to work well. To resolve this issue, we relax the dependencies and constraints by defining

G := UD and H := V D, and updating G, H, and D separately.

Prior / regularization. To improve estimation accuracy in a high-dimensional setting,

we place independent normal priors on the entries of A, B, C, D, U , V , S, and T , and use

maximum a posteriori (MAP) estimation, which is equivalent to `2-penalization/shrinkage

for this choice of prior. An additional benefit of using priors is that it improves the numerical

stability of the estimation algorithm. See Section S9 for prior details.

S1.3 Enforcing the GBM identifiability constraints

It might seem preferable to perform unconstrained optimization throughout the estimation

algorithm until convergence, and then enforce the identifiability constraints as a postpro-

cessing step. However, in general, this would not converge to a local optimum in the

constrained space because the prior does not have the same invariance properties as the

S8

likelihood. Thus, we maintain the constraints throughout the algorithm by applying a

projection at each step.

When updating each component (A, B, C, D, U , V , S, and T), rather than using a

constrained optimization step such as equality-constrained Newton’s method (Boyd and

Vandenberghe, 2004), we use an unconstrained optimization step followed by a likelihood-

preserving projection onto the constrained space.

It is crucial to preserve the likelihood when projecting onto the constrained space, since

otherwise the projection might undo all the gains obtained by the unconstrained optimiza-

tion step — in short, otherwise we might end up “taking one step forward and two steps

back.” To this end, we employ likelihood-preserving projections for each component of

the GBM. By Theorem 5.4, the likelihood is invariant under these operations and the pro-

jected values satisfy the identifiability constraints. The optimization-projection approach

has several major advantages.

1. In the likelihood surface, there can be strong dependencies among the parameters

within each row of A, B, U , and V , whereas the between-row dependencies are much

weaker (specifically, they have zero Fisher cross-information). Thus, it is desirable to

optimize each row jointly, however, this is complicated by the fact that the constraints

create dependencies between rows. Consequently, using equality-constrained Newton

appears to be computationally infeasible since it would require a joint update of each

parameter matrix in entirety.

2. Since each optimization-projection step modifies multiple components of the GBM,

it effectively performs a joint update on multiple components. For instance, the

likelihood-preserving projection for A also modifies C, so the optimization-projection

step on A is effectively a joint update to A and C. This has the effect of enlarging

the constrained space within which each update takes place, improving convergence.

3. For U and V , the constrained space is particular difficult to optimize over since it

involves not only within-column linear dependencies (XTU = 0 and ZTV = 0), but

S9

also quadratic dependencies within and between columns (UTU = I and V TV = I).

The optimization-projection approach makes it easy to handle these constraints.

4. It is straightforward to perform unconstrained optimization for each component sep-

arately, and the projections that we derive turn out to be very easy to apply.

S2 Additional simulation results and details

We present additional simulation results and details supplementing Section 6.

Simulating covariates, parameters, and data

Here, we provide the details of how the simulation data are generated. First, the covariates

are generated using a copula model as follows. We describe the procedure for the feature

covariate matrix X ∈ RI×K ; the sample covariate matrix Z ∈ RJ×L is generated in the

same way but with J and L in place of I and K. We generate a random covariance

matrix Σ = QTQ where the entries of Q ∈ RK×K are qkk′ ∼ N (0, 1) i.i.d., and then we

compute the resulting correlation matrix Σ̃ ∈ RK×K by setting Σ̃kk′ = Σkk′/
√

ΣkkΣk′k′ . We

generate (x̃i1, . . . , x̃iK)T ∼ N (0, Σ̃) i.i.d. for i = 1, . . . , I, and define X ∈ RI×K by setting

xik = h(F−1(Φ(x̃ik))) where h(x) = sign(x) min{100, |x|}, Φ(x) is the standard normal

CDF, and F−1 is the generalized inverse CDF for the desired marginal distribution, which

we take to be N (0, 1) for the Normal scheme, Gamma(2,
√

2) for the Gamma scheme, and

Bernoulli(1/2) for the Binary scheme. Finally, we standardize X by setting xi1 = 1 for all

i and centering/scaling so that
∑I

i=1 xik = 0 and 1
I

∑I
i=1 x

2
ik = 1 for k ≥ 2.

The true parameters A0, B0, C0, D0, U0, V0, S0, T0, and ω0 are then generated as

follows. First, we generate matrices Ã, B̃, and C̃ with i.i.d. entries as follows: (Normal

scheme) ãjk ∼ N (0, 1/(4K)), b̃i` ∼ N (0, 1/(4L)), and c̃k` ∼ N (0, 1/(KL)) + 31(k =

1, ` = 1), or (Gamma scheme) ãjk ∼ Gamma(2, 2
√

2K)), b̃i` ∼ Gamma(2, 2
√

2L), and

c̃k` ∼ Gamma(2,
√

2KL) + 31(k = 1, ` = 1). These distributions are defined so that the

scale of the entries of XÃT, B̃ZT, and XC̃ZT is not affected by K and L.

S10

Then we set A0 = Ã − Z(Z+Ã), B0 = B̃ − X(X+B̃), and C0 = C̃. Next, we set

U0 = Ũ −X(X+Ũ) and V0 = Ṽ − Z(Z+Ṽ) where Ũ ∈ RI×M and Ṽ ∈ RJ×M are sampled

uniformly from their respective Stiefel manifolds, that is, uniformly subject to ŨTŨ = I

and Ṽ TṼ = I. The diagonal entries of D0 are evenly spaced from
√
I +
√
J to 2(

√
I +
√
J);

this scaling is motivated by the Marchenko–Pastur law for the distribution of singular

values of I × J random matrices (Marchenko and Pastur, 1967). For the log-dispersion

parameters (S0, T0, and ω0), we generate s̃i, t̃j ∼ N (0, 1) i.i.d., and set ω0 = −2.3, s0i =

s̃i − log(1
I

∑I
i=1 exp(s̃i)), and t0j = t̃j − log(1

J

∑J
j=1 exp(t̃j)),

Given the true parameters and covariates, the data matrix Y ∈ {0, 1, 2, . . .}I×J is gener-

ated as follows. We compute the mean matrix µ0 := g−1(XAT
0 +B0Z

T+XC0Z
T+U0D0V

T
0),

where the inverse link function g−1(x) = ex is applied element-wise, and we compute the

inverse dispersions r0ij := exp(−s0i − t0j − ω0). Then we sample Yij ∼ D(µ0ij, r0ij) where

D(µ, r) = NegBin(µ, r) in the NB scheme, D(µ, r) = LNP(µ, log(1/r + 1)) in the LNP

scheme, D(µ, r) = Poisson(µ) in the Poisson scheme, or D(µ, r) = Geometric(1/(µ + 1))

in the Geometric scheme, so that E(Yij) = µ0ij in each case. Here, for y ∈ {0, 1, 2, . . .},

Geometric(p) has p.m.f. f(y) = (1− p)yp, whereas LNP(µ, σ2) has p.m.f.

f(y) =

∫
Poisson(y|λ) LogNormal(λ | log(µ)− 1

2
σ2, σ2) dλ (S2.1)

for µ > 0 and σ2 > 0. These outcome distributions are defined so that in each case,

if Y ∼ D(µ, r) then E(Y) = µ. Further, in the LNP case, Var(Y) = µ + µ2/r, so the

interpretation of r is the same as in the NB case.

Consistency and statistical efficiency – Details on Section 6.1

In these simulations, to accurately measure the trend with increasing I, we generate the

covariates, true parameters, and data with I = 10000 and project them onto the lower-

dimensional spaces for smaller I values; for Y , X, and S0 this projection simply consists

of taking the first I rows/entries, Z and T0 are unaffected by the projection, and A0, B0,

S11

C0, D0, U0, and V0 are projected by matching the first I rows of the mean matrix µ0.

We use the relative MSE rather than the MSE to facilitate interpretability, since this

puts the errors on a common scale that does not depend on the magnitude of the parameters.

For instance, the relative MSE for A is defined as

MSErel(A,A0) =

∑J
j=1

∑K
k=1 |ajk − a0jk|2∑J

j=1

∑K
k=1 |a0jk|2

where A is the estimate and A0 is the true value.

Figure S1 shows the relative MSE plots for all GBM parameter components. For A, C,

V , and T , the relative MSE appears to be decreasing to zero. The trend for D and ω is

suggestive but not as clear, making it difficult to gauge whether D and ω are likely to be

consistent based on these experiments. The relative MSEs for B, U , and S are small but

do not appear to be going to zero as I → ∞ with J fixed; this is expected since for these

parameters the amount of data informing each univariate entry is fixed.

Accuracy of standard errors – Details on Section 6.2

To estimate the actual coverage at every target coverage level from 0% to 100%, we use

the fact that the actual coverage of a 100× (1−α)% interval for some parameter θ can be

written as

P(|θ̂ − θ0| < zα/2 ŝe) = P
(

1− 2
(
1− Φ(|θ̂ − θ0|/ŝe)

)
< 1− α

)
where zα/2 = Φ−1(1 − α/2) and Φ(x) is the N (0, 1) CDF. Thus, since 1 − α is the target

coverage, the curve of actual coverage versus target coverage is simply the CDF of the

random variable 1 − 2
(
1 − Φ(|θ̂ − θ0|/ŝe)

)
. The plots in Figure 5 are empirical CDFs of

this random variable, aggregating across all entries of each parameter matrix/vector.

S12

Figure S1: Relative mean-squared error between estimated and true parameter values. Each plot
contains 50 thin lines, one for each run, along with the median over the 50 runs (thick blue line).

S13

Figure S2: Log posterior density (plus constant) versus iteration for the estimation algorithm.

Algorithm convergence – Details on Section 6.3

Figure S2 shows the results of the algorithm convergence experiments described in Sec-

tion 6.3. For each I, the plot shows 25 curves of the log-likelihood+log-prior (plus a

constant) versus iteration number, one for each of the 25 simulation runs. For visual inter-

pretability, we add a constant to each curve such that the final value after iteration 50 is

equal to zero. Based on our experiments, the estimation algorithm converges rapidly.

Robustness to the outcome distribution – Details on Section 6.4

Figures S3, S4, and S5 show the results of the robustness experiments in Section 6.4.

With LNP outcomes (Figure S3), the results are very similar to when the true outcome

distribution is actually NB (Figures S1 and 5). With Poisson outcomes (Figure S4), the

estimation accuracy is even better than with NB outcomes, presumably because there is less

variability and the Poisson distribution is a limiting case of NB when the dispersion goes to

zero. The coverage with Poisson outcomes is essentially the same as NB, slightly better for

some parameters and slightly worse for others. With Geometric outcomes (Figure S5), the

same parameters appear to be consistently estimated, however, the estimation accuracy in

terms of relative MSE is worse by roughly a factor of 10. Compared to NB outcomes, the

coverage with Geometric outcomes is similar for some parameters and slightly worse for

others. Overall, it appears that the estimation and inference algorithms are quite robust

to misspecification of the outcome distribution.

S14

Figure S3: Robustness to outcome: K = 4, L = 2, M = 3, LNP/Normal/Normal.

Figure S4: Robustness to outcome: K = 4, L = 2, M = 3, Poisson/Normal/Normal.

S15

Figure S5: Robustness to outcome: K = 4, L = 2, M = 3, Geometric/Normal/Normal.

Convergence to global optimum

Based on the consistency experiments reported in Figure S1, it seems unlikely that the

algorithm is getting stuck in a suboptimal local mode. To more directly assess whether

the algorithm is converging to a global optimum, we compare the estimates obtained when

(a) initializing the estimation algorithm to the true parameter values versus (b) initializing

using our proposed approach. Table S1 shows that the difference between these estimates

is negligible. In detail, we generate 50 data matrices using the NB/Normal/Normal scheme

with I = 1000, J = 100, K = 4, L = 2, and M = 3. For each data matrix, we run the

estimation algorithm with initialization approaches (a) and (b) and compute the relative

MSE between the two resulting estimates. In Table S1, for each parameter we report the

largest observed value of the relative MSE over these 50 simulation runs. The maximum

relative MSE is extremely small in each case, meaning that initializing at the true parameter

values yields nearly identical estimates as initializing with our proposed approach. This

suggests that our estimation algorithm is not getting stuck in a suboptimal local mode.

S16

Table S1: Initialization error. Maximum relative MSE between estimates when initializing at the
true values versus the proposed initialization approach, over 50 runs with I = 1000 and J = 100.

A B C D U V S T ω

2× 10−7 9× 10−7 7× 10−9 1× 10−8 4× 10−6 3× 10−7 3× 10−7 4× 10−8 2× 10−9

Figure S6: Scatterplots of t̂j − t0j versus t0j for a typical simulated data matrix.

Choice of identifiability constraint on log-dispersions

The choice of identifiability constraint on the log-dispersions S and T has a significant

effect on estimation accuracy. Perhaps the most obvious choice would be sum-to-zero

constraints:
∑

i si = 0 and
∑

j tj = 0. However, it turns out that this leads to poor

performance in terms of estimation accuracy. The reason is that low log-dispersions (for

instance, around tj ≈ −2 or less) are difficult to estimate accurately, and noisy estimates

of a few low values of tj can have an undue effect on
∑

j tj, causing significant error in the

rest of the tj’s. Figure S6 (left panel) illustrates the issue in a simulated example using the

NB/Normal/Normal scheme with I = 10000, J = 100, K = 4, L = 2, and M = 3. Here,

the sum-to-zero constraints are used on both the true parameters and the estimates.

In our proposed algorithm, we instead constrain 1
I

∑
i e
si = 1 and 1

J

∑
j e

tj = 1, which

has the effect of downweighting the low values (which are harder to estimate) and up-

weighting the large values (which are easier to estimate). As illustrated in Figure S6 (right

panel), this effectively resolves the issue. Here, we run the same algorithm on the same

data matrix, but instead use our proposed constraints. We can see that the undesirable

shift is effectively removed.

S17

Figure S7: Special case of no latent factors: K = 4, L = 2, M = 0, NB/Normal/Normal.

Special case of no latent factors

If the number of latent factors is zero, that is, M = 0, then the model is no longer

“bilinear” since the UDV T term is no longer present. The resulting model with g(E(Y)) =

XAT + BZT + XCZT can be viewed as a standard GLM via the vectorization approach

discussed in Section S1.2, however, computation using standard GLM methods becomes

intractable when I or J is large. Thus, our methods provide a computationally tractable

approach to estimation and inference in this quite general class of GLMs for matrix data. In

Figure S7, we present a subset of simulation results using the NB/Normal/Normal simulation

scheme with J = 100, K = 4, L = 2, and M = 0. As expected, the estimates for A and C

appear to be consistent and rapidly converging to the true values. Further, the coverage is

nearly perfect for A and B, and possibly slightly conservative for C.

Effect of small sample size

In applications such as gene expression analysis, sometimes a very small number of samples

are available. To explore this regime, we run simulations using the NB/Normal/Normal

S18

Figure S8: Effect of small sample size: J = 10, K = 4, L = 2, M = 0, NB/Normal/Normal.

Figure S9: Effect of small sample size: J = 10, K = 1, L = 1, M = 1, NB/Normal/Normal.

S19

scheme with J = 10 and (a) K = 4, L = 2, M = 0, and (b) K = 1, L = 1, M = 1. As

Figures S8 and S9 show, consistency for the same parameters appears to hold, although in

some cases the rate is less clear than when J = 100 (Figures S7 and S10). Meanwhile, the

coverage performance is noticably worse when J = 10 than when J = 100.

Effect of varying latent dimension

The “bilinear” latent factorization term UDV T is more challenging in terms of estimation

and inference compared to the linear terms XAT, BZT, and XCZT. To assess the effect

of the latent dimension M on consistency, efficiency, and accuracy of standard errors, we

run the simulations using: (a) K = 1, L = 1, M = 1, and (b) K = 1, L = 1, and M = 5.

This is similar to the GAMMI model (Van Eeuwijk, 1995), but also includes S, T , and ω.

We see in Figure S10 that when M = 1, the estimates of A and V are converging to the

true values as expected, and the coverage for A, B, U and V is excellent, except that the

coverage for V degrades slightly when I = 10000. When the latent dimension is increased

to M = 5, Figure S11 shows that the performance is similar, except that the coverage for

V degrades more severely when I = 10000.

Based on these and other experiments, we find that as long as the entries of D are not

too small and are sufficiently well-spaced, the performance remains good. The magnitude of

each entry of D controls the strength of the signal for the corresponding latent factor; thus,

a small entry in D makes it difficult to estimate the corresponding columns of U and V .

Meanwhile, if two entries ofD are similar in magnitude, then there is near non-identifiability

of U and V with respect to those two latent factors due to rotational invariance, leading

to a loss of performance in terms of statistical efficiency and coverage.

Varying the distribution of covariates and parameters

As usual in regression, since the model is defined conditionally on the covariates, we

would expect the results to be robust to the distribution of the covariates. To verify

that this is indeed the case, we run the simulations with the following simulation schemes

S20

Figure S10: Effect of varying latent dimension: K = 1, L = 1, M = 1, NB/Normal/Normal.

Figure S11: Effect of varying latent dimension: K = 1, L = 1, M = 5, NB/Normal/Normal.

S21

Figure S12: Varying the covariate distribution: K = 4, L = 2, M = 3, NB/Bernoulli/Normal.

as defined above: (a) NB/Bernoulli/Normal (Bernoulli-distributed covariates) and (b)

NB/Gamma/Normal (Gamma-distributed covariates), with J = 100, K = 4, L = 2, and

M = 3; see Figures S12 and S13. Similarly, although we have a prior on the parameters,

we would not expect the results to be highly sensitive to the distribution of the true pa-

rameters. To check this, we also run the simulations with the NB/Normal/Gamma scheme

(Gamma-distributed true parameters) with J = 100, K = 4, L = 2, and M = 3; see

Figure S14. The results are nearly identical to the case of normally distributed covariates

and true parameters.

S3 Additional application results and details

S3.1 Gene expression application – Details on Section 7

Here we provide additional results and details on the gene expression applications in Sec-

tion 7. For the Pickrell data, Figure S15 shows the PCA plots based on (a) log-transformed

TPMs, specifically, log(TPMij+1), and (b) the variance stabilizing transform (VST) method

S22

Figure S13: Varying the covariate distribution: K = 4, L = 2, M = 3, NB/Gamma/Normal.

Figure S14: Varying the parameter distribution: K = 4, L = 2, M = 3, NB/Normal/Gamma.

S23

Figure S15: PCA of the Pickrell data using: (top) log-transformed TPMs and (bottom) the VST
method in the DESeq2 software package, including the GC bias adjustment from CQN. Compare
with the GBM approach in Figure 8.

S24

Figure S16: Visualization of GTEx data using NB-GBM latent factors, adjusting for covariates.
Each dot represents one of the 8,551 samples, and the color indicates the subtissue type.

in the DESeq2 software package, using the GC adjustment from CQN. For the GTEx data,

Figure S16 shows the latent factors (vj2 versus vj1) as in Figure 9, but coloring the points

according to tissue subtype instead tissue type. We see that the samples tend to fall into

clusters according to tissue subtype, further resolving the clustering in Figure 9. Figure S17

shows a PCA plot of the log TPMs of the GTEx data, which is not nearly as clear as Fig-

ure 9 in terms of tissue type clustering. For the analysis of aging-related genes in the

Heart-LV subtissue using the GTEx data (Section 7.2), Tables S2 and S3 show the top 20

enriched GO terms in the Biological Process and Cellular Component categories.

S25

Figure S17: PCA of the GTEx data using log-transformed TPMs, specifically, log(TPMij + 1).
Each dot represents one of the 8,551 samples, and the color indicates the tissue type.

Table S2: Top GO terms (Biological Process) for age-related expression in Heart-LV.

GO term ID Description Count p-value Benjamini

GO:0098609 cell-cell adhesion 48 5.1e-12 1.5e-08

GO:0006418 tRNA aminoacylation for protein translation 16 1.4e-09 2.0e-06

GO:0006099 tricarboxylic acid cycle 12 3.7e-07 3.6e-04

GO:1904871 positive regulation of protein localization to Cajal body 7 1.1e-06 6.1e-04

GO:1904851 positive regulation of establishment of protein localization to telomere 7 1.1e-06 6.1e-04

GO:0006607 NLS-bearing protein import into nucleus 10 1.3e-06 6.2e-04

GO:0006914 autophagy 22 1.8e-05 7.6e-03

GO:0016192 vesicle-mediated transport 24 2.6e-05 8.3e-03

GO:0006511 ubiquitin-dependent protein catabolic process 24 2.6e-05 8.3e-03

GO:0006888 ER to Golgi vesicle-mediated transport 24 3.5e-05 1.0e-02

GO:0006886 intracellular protein transport 31 4.3e-05 1.1e-02

GO:1904874 positive regulation of telomerase RNA localization to Cajal body 7 8.3e-05 2.0e-02

GO:0006090 pyruvate metabolic process 8 9.6e-05 2.1e-02

GO:0070125 mitochondrial translational elongation 16 1.1e-04 2.2e-02

GO:0006446 regulation of translational initiation 10 1.5e-04 2.8e-02

GO:0043039 tRNA aminoacylation 5 1.6e-04 3.0e-02

GO:0018107 peptidyl-threonine phosphorylation 10 2.9e-04 4.9e-02

GO:0000462 maturation of SSU-rRNA from tricistronic rRNA transcript 9 3.3e-04 5.4e-02

GO:0006610 ribosomal protein import into nucleus 5 3.7e-04 5.6e-02

GO:0016236 macroautophagy 14 4.0e-04 5.9e-02

S26

Table S3: Top GO terms (Cellular Component) for age-related expression in Heart-LV.

GO term ID Description Count p-value Benjamini

GO:0016020 membrane 220 9.8e-21 3.7e-18

GO:0005739 mitochondrion 157 1.2e-20 3.7e-18

GO:0070062 extracellular exosome 242 4.3e-16 9.1e-14

GO:0005829 cytosol 282 1.0e-15 1.6e-13

GO:0005913 cell-cell adherens junction 57 9.5e-15 1.2e-12

GO:0005737 cytoplasm 380 2.3e-13 2.4e-11

GO:0043209 myelin sheath 36 4.7e-13 4.2e-11

GO:0005759 mitochondrial matrix 47 5.7e-09 4.5e-07

GO:0005654 nucleoplasm 217 1.1e-08 7.8e-07

GO:0000502 proteasome complex 18 1.4e-08 8.0e-07

GO:0005743 mitochondrial inner membrane 56 1.4e-08 8.0e-07

GO:0042645 mitochondrial nucleoid 14 3.5e-07 1.8e-05

GO:0014704 intercalated disc 14 8.5e-07 4.2e-05

GO:0005832 chaperonin-containing T-complex 7 2.5e-06 1.1e-04

GO:0005643 nuclear pore 16 5.2e-06 2.2e-04

GO:0043231 intracellular membrane-bounded organelle 55 2.7e-05 1.1e-03

GO:0002199 zona pellucida receptor complex 6 2.9e-05 1.1e-03

GO:0043034 costamere 8 5.4e-05 1.9e-03

GO:0043234 protein complex 42 7.8e-05 2.6e-03

GO:0045254 pyruvate dehydrogenase complex 5 1.5e-04 4.6e-03

S3.2 Cancer genomics application – Details on Section 8

Data acquisition and preprocessing. We downloaded BAM files for the 326 CCLE

whole-exome samples from the Genomic Data Commons (GDC) Legacy Archive of the

National Cancer Institute (https://portal.gdc.cancer.gov/legacy-archive/), using

the GDC Data Transfer Tool v1.6.0. Using the PreprocessIntervals tool from the Genome

Analysis Toolkit (GATK) v4.1.8.1 (https://github.com/broadinstitute/gatk/) run-

ning on Java v1.8, we preprocessed the CCLE exome target region interval list to pad

the intervals by 250 base pairs on either side (options: padding 250, bin-length 0,

interval-merging-rule OVERLAPPING ONLY). Then, to convert each BAM file to a vec-

tor of counts, we counted the number of reads in each target region using the Collec-

tReadCounts tool from GATK (options: interval-merging-rule OVERLAPPING ONLY).

For analysis, we included all target regions in chromosomes 1–22 that have nonzero median

across the 326 samples.

De-segmenting the training samples. We randomly selected half of the samples

to use as a training set, and the rest were used as a test set to evaluate performance.

S27

https://portal.gdc.cancer.gov/legacy-archive/
https://github.com/broadinstitute/gatk/

To be able to treat the training samples as “pseudo-normal” (non-cancer) samples, we

de-segment them as follows. We first compute a rough estimate of copy ratio, defined as

ρij := Ỹij/(αiβj) where αi = 1
J

∑J
j=1 Ỹij, βj = 1

I

∑I
i=1 Ỹij/αi, and Ỹij = Yij + 1/8; here, 1/8

is a pseudocount that avoids issues when taking logs. For each sample j, we then run a

standard binary segmentation algorithm (Killick et al., 2012, Eqn 2) on log ρij to detect

changepoints. For binary segmentation, we use cost function C(x1:n) = −(1√
n

∑n
i=1 xi/σj)

2

and penalty β = 1000 where σ2
j is the sample variance of (log ρij − log ρi+1,j)/

√
2. Define

oij to be the average of log ρij over the segment containing region i.

We then compute the de-segmented counts Y deseg
ij := round

(
αiβj exp(log(ρij) − oij)

)
.

The idea is that this adjusts out the departures from copy neutral (that is, from normal

diploid) as inferred by the segmentation algorithm, to create a panel of pseudo-normals.

Running the GBM to estimate copy ratios. We run the GBM estimation algo-

rithm on the de-segmented training data using M = 5 latent factors. To avoid overfitting

of the latent factors on the training data, we fix the sample-specific log-dispersion T after

running the initialization procedure – that is, we do not update T at each iteration of the

algorithm. We use the defaults for all other algorithm settings. For covariates, we construct

X to include log(lengthi), gci, and (gci − gc)2, and we use no sample covariates.

On the test data, we update T at each iteration as usual. We construct X to include the

same covariates as before, along with 5 additional covariates equal to the columns of the

U matrix that was estimated on the training data. We use no sample covariates, and we

set M = 0 on the test data. We define the GBM copy ratio estimates as the exponentiated

residuals ρGBM
ij = Ỹij/µ̂ij where Ỹij = Yij + 1/8; also see Section 2.3.

Running GATK to estimate copy ratios. We run the CreateReadCount-

PanelOfNormals GATK tool on the de-segmented training data, and to enable com-

parison with the GBM, we set the options to use 5 principal components and in-

clude all regions (number-of-eigensamples 5, minimum-interval-median-percentile

0, maximum-zeros-in-interval-percentage 100). To estimate copy ratios for the test

data, we run the DenoiseReadCounts GATK tool using the pon file from CreateReadCount-

S28

PanelOfNormals. On the test data, we use the original counts (not de-segmented).

Performance metrics. Suppose x,w ∈ Rn and k ∈ {0, 2, 4, . . .}, where x1, . . . , xn

represent noisy measurements of a signal of interest, wi is a weight for point xi, and k is a

smoothing bandwidth. We define the local relative standard error as

LRSE(x,w, k) =

√√√√ 1

n

n∑
i=1

(wi/w̄i)2(xi − x̄i)2

where w̄i is the moving average of w using bandwidth k, and x̄i is the weighted moving

average of x using bandwidth k and weights w. More precisely, w̄i = 1
|Ai|
∑

j∈Ai
wj and

x̄i =

∑
j∈Ai

wjxj∑
j∈Ai

wj
(S3.1)

where Ai = {max(1, i − k/2), . . . ,min(n, i + k/2)}. The idea is that if one is trying to

estimate the mean of the signal, then a natural approach would be to use a weighted moving

average, and the LRSE approximates the standard deviation (times
√
k) of this estimator.

We define the weighted median absolute difference as

WMAD(x,w, k) = median
{
k |x̄i+1 − x̄i| : i = 1, . . . , n− 1

}
where x̄i is the same as above. The WMAD is similar to the median absolute deviation

metric that is frequently used in this application, but it allows one to account for weights.

To assess copy ratio estimation performance for sample j, we take xi to be the log copy

ratio estimate for region i and we use a bandwidth of k = 100 for both metrics. We take

wi = Wij for the GBM (following Section 2.3), and for GATK we take wi = 1 since GATK

does not provide weights/precisions.

Estimated copy ratios for all test samples. Figures S18 and S19 show heatmaps

of the GATK and GBM copy ratio estimates on the log2 scale for all 163 samples in the

test set. For visualization, these heatmaps are smoothed using a moving weighted average

S29

Figure S18: GATK copy ratio estimates (on the log2 scale) for all 163 test samples from the
CCLE whole-exome sequencing dataset. The x-axis represents genomic position. Red and blue
indicate copy gains and losses, respectively.

as in Equation S3.1 with k = 3. The GBM estimates are visibly less noisy and appear to

infer copy neutral regions (white portions of the heatmap) more accurately than GATK.

S4 Exponential dispersion families

For completeness, we state the basic results for discrete EDFs that we use in this paper.

See Jørgensen (1987) or Agresti (2015) for reference on this material. Suppose

f(y | θ, r) = exp(θy − rκ(θ))h(y, r) (S4.1)

is a p.m.f. on y ∈ Z for θ ∈ Θ and r ∈ R, where Θ ⊆ R and R ⊆ (0,∞) are convex open

sets. If Y ∼ f(y | θ, r), then

E(Y | θ, r) = rκ′(θ) and Var(Y | θ, r) = rκ′′(θ). (S4.2)

S30

Figure S19: GBM copy ratio estimates (on the log2 scale) for all 163 test samples from the CCLE
whole-exome sequencing dataset. The x-axis represents genomic position. Red and blue indicate
copy gains and losses, respectively.

These properties are straightforward to derive from the fact that log
∑

y∈Z exp(θy)h(y, r) =

rκ(θ). For y, θ, and r such that h(y, r) > 0, let

L = L(y, θ, r) := log f(y | θ, r) = θy − rκ(θ) + log h(y, r),

µ = µ(θ, r) := E(Y | θ, r) = rκ′(θ), and

σ2 = σ2(θ, r) := Var(Y | θ, r) = rκ′′(θ).

Assume r is not functionally dependent on θ. Then we have

∂L
∂θ

= y − rκ′(θ) = y − µ and
∂2L
∂θ2

= −rκ′′(θ) = −σ2.

Assume κ′ is invertible; this holds as long as Var(Y | θ, r) > 0 for all θ and r. Then since

µ = rκ′(θ), we have θ = κ′−1(µ/r), and it follows that ∂θ/∂µ = 1/(rκ′′(θ)) = 1/σ2 by the

inverse function theorem. Similarly, defining η := g(µ), where g(·) is a smooth function

S31

such that g′ is positive, we have ∂µ/∂η = 1/g′(µ). Therefore, by the chain rule,

∂L
∂η

=
∂L
∂θ

∂θ

∂µ

∂µ

∂η
= (y − rκ′(θ)) 1

rκ′′(θ)

1

g′(µ)
=

y − µ
σ2g′(µ)

,

and

∂2L
∂η2

=
(
− ∂µ

∂η

) 1

σ2g′(µ)
+ (y − µ)

∂

∂η

(1

σ2g′(µ)

)
.

Thus, if Y ∼ f(y | θ, r) and L = log f(Y | θ, r), then

∂L
∂η

=
Y − µ
σ2g′(µ)

and E
(
− ∂2L
∂η2

)
=

1

σ2g′(µ)2
. (S4.3)

If η depends on some parameters α and β (and r does not), then

∂L
∂α

=
∂L
∂η

∂η

∂α
and

∂2L
∂α∂β

=
∂2L
∂η2

∂η

∂α

∂η

∂β
+
∂L
∂η

∂2η

∂α∂β
.

Therefore, by Equation S4.3,

∂L
∂α

=
Y − µ
σ2g′(µ)

∂η

∂α
(S4.4)

E
(
− ∂2L
∂α∂β

)
=

1

σ2g′(µ)2

∂η

∂α

∂η

∂β
(S4.5)

since ∂2η/∂α∂β does not depend on Y and E(∂L/∂η) = 0.

S5 Gradient and Fisher information for EDF-GBMs

In Section S5.1, we derive the gradient and Fisher information matrix with respect to each of

A, B, C, D, U , and V individually, for a discrete EDF-GBM. In Section S5.2, we specialize

these formulas to the case of NB-GBMs, and we derive the gradient and observed Fisher

information for S and T in this case. For completeness, in Section S5.3 we also provide

the cross-terms of the Fisher information between all pairs of components, although not

S32

all of these are needed for our approach. The formulas contain factors reminiscent of the

gradient and Fisher information for a standard GLM, which take a standard form based

on the link function and the mean-variance relationship (Agresti, 2015).

For our estimation algorithm, we only require the Fisher information matrix with re-

spect to each parameter matrix/vector individually, rather than jointly. Meanwhile, for

inference, we also use the constraint-augmented Fisher information matrix for U and V

jointly; see Section S6.2. To enable comparison with the standard approach of using the

full Fisher information matrix, in Section S6.3 we provide the constraint-augmented Fisher

information matrix for all parameters jointly.

Consider a GBM with discrete EDF outcomes, that is, suppose Yij ∼ f(y | θij, rij) where

θij := κ′−1(µij/rij), µij := g−1(ηij), and η = η(A,B,C,D, U, V) ∈ RI×J as in Equation 2.3.

This makes µij = E(Yij | θij, rij); also, define σ2
ij := Var(Yij | θij, rij). Let

L :=
I∑
i=1

J∑
j=1

Lij =
I∑
i=1

J∑
j=1

log f(Yij | θij, rij) (S5.1)

denote the overall log-likelihood, where Lij := log f(Yij | θij, rij). By Equations S4.4 and

S4.5, for any two univariate entries of A, B, C, D, U , and V , say α and β, we have

∂Lij
∂α

= eij
∂ηij
∂α

and E
(
− ∂2Lij
∂α∂β

)
= wij

∂ηij
∂α

∂ηij
∂β

(S5.2)

where we define the matrices E ∈ RI×J and W ∈ RI×J such that

eij :=
∂Lij
∂ηij

=
Yij − µij
σ2
ijg
′(µij)

and wij := E
(
− ∂2Lij

∂η2
ij

)
=

1

σ2
ijg
′(µij)2

. (S5.3)

The partial derivatives ∂ηij/∂α with respect to each entry of A, B, C, D, U , and V are:

∂ηij
∂aj′k

= xik 1(j = j′)
∂ηij
∂vj′m

= uimdmm 1(j = j′)

∂ηij
∂bi′`

= zj` 1(i = i′)
∂ηij
∂ui′m

= vjmdmm 1(i = i′) (S5.4)

S33

∂ηij
∂ck`

= xikzj`
∂ηij
∂dmm

= uimvjm.

S5.1 Gradient and Fisher information for each component

By Equations S5.2 and S5.4, we have

∂L
∂ajk

=
I∑
i=1

xikeij
∂L
∂vjm

=
I∑
i=1

uimdmmeij

∂L
∂bi`

=
J∑
j=1

zj`eij
∂L
∂uim

=
J∑
j=1

vjmdmmeij (S5.5)

∂L
∂ck`

=
I∑
i=1

J∑
j=1

xikeijzj`
∂L
∂dmm

=
I∑
i=1

J∑
j=1

uimeijvjm.

To express these equations in matrix notation, we vectorize the parameter matrices as

in Section 4.2: ~a := vec(AT), ~b := vec(BT), ~c := vec(C), ~d := diag(D), ~u := vec(UT),

and ~v := vec(V T). By Equation S5.5, the gradient of L with respect to each vectorized

component is then:

∇~a L = vec(XTE) ∇~v L = vec((UD)TE)

∇~b L = vec(ZTET) ∇~u L = vec((V D)TET) (S5.6)

∇~c L = vec(XTEZ) ∇~d L = diag(UTEV).

For each component of the model, the entries of the Fisher information matrices are as

follows, by Equations S5.2 and S5.4:

E
(
− ∂2L
∂ajk∂aj′k′

)
= 1(j = j′)

I∑
i=1

wijxikxik′ (S5.7)

E
(
− ∂2L
∂bi`∂bi′`′

)
= 1(i = i′)

J∑
j=1

wijzj`zj`′

E
(
− ∂2L
∂ck`∂ck′`′

)
=

I∑
i=1

J∑
j=1

wijxikxik′zj`zj`′

S34

E
(
− ∂2L
∂vjm∂vj′m′

)
= 1(j = j′)

I∑
i=1

wijuimdmmuim′dm′m′

E
(
− ∂2L
∂uim∂ui′m′

)
= 1(i = i′)

J∑
j=1

wijvjmdmmvjm′dm′m′

E
(
− ∂2L
∂dmm∂dm′m′

)
=

I∑
i=1

J∑
j=1

wijuimvjmuim′vjm′ .

To express these equations in matrix form, we introduce the following notation. We

write Diag(Q1, . . . , Qn) to denote the block diagonal matrix with blocks Q1, . . . , Qn,

Diag(Q1, . . . , Qn) :=

Q1 0 · · · 0

0 Q2 0
...

. . .
...

0 0 · · · Qn

 ,

and we write block(Qij : i, j ∈ {1, . . . , n}) to denote the block matrix with block i, j equal

to Qij. For a matrix Q ∈ Rm×n, we write Qi∗ and Q∗j to denote the diagonal matrices

constructed from the ith row and jth column, respectively, that is, Qi∗ := Diag(qi1, . . . , qin)

and Q∗j := Diag(q1j, . . . , qmj). Then, by Equation S5.7, the Fisher information matrices

for each component of the model are:

E(−∇2
~a L) = Diag(XTW∗1X, . . . , X

TW∗JX) (S5.8)

E(−∇2
~b
L) = Diag(ZTW1∗Z, . . . , Z

TWI∗Z)

E(−∇2
~c L) = block

(∑J
j=1zj`zj`′(X

TW∗jX) : `, `′ ∈ {1, . . . , L}
)

E(−∇2
~v L) = Diag((UD)TW∗1(UD), . . . , (UD)TW∗J(UD))

E(−∇2
~u L) = Diag((V D)TW1∗(V D), . . . , (V D)TWI∗(V D))

E(−∇2
~d
L) =

J∑
j=1

(UVj∗)
TW∗j(UVj∗).

S35

S5.2 NB-GBM with log link: Gradient and Fisher information

The negative binomial distribution has probability mass function

NegBin(y | µ, r) =
Γ(y + r)

Γ(y + 1)Γ(r)

(µ

µ+ r

)y(r

µ+ r

)r
for y ∈ {0, 1, 2, . . .}, given µ > 0 and r > 0. This is a discrete EDF of the form in

Equation S4.1 with θ = log(µ/(µ+ r)) and κ(θ) = − log(1− exp(θ)). Observe that

κ′(θ) =
eθ

1− eθ
=
µ

r

κ′′(θ) =
eθ

(1− eθ)2
=
µ+ µ2/r

r
.

Thus, letting Y ∼ NegBin(µ, r), we have E(Y) = µ and Var(Y) = µ + µ2/r by Equa-

tion S4.2. For an NB-GBM with log link g(µ) = log(µ), the gradients and Fisher informa-

tion matrices for A, B, C, D, U , and V are given by Equations S5.6 and S5.8 where, by

Equation S5.3,

µij = exp(ηij), wij =
rijµij
rij + µij

, and eij = (Yij − µij)
wij
µij

. (S5.9)

Next, we derive the gradient and observed information matrix for the log-dispersions.

First, consider a single entry. Letting ψ(x) denote the digamma function, we have

∂

∂r
log NegBin(Y | µ, r) = ψ(Y + r)− ψ(r) + log(r) + 1− log(µ+ r)− Y + r

µ+ r

∂2

∂r2
log NegBin(Y | µ, r) = ψ′(Y + r)− ψ′(r) +

1

r
− 1

µ+ r
− µ− Y

(µ+ r)2
.

(S5.10)

We work with the observed information rather than the expected information since E(ψ′(r+

Y)) does not seem to have a simple expression.

It turns out that Equation S5.10 tends to lead to arithmetic overflow/underflow in

extreme cases. Although these extreme cases occur only occasionally for individual en-

S36

tries, large GBMs have so many entries that these failures occur persistently and must be

addressed. To avoid arithmetic overflow/underflow, we rewrite Equation S5.10 as follows:

∂

∂r
log NegBin(Y | µ, r) = ψ∆(Y, r)− log1p(µ/r)− Y − µ

r + µ
+ err(Y, r)

∂2

∂r2
log NegBin(Y | µ, r) = ψ′∆(Y, r) +

Y + µ2/r

(r + µ)2
+ err′(Y, r)

(S5.11)

where

log1p(x) =

{
x+ log((1 + x)/ex) if x < 1

log(1 + x) if x ≥ 1

ψ∆(y, r) =

{
ψ(y + r)− ψ(r) if r < 108

log1p(y/r) if r ≥ 108
(S5.12)

ψ′∆(y, r) =

{
ψ′(y + r)− ψ′(r) if r < 108

−(y/r)/(y + r) if r ≥ 108

and the error terms err(y, r) and err′(y, r) are typically exceedingly small and can be safely

ignored. Mathematically, log1p(x) = log(1 + x), however, numerically, the expression in

Equation S5.12 computes this value in a way that helps avoid arithmetic overflow and

underflow. Similarly, ψ∆(y, r) and ψ′∆(y, r) compute ψ(y+ r)−ψ(r) and ψ′(y+ r)−ψ′(r),

respectively, to very high accuracy while avoiding overflow/underflow; the errors in these

approximations are err(y, r) and err′(y, r), respectively. To derive Equation S5.11, we group

terms of similar magnitude and we use the asymptotics of ψ(x) and ψ′(x).

Now, we derive the gradient and observed information for S and T in the NB-GBM.

Recall that we parametrize rij = exp(−si − tj − ω) and we work in terms of the vector of

feature-specific log-dispersion offsets S ∈ RI , the vector of sample-specific log-dispersion

offsets T ∈ RJ , and the overall log-dispersion ω, subject to the identifiability constraints

1
I

∑
i e
si = 1 and 1

J

∑
j e

tj = 1. Let Lij = log NegBin(Yij | µij, rij) and L =
∑I

i=1

∑J
j=1 Lij

S37

as before. The derivatives with respect to si and tj are then

∂L
∂si

=
J∑
j=1

∂Lij
∂rij

(−rij)
∂2L
∂s2

i

=
J∑
j=1

(∂2Lij
∂r2

ij

r2
ij +

∂Lij
∂rij

rij

)
(S5.13)

∂L
∂tj

=
I∑
i=1

∂Lij
∂rij

(−rij)
∂2L
∂t2j

=
I∑
i=1

(∂2Lij
∂r2

ij

r2
ij +

∂Lij
∂rij

rij

)
since

∂rij
∂si

=
∂rij
∂tj

= −rij and
∂2rij
∂s2

i

=
∂2rij
∂t2j

= rij.

By Equation S5.11,

∂Lij
∂rij

= ψ∆(Yij, rij)− log1p(µij/rij)−
Yij − µij
rij + µij

+ err(Yij, rij)

∂2Lij
∂r2

ij

= ψ′∆(Yij, rij) +
Yij + µ2

ij/rij

(rij + µij)2
+ err′(Yij, rij)

(S5.14)

where the error terms are negligible. Note that ω is implicitly optimized in the optimization-

projection steps for S and T due to the likelihood-preserving projections, making it unnec-

essary to optimize with respect to ω directly.

In practice, we do not use the off-diagonal terms of the observed information matrix for

the log-dispersion parameters, since they seem to have a very small effect on the results.

However, for completeness, we note here that

∂2L
∂si∂tj

=
∂2Lij
∂r2

ij

r2
ij +

∂Lij
∂rij

rij

for all i, j, and

∂2L
∂si∂si′

= 0
∂2L
∂tj∂tj′

= 0

for all i 6= i′ and j 6= j′.

S38

S5.3 Fisher information between components of the model

In this section, we provide formulas for the off-block-diagonal entries of the full Fisher

information matrix for a discrete EDF-GBM, that is, the entries that involve more than

one of A, B, C, D, U , V , S, T , and ω. With the exception of the entries involving U

and V , we do not use these formulas in our proposed algorithms, however, we provide the

formulas here to enable comparison with the standard inference approach based on the full

Fisher information matrix. As in Equation S5.3, we define

eij =
∂Lij
∂ηij

and wij = E
(
− ∂2Lij

∂η2
ij

)
.

For any univariate entry of A, B, C, D, U , or V , say β, we have

E
(
− ∂eij

∂β

)
= E

(
− ∂2Lij

∂η2
ij

)∂ηij
∂β

= wij
∂ηij
∂β

. (S5.15)

Using Equation S5.15 along with Equations S5.4 and S5.5, the cross terms among A, B,

and C are:

E
(
− ∂2L
∂ajk∂bi`

)
= wijxikzj` (S5.16)

E
(
− ∂2L
∂ajk∂ck′`

)
=

I∑
i=1

wijxikxik′zj` (S5.17)

E
(
− ∂2L
∂bi`∂ck`′

)
=

J∑
j=1

wijxikzj`zj`′ . (S5.18)

Similarly, the cross terms among U , V , and D are:

E
(
− ∂2L
∂uim∂vjm′

)
= wijuim′dm′m′dmmvjm (S5.19)

E
(
− ∂2L
∂uim∂dm′m′

)
=

J∑
j=1

wijuim′vjm′vjmdmm (S5.20)

S39

E
(
− ∂2L
∂vjm∂dm′m′

)
=

I∑
i=1

wijuimdmmuim′vjm′ . (S5.21)

The cross terms between A, B, C and U , V , and D are:

E
(
− ∂2L
∂ajk∂uim

)
= wijxikvjmdmm (S5.22)

E
(
− ∂2L
∂ajk∂vj′m

)
= 1(j = j′)

I∑
i=1

wijxikuimdmm (S5.23)

E
(
− ∂2L
∂ajk∂dmm

)
=

I∑
i=1

wijxikuimvjm (S5.24)

E
(
− ∂2L
∂bi`∂ui′m

)
= 1(i = i′)

J∑
j=1

wijzj`vjmdmm (S5.25)

E
(
− ∂2L
∂bi`∂vjm

)
= wijzj`uimdmm (S5.26)

E
(
− ∂2L
∂bi`∂dmm

)
=

J∑
j=1

wijzj`uimvjm (S5.27)

E
(
− ∂2L
∂ck`∂uim

)
=

J∑
j=1

wijxikzj`vjmdmm (S5.28)

E
(
− ∂2L
∂ck`∂vjm

)
=

I∑
i=1

wijxikzj`uimdmm (S5.29)

E
(
− ∂2L
∂ck`∂dmm

)
=

I∑
i=1

J∑
j=1

wijxikzj`uimvjm. (S5.30)

All of the cross terms between (S, T, ω) and (A,B,C,D, U, V) are zero. To see this,

first note that by differentiating Equation S5.10 with respect to µ,

∂2

∂µ∂r
log NegBin(Y | µ, r) =

Y − µ
(r + µ)2

.

Hence, for any entry of A, B, C, D, U , or V , say β, we have E(−∂2L/∂β∂si) = 0 since

E
(
− ∂2Lij
∂β∂si

)
= E

(
− ∂2Lij
∂µij∂rij

∂µij
∂β

∂rij
∂si

)
= −E

(Yij − µij
(rij + µij)2

)∂µij
∂β

∂rij
∂si

= 0.

S40

Similarly, E(−∂2L/∂β∂tj) = 0 and E(−∂2L/∂β∂ω) = 0.

S6 Constraint-augmented Fisher information

During estimation, we enforce constraints that ensure identifiability of the parameters,

however, these constraints are not accounted for in the Fisher information matrix. Con-

sequently, it turns out that to appropriately quantify uncertainty in the parameters, it

is necessary to augment the Fisher information matrix to account for the identifiability

constraints; see Section S6.1.

In our proposed algorithm, we use this constraint-augmentation technique only for

U and V jointly (see Section S6.2), and for the remaining components we use our

delta propagation technique, which does not involve special handling of the constraints.

We also compare our proposed method to the standard approach of inverting the full

constraint-augmented Fisher information matrix. In Section S6.1, we review the constraint-

augmentation technique in general, and in Section S6.3, we provide formulas for the full

constraint-augmented Fisher information for GBMs.

S6.1 Constraint-augmentation technique

In this section, we review the constraint-augmentation technique of Aitchison and Silvey

(1958) and Silvey (1959) in the setting of a finite-dimensional parametric model and we

extend it to our setting; also see Silvey (1975, Section 4.7). Consider an i.i.d. model with

parameter θ ∈ Rd, and suppose we want to perform estimation and inference subject to the

constraint that g(θ) = 0, where g(θ) = (g1(θ), . . . , gk(θ))
T ∈ Rk is a differentiable function.

Suppose θ̂ is the maximum likelihood estimator subject to g(θ) = 0; this is referred to as

a “restricted maximum likelihood estimator” (Silvey, 1975).

Let Jθ ∈ Rk×d be the Jacobian matrix of g, that is, Jθ,ij = ∂gi/∂θj. Let Iθ ∈ Rd×d be

the Fisher information matrix for θ, that is, Iθ = E(−∇2
θL) where L is the log-likelihood.

Suppose θ0 is the true value of the parameter. Aitchison and Silvey (1958) show that under

S41

regularity conditions, when Iθ0 is invertible, the covariance matrix of θ̂ is approximately

equal to the leading d × d submatrix of

[
Iθ0 JT

θ0

Jθ0 0

]−1

. However, in GBMs, we need to

consider situations in which Iθ0 is not invertible since the model is overparametrized unless

the identifiability constraints are imposed. When Iθ0 is not invertible, Silvey (1959) extends

the technique by showing that the covariance matrix of θ̂ is approximately equal to the

leading d× d submatrix of

[
Iθ0 + JT

θ0
Jθ0 JT

θ0

Jθ0 0

]−1

.

Since we employ maximum a posteriori estimates, we modify the technique to use the

regularized Fisher information matrix Fθ = E(−∇2
θ(L + log π)) in place of Iθ. For our

choice of prior, Fθ0 is invertible even when Iθ0 is not invertible, and consequently it turns

out that the leading d × d submatrices of

[
Fθ0 JT

θ0

Jθ0 0

]−1

and

[
Fθ0 + JT

θ0
Jθ0 JT

θ0

Jθ0 0

]−1

coincide;

see Proposition S6.1. Thus, when using Fθ instead of Iθ, it is not necessary to employ the

extended version provided by Silvey (1959); this provides a big advantage, computationally,

when we apply the method to perform inference for (U, V) in GBMs. Although Aitchison

and Silvey (1958) and Silvey (1959) justify the technique in the i.i.d. setting, empirically

we find that it works well in our non-i.i.d. setting also.

Proposition S6.1. Let F ∈ Rd×d and J ∈ Rk×d. If F and JF−1JT are invertible, then

the leading d× d submatrices of

[
F JT

J 0

]−1

and

[
F + JTJ JT

J 0

]−1

are equal.

Proof. Let A := F + JTJ . By the formula for inverting a 2× 2 block matrix,

[
A JT

J 0

]−1

=

[
A−1 − A−1JT(JA−1JT)−1JA−1 ∗

∗ ∗

]
, (S6.1)

and the same formula applies for

[
F JT

J 0

]−1

, but with F in place of A. Here, ∗ denotes

unneeded entries. By the Woodbury matrix inversion formula,

A−1 = F−1 − F−1JT(I + JF−1JT)−1JF−1. (S6.2)

S42

Defining C := JF−1JT, this implies JA−1JT = C − C(I + C)−1C = C(I + C)−1, hence

(JA−1JT)−1 = (I + C)C−1. (S6.3)

Using Equation S6.2 again, we see that JA−1 = JF−1 − C(I + C)−1JF−1, and thus

(JA−1JT)−1JA−1 = (I + C)C−1JF−1 − JF−1 = C−1JF−1. (S6.4)

Likewise, A−1JT = F−1JT − F−1JT(I +C)−1C, so combining this with Equations S6.4 and

S6.2 and canceling, we have

A−1 − A−1JT(JA−1JT)−1JA−1 = F−1 − F−1JT(JF−1JT)−1JF−1.

The result follows by Equation S6.1.

S6.2 Constraint-augmented Fisher information for (U, V)

We have found that it is important to quantify uncertainty in U and V jointly and account

for the identifiability constraints. In this section, we derive a computationally efficient

method for computing the diagonal of the inverse of the constraint-augmented Fisher in-

formation matrix (Section S6.1) to obtain approximate standard errors for U and V .

Let Ju and Jv denote the constraint Jacobian matrices for U and V ; see Section S6.3.

The regularized, constraint-augmented Fisher information matrix for (U, V) is then

F̃(u,v) :=

Fu Fuv JT

u 0

F T
uv Fv 0 JT

v

Ju 0 0 0

0 Jv 0 0

where Fu = E(−∇2

~u L) + λuI, Fv = E(−∇2
~v L) + λvI, and Fuv = E(−∇~u∇T

~v L); formulas for

each of these expectations are given in Equations S5.8 and S5.19.

S43

We need the first IM + JM entries of diag(F̃−1
(u,v)) in order to obtain approximate

standard errors for the entries of U and V , however, naively performing this matrix inversion

is computationally intractable when I (or J) is large. To compute this efficiently, we

structure the calculation as follows. First, let P be the permutation matrix such that

PF̃(u,v)P
T =

Fu JT

u Fuv 0

Ju 0 0 0

F T
uv 0 Fv JT

v

0 0 Jv 0

 =

[
A B

BT C

]

where we define

A =

[
Fu JT

u

Ju 0

]
, B =

[
Fuv 0

0 0

]
, C =

[
Fv JT

v

Jv 0

]
.

(We use sans serif font for these block matrices, such as A, to distinguish them from param-

eter matrices such as A.) Since diag((PF̃(u,v)P
T)−1) = diag(PF̃−1

(u,v)P
T) = P diag(F̃−1

(u,v)),

we can compute the diagonal of the inverse of PF̃(u,v)P
T and then permute back to get

diag(F̃−1
(u,v)). By the formula for inversion of a 2× 2 block matrix,

(PF̃(u,v)P
T)−1 =

[
A B

BT C

]−1

=

[
A−1 + A−1B(C− BTA−1B)−1BTA−1 ∗

∗ (C− BTA−1B)−1

]

where ∗ denotes entries that are not needed. Similarly, by the same formula,

A−1 =

[
Fu JT

u

Ju 0

]−1

=

[
D E

ET ∗

]

where D = F−1
u − F−1

u JT
u(JuF

−1
u JT

u)−1JuF
−1
u and E = F−1

u JT
u(JuF

−1
u JT

u)−1. Thus,

(C− BTA−1B)−1 =

[
Fv − F T

uvDFuv JT
v

Jv 0

]−1

=

[
G ∗
∗ ∗

]
,

S44

where G is defined to be the leading JM × JM block of this matrix. Putting these pieces

together justifies defining the approximate variance of each entry of ~v = vec(V T) as

v̂ar(~v) := diag(G)

since these are the entries of diag((PF̃(u,v)P
T)−1) corresponding to ~v. To approximate the

variance of the entries of ~u = vec(UT), observe that

A−1B(C− BTA−1B)−1BTA−1 =

[
D E

ET ∗

][
Fuv 0

0 0

][
G ∗
∗ ∗

][
F T
uv 0

0 0

][
D E

ET ∗

]

=

[
DFuvGF

T
uvD ∗

∗ ∗

]
.

Therefore, we define

v̂ar(~u) := diag(D + DFuvGF
T
uvD)

since these are the entries of diag((PF̃(u,v)P
T)−1) corresponding to ~u.

S6.3 Full constraint-augmented Fisher information for GBMs

To facilitate comparison with the classical approach, we derive the constraint-augmented

Fisher information matrix for all of the components (A,B,C,D, U, V) jointly, even though

our approach only requires the matrix for (U, V). It is not necessary to include the log-

dispersion parameters (S, T, ω) since the Fisher information (as well as the constraint Ja-

cobian) between these parameters and (A,B,C,D, U, V) is zero (see Section S5.3); thus,

in the classical approach, inference for (S, T, ω) and (A,B,C,D, U, V) can be performed

independently since the constraint-augmented Fisher information decomposes.

For each of A, B, C, D, U , and V , we vectorize both the parameter matrix and the

corresponding constraints, as follows. For A, the constraint ZTA = 0 can be written as

g(A) = 0 where g(A) = vec(ATZ) ∈ RKL. The constraint Jacobian for ~a = vec(AT) is

then Ja := ZT⊗ IK , where ⊗ denotes the Kronecker product and IK is the K ×K identity

S45

matrix. Likewise, vectorizing the constraint on B as vec(BTX) = 0, the constraint Jacobian

for ~b = vec(BT) is Jb := XT ⊗ IL.

For uncertainty quantification, the key constraints on U and V are XTU = 0, ZTV = 0,

UTU = I, and V TV = I. Vectorizing, the constraints on U can be written as vec(UTX) = 0

and vec(UTU − I) = 0. Thus, the constraint Jacobian for ~u is

Ju :=

[
X1: ⊗ IM · · · XI: ⊗ IM

(U1: ⊗ IM) + (IM ⊗ U1:) · · · (UI: ⊗ IM) + (IM ⊗ UI:)

]
∈ R(MK+M2)×IM .

Here, for a matrix Q ∈ Rm×n, we write Qi: and Q:j to denote the ith row and jth column as

column vectors, respectively, that is, Qi: := (qi1, . . . , qin)T ∈ Rn and Q:j := (q1j, . . . , qmj)
T ∈

Rm. The constraint Jacobian for ~v, namely Jv, is computed the same way as Ju but with

V , Z, J , and L in place of U , X, I, and K, respectively. There are no constraints on C,

and the remaining constraints on D, U , and V do not reduce the dimensionality of the

parameter space. Thus, altogether, the constraint Jacobian for (A,B,C,D, U, V) is

J :=

Ja 0 0 0 0

0 Jb 0 0 0

0 0 0 Ju 0

0 0 0 0 Jv

where the column of zero blocks corresponding to (C,D) has width KL + M and height

JK + IL+ IM + JM .

Let I = E(−∇2L) denote the full Fisher information matrix for (A,B,C,D, U, V).

Formulas for all of the entries of I are given in Equation S5.8 and in Section S5.3. The full

constraint-augmented Fisher information matrix for all of the parameters is

Ĩ :=

[
I J T

J 0

]
.

The classical approach is then to define approximate standard errors as the square roots of

S46

the entries of diag(Ĩ−1) corresponding to each component (Section S6.1 and Silvey, 1975);

for instance, the first JK entries of diag(Ĩ−1) are the variances of the entries of vec(AT).

S7 Step-by-step estimation algorithm

Given the inputs and preprocessing as described in Section 3, the algorithm is as follows.

S7.1 Initialization procedure

We initialize the GBM estimation algorithm by (a) solving for values of A, B, and C to

minimize the sum-of-squares of the GBM residuals εij, (b) randomly initializing D, U , and

V , and in the NB-GBM case, (c) iteratively updating S, T , and ω for a few iterations. This

approach has the advantage of being simple, fast, and effective; see below for details.

It is somewhat tricky to initialize the algorithm well due to a chicken-and-egg problem.

The issue is that having decent estimates of S and T is important to avoid overfitting to

outliers, but we need a reasonable estimate of the mean matrix in order to estimate S and

T . Our solution to this problem is to exclude D, U , and V from the initial fitting of A, B,

and C in step (a) above. This prevents the latent factors from overfitting to outlier samples

or outlier features, thus helping avoid getting stuck at a suboptimal point. In detail, we

initialize as follows.

(1) Compute Y̌ij = g(Yij + ε) where ε = 1/8, and set Y̌ = (Y̌ij) ∈ RI×J .

(2) C ← X+Y̌ (Z+)T

(3) A← (X+Y̌ − CZT)T

(4) B ← Y̌ (Z+)T −XC

(5) Sample qij ∼ N (0, 10−16) i.i.d. for all i, j, and set Q = (qij) ∈ RI×J .

(6) Compute U , D, and V such that UDV T = Q is the compact SVD of rank M .

(7) Initialize S = 0, T = 0, and ω = 0, and then run the updates to S and T as defined

in Section S7.2 for 4 iterations, using the current values of A, B, C, D, U , and V .

Note that this also modifies ω.

S47

S7.2 Updates to each component of the model

In this section, we provide step-by-step algorithms for updating each component of the

model using the optimization-projection approach. The optimization part of each update

is based on the bounded regularized Fisher scoring step in Equation 3.1, using the formulas

for the gradients and Fisher information matrices derived in Section S5. The projection

part of each update is based on Theorem 5.4. In the updates to G = UD and H = V D,

we use the priors on G and H induced by the priors on U and V , given D; see Section S9.

For a matrix Q ∈ Rm×n, we denote Qi: := (qi1, . . . , qin)T ∈ Rn, Q:j := (q1j, . . . , qmj)
T ∈

Rm, Qi∗ = Diag(Qi:), Q∗j = Diag(Q:j), vec(Q) is the column-wise vectorization of Q, and

block(Qij : i, j ∈ {1, . . . , n}) is the block matrix with blocks Qij. When multiplying by a

diagonal matrix such as Qi∗ or Q∗j, we do not allocate the full diagonal matrix and perform

matrix multiplication. Instead, it is much more efficient to simply multiply each row (when

left-multiplying) or column (when right-multiplying) by the corresponding diagonal entry.

Computing η, µ, W , and E

(1) η ← XAT +BZT +XCZT + UDV T

(2) For i = 1, . . . , I and j = 1, . . . , J ,

(a) µij ← exp(ηij)

(b) wij ← rijµij/(rij + µij)

(c) eij ← (Yij − µij)wij/µij

Updating A

(1) Recompute W and E using the current parameter estimates.

(2) For j = 1, . . . , J

(a) ξ ← (XTW∗jX + λaI)
−1(XTE:j − λaAj:) (compute Fisher scoring step)

(b) Aj: ← Aj: + ξmin{1, ρ
√
K/‖ξ‖} (apply modified step to Aj:)

(3) Q← Z+A (efficiently structure computation of projection)

S48

(4) A← A− ZQ (enforce ZTA = 0 by projecting onto nullspace of ZT)

(5) C ← C +QT (compensate to preserve likelihood)

Updating B

(1) Recompute W and E using the current parameter estimates.

(2) For i = 1, . . . , I

(a) ξ ← (ZTWi∗Z + λbI)
−1(ZTEi: − λbBi:) (compute Fisher scoring step)

(b) Bi: ← Bi: + ξmin{1, ρ
√
L/‖ξ‖} (apply modified step to Bi:)

(3) Q← X+B (efficiently structure computation of projection)

(4) B ← B −XQ (enforce XTB = 0 by projecting onto nullspace of XT)

(5) C ← C +Q (compensate to preserve likelihood)

Updating C

(1) Recompute W and E using the current parameter estimates.

(2) F ← block
(∑J

j=1zj`zj`′(X
TW∗jX) : `, `′ ∈ {1, . . . , L}

)
(compute Fisher info)

(3) ξ ← (F + λcI)
−1(vec(XTEZ)− λcvec(C)) (compute Fisher scoring step)

(4) vec(C)← vec(C) + ξmin{1, ρ
√
KL/‖ξ‖} (apply modified step to C)

Updating D

(1) Recompute W and E using the current parameter estimates.

(2) F ←
∑J

j=1(UVj∗)
TW∗j(UVj∗) (compute Fisher information)

(3) ξ ← (F + λdI)
−1(diag(UTEV)− λd diag(D)) (compute Fisher scoring step)

(4) diag(D)← diag(D) + ξmin{1, ρ
√
M/‖ξ‖} (apply modified step to D)

Updating G = UD

(1) Recompute W and E using the current parameter estimates.

(2) G← UD

(3) Λ← (D2/λu)
−1 (precision matrix for prior on each row of G)

S49

(4) For i = 1, . . . , I

(a) ξ ← (V TWi∗V + Λ)−1(V TEi: − ΛGi:) (compute Fisher scoring step)

(b) Gi: ← Gi: + ξmin{1, ρ
√
M/‖ξ‖} (apply modified step to Gi:)

(5) Q← X+G (efficiently structure computation of projection)

(6) G← G−XQ (enforce XTG = 0 by projecting onto nullspace of XT)

(7) A← A+ V QT (compensate to preserve likelihood)

(8) Q← Z+A (efficiently structure computation of projection)

(9) A← A− ZQ (enforce ZTA = 0 by projecting onto nullspace of ZT)

(10) C ← C +QT (compensate to preserve likelihood)

(11) Run compact SVD of rank M on GV T, yielding U , D, V such that UDV T = GV T.

Updating H = V D

(1) Recompute W and E using the current parameter estimates.

(2) H ← V D

(3) Λ← (D2/λv)
−1 (precision matrix for prior on each row of H)

(4) For j = 1, . . . , J

(a) ξ ← (UTW∗jU + Λ)−1(UTE:j − ΛHj:) (compute Fisher scoring step)

(b) Hj: ← Hj: + ξmin{1, ρ
√
M/‖ξ‖} (apply modified step to Hj:)

(5) Q← Z+H (efficiently structure computation of projection)

(6) H ← H − ZQ (enforce ZTH = 0 by projecting onto nullspace of ZT)

(7) B ← B + UQT (compensate to preserve likelihood)

(8) Q← X+B (efficiently structure computation of projection)

(9) B ← B −XQ (enforce XTB = 0 by projecting onto nullspace of XT)

(10) C ← C +Q (compensate to preserve likelihood)

(11) Run compact SVD of rank M on UHT, yielding U , D, V such that UDV T = UHT.

S50

Updating S in an NB-GBM

For the updates to S and T , we employ adaptive maximum step sizes ρsi and ρtj for si

and tj, respectively. This helps prevent occasional lack of convergence due to oscillating

estimates. At the start of the algorithm, we initialize ρsi ← ρ and ρtj ← ρ. Define log1p(x),

ψ∆(y, r), and ψ′∆(y, r) as in Equation S5.12. Note that we do not explicitly update ω, since

ω is implicitly updated in the projection part of the updates to S and T .

(1) Compute µ using the current parameter estimates.

(2) For i = 1, . . . , I and j = 1, . . . , J , (differentiate each term in the log-likelihood)

(a) δij ← −rij
(
ψ∆(Yij, rij)− log1p(µij/rij)− (Yij − µij)/(rij + µij)

)
(b) δ′ij ← −δij + r2

ijψ
′
∆(Yij, rij) + (Yij + µ2

ij/rij)/(1 + µij/rij)
2

(3) For i = 1, . . . , I

(a) g ← −λs(si −ms) +
∑J

j=1 δij (derivative of log-posterior with respect to si)

(b) h← −λs +
∑J

j=1 δ
′
ij (second derivative of log-posterior with respect to si)

(c) If h < 0 then ξ ← −g/h, otherwise, ξ ← g. (Newton if valid, otherwise gradient)

(d) si ← si + ξmin{1, ρsi/|ξ|} (apply modified optimization step to si)

(e) If |ξ| > ρsi then ρsi ← ρsi/2, otherwise, ρsi ← ρ. (adapt maximum step size)

(4) c← log(1
I

∑I
i=1 e

si)

(5) S ← S − c (enforce constraint by projecting)

(6) ω ← ω + c (compensate to preserve likelihood)

(7) rij ← exp(−si−tj−ω) for i = 1, . . . , I and j = 1, . . . , J (update inverse dispersions)

Updating T in an NB-GBM

Steps (1)-(2) and (7) are the same as in the update to S. Steps (3)-(6) become:

(3) For j = 1, . . . , J

(a) g ← −λt(tj −mt) +
∑I

i=1 δij (derivative of log-posterior with respect to tj)

(b) h← −λt +
∑I

i=1 δ
′
ij (second derivative of log-posterior with respect to tj)

(c) If h < 0 then ξ ← −g/h, otherwise, ξ ← g. (Newton if valid, otherwise gradient)

S51

(d) tj ← tj + ξmin{1, ρtj/|ξ|} (apply modified optimization step to si)

(e) If |ξ| > ρtj then ρtj ← ρtj/2, otherwise, ρtj ← ρ. (adapt maximum step size)

(4) c← log(1
J

∑J
j=1 e

tj)

(5) T ← T − c (enforce constraint by projecting)

(6) ω ← ω + c (compensate to preserve likelihood)

Bias correction for S and T in an NB-GBM

Empirically, when the true values of S and T are low, the maximum likelihood estimates

tend to exhibit a downward bias. Occasionally, this leads to massive underestimation of

some of the log-dispersion values. This issue is mitigated somewhat by using a prior to

shrink the estimates toward zero, however, it seems difficult to tune the prior to appropri-

ately balance the bias. Thus, we employ the following simple bias correction procedure,

applied after the final iteration of the estimation algorithm. Choose lower bounds s∗ and

t∗ on si and tj, respectively; we use s∗ = t∗ = −4 as defaults.

(1) si ← s∗ + log(exp(si − s∗) + 1) for i = 1, . . . , I (apply bias correction to S)

(2) c← log(1
I

∑I
i=1 e

si)

(3) S ← S − c (enforce constraint by projecting)

(4) ω ← ω + c (compensate to preserve likelihood)

The same procedure is applied to T , with t∗ in place of s∗. We find that this improves the

accuracy of the log-dispersion estimates when the true values are at the low end.

S7.3 Remarks on the estimation algorithm

We continue iterating until either (a) the relative change in log-likelihood+log-prior (Equa-

tions S5.1 and S9.2) from one iteration to the next is less than the convergence tolerance

τ or (b) the maximum number of iterations has been reached.

In the updates to G = UD and H = V D, we use the compact SVD to enforce the

constraints on D, U , and V . Fast computation of the compact SVD can be done using

S52

procedures for the truncated SVD, which allows one to specify the rank (that is, the number

of latent factors M). Procedures for the truncated SVD are available in many programming

languages. It is not necessary to enforce the ordering and sign constraints on D, U , and V

(Conditions 2.1(d) and 2.1(e)) during the iterative updates since both the likelihood and

the prior are invariant to the order and sign of the latent factors.

Note that, due to the symmetry of the model, the updates for A and B are similar

enough that a single function can be used to compute both of them, with an option to

handle the transpose for C. Likewise, a single function can be used to compute both the

UD and V D updates, with an option to handle transposes appropriately.

S8 Step-by-step inference algorithm

Notation. For matrices A and B, we use A⊗B to denote the Kronecker product and A�B

for the element-wise product. Normally, we write AB for matrix multiplication, but for

improved clarity we use A×B to denote matrix multiplication when multi-letter variables

such as invFc are involved. We write hcat(A1, . . . , An) for the horizontal concatenation

of matrices A1, . . . , An, that is, hcat(A1, . . . , An) := [A1 · · · An]. Likewise, vcat denotes

vertical concatenation. We define block(j,K) := ((j − 1)K + 1, (j − 1)K + 2, . . . , jK). For

a matrix A ∈ Rm×n, colsums(A) denotes the vector of column sums, that is, colsums(A) =

(
∑

i ai1, . . . ,
∑

i ain)T ∈ Rn. Likewise, rowsums denotes the row sums. For a vector x ∈ Rmn,

we define reshape(x,m, n) to be the matrix A ∈ Rm×n such that x = vec(A). For a vector

x ∈ Rn, we write Diag(x) to denote the n× n diagonal matrix with x on the diagonal. For

a matrix A ∈ Rm×n and vectors x ∈ Rm, y ∈ Rn, with m 6= n, we extend the � operator

as follows: A� x = x�A := Diag(x)A and A� y = y �A := ADiag(y). We write sqrt(·)

to denote the element-wise square root. We use In to denote the n× n identity matrix.

Preprocessing.

(1) Compute the inverse dispersions rij ← exp(−si − tj − ω) for all i, j.

(2) Compute µ, W , and E as in Section S7.

S53

(3) Compute dWM ∈ RI×J where dWMij ← µijr
2
ij/(rij + µij)

2.

(4) Compute dEM ∈ RI×J where dEMij ← −µijrij(rij + Yij)/(rij + µij)
2.

(5) gradA← ETX

(6) gradB← EZ

(7) gradC← XTEZ

(8) Compute δij and δ′ij for all i, j using the formula from the S update during estimation.

(9) gradSi ← −λs(si −ms) +
∑J

j=1 δij for i = 1, . . . , I.

(10) gradTj ← −λt(tj −mt) +
∑I

i=1 δij for j = 1, . . . , J .

Compute conditional uncertainty for each component.

(1) invFaj ← (XTW∗jX + λaI)
−1 for j = 1, . . . , J .

(2) invFbi ← (ZTWi∗Z + λbI)
−1 for i = 1, . . . , I.

(3) invFc← (E(−∇2
~c L) + λcI)

−1 where E(−∇2
~c L) is given in Equation S5.8.

(4) invFui ← ((V D)TWi∗(V D) + λuI)
−1 for i = 1, . . . , I.

(5) invFvj ← ((UD)TW∗j(UD) + λvI)
−1 for j = 1, . . . , J .

(6) invFsi ← 1/(λs −
∑J

j=1 δ
′
ij) for all i = 1, . . . , I.

(7) invFtj ← 1/(λt −
∑I

i=1 δ
′
ij) for all j = 1, . . . , J .

(8) invFs← (invFs1, . . . , invFsI)
T

(9) invFt← (invFt1, . . . , invFtJ)T

Compute constraint Jacobians for U and V .

(1) Jui ← vcat(Xi: ⊗ IM , (Ui: ⊗ IM) + (IM ⊗ Ui:)) for i = 1, . . . , I.

(2) Ju← hcat(Ju1, . . . , JuI)

(3) Jvj ← vcat(Zj: ⊗ IM , (Vj: ⊗ IM) + (IM ⊗ Vj:)) for j = 1, . . . , J .

(4) Jv← hcat(Jv1, . . . , JvJ)

Compute joint uncertainty in (U, V) accounting for constraints.

(1) Fuvi ← hcat(wi1(DV1:)(DUi:)
T, . . . , wiJ(DVJ:)(DUi:)

T) for i = 1, . . . , I

(2) Fuv← vcat(Fuv1, . . . , FuvI)

(3) FJ← vcat(invFu1 × JuT1, . . . , invFuI × JuTI)

S54

(4) FuvFJ← FuvT × FJ

(5) invJFJ← (Ju× FJ)−1

(6) FFuv← vcat(invFu1 × Fuv1, . . . , invFuI × FuvI)

(7) FuvFFuv← FuvT × FFuv

(8) Fv← block diagonal matrix with jth block equal to (UD)TW∗j(UD) + λvI.

(9) A← Fv− FuvFFuv + FuvFJ× invJFJ× FuvFJT

(10) B←

[
A JvT

Jv 0

]−1

(11) C← B[1 :JM, 1:JM] (that is, C is the leading JM × JM block of B)

(12) FuvD← FFuvT − FuvFJ× invJFJ× FJT

(13) d← vcat(diag(invFu1), . . . , diag(invFuI))

(14) f← colsums(FJT � (invJFJ× FJT))

(15) g← colsums(FuvD� (C× FuvD))

(16) varU← d− f + g

(17) varV← diag(C)

Propagate uncertainty from U to A.

(1) For j = 1, . . . , J ,

(a) Qj ← (−invFaj×(X�dWM:j)T)�(X×invFaj×gradAj:)T+invFaj×(X�dEM:j)T

(2) dA← vcat(Q1 ⊗ (DV1:)
T, . . . , QJ ⊗ (DVJ:)

T)

(3) varAfromU← colsums(dAT � (varU� dAT))

Propagate uncertainty from V to A.

(1) For j = 1, . . . , J ,

(a) Initialize dA ∈ RK×M to all zeros.

(b) For m = 1, . . . ,M ,

(i) XdE← XT(dEM:j � (DmU:m))

(ii) XdWX← (XT((dWM:j � (DmU:m))�X))

(iii) dA:m ← (−invFaj × XdWX)× (invFaj × gradAj:) + invFaj × XdE

(c) varAfromVj ← colsums(dAT � (varV[block(j,M)]� dAT))

S55

(2) varAfromV← vcat(varAfromV1, . . . , varAfromVJ)

Propagate uncertainty from U and V to B.

(1) Computing varBfromU is identical to calculating varAfromV, but with Z, V , varU,

invFb, gradB, dWMT, and dEMT in place of X, U , varV, invFa, gradA, dWM, and dEM,

respectively.

(2) Computing varBfromV is identical to calculating varAfromU, but with Z, U , varV,

invFb, gradB, dWMT, and dEMT in place of X, V , varU, invFa, gradA, dWM, and dEM,

respectively.

Propagate uncertainty from A to C.

(1) Initialize dC ∈ RKL×JK to all zeros.

(2) For j = 1, . . . , J and k = 1, . . . , K,

(a) dF← (Zj:Z
T
j:)⊗ (XT((dWM:j �X:k)�X))

(b) dgradC← (XT × (dEM:j �X:k))Z
T
j:

(c) dC[:, (j − 1)K + k]← invFc× (−dF× (invFc× vec(gradC)) + vec(dgradC))

(3) invFdCj ← invFaj × dC[:, block(j,K)]T for j = 1, . . . , J

(4) invFdC← vcat(invFdC1, . . . , invFdCJ)

(5) varCfromA← colsums(dCT � invFdC)

Propagate uncertainty from B to C.

(1) Initialize dC ∈ RKL×IL to all zeros.

(2) For i = 1, . . . , I and ` = 1, . . . , L,

(a) dF← (ZT((dWMi: � Z:`)� Z))⊗ (Xi:X
T
i:)

(b) dgradC← Xi:((dEMi: � Z:`)
T × Z)

(c) dC[:, (i− 1)L+ `]← invFc× (−dF× (invFc× vec(gradC)) + vec(dgradC))

(3) invFdCi ← invFbi × dC[:, block(i, L)]T for i = 1, . . . , I

(4) invFdC← vcat(invFdC1, . . . , invFdCI)

(5) varCfromB← colsums(dCT � invFdC)

S56

Compute approximate variances for A, B, and C.

(1) varA← vcat(diag(invFa1), . . . , diag(invFaJ)) + varAfromU + varAfromV

(2) varB← vcat(diag(invFb1), . . . , diag(invFbI)) + varBfromU + varBfromV

(3) varC← diag(invFc) + varCfromA + varCfromB

Propagate uncertainty from (A,B, U, V) to S.

First, we describe how to compute varSfromU and varSfromV.

(1) Compute Q ∈ RI×J where qij ← −wijeij/rij.

(2) Compute P ∈ RI×J where pij ← 2wijqij/µij.

(3) dgradS← QVD

(4) dF← dgradS− PV D

(5) dS← (−invFs� dF� invFs� gradS) + (invFs� dgradS)

(6) varSfromU← rowsums(dS� reshape(varU,M, I)T � dS)

(7) For i = 1, . . . , I,

(a) dgradS← Qi:(DUi:)
T

(b) dF← dgradS− Pi:(DUi:)T

(c) dS← −invFsi · dF · invFsi · gradSi + invFsi · dgradS

(d) varSfromVi ← varVT × vec((dS� dS)T)

(8) varSfromV← (varSfromV1, . . . , varSfromVI)
T

Next, varSfromB and varSfromA are computed in exactly the same way as varSfromU and

varSfromV, respectively, but with X, Z, I, varB, and varA in place of U , V , D, varU, and

varV, respectively.

Propagate uncertainty from (A,B, U, V) to T .

(1) We compute varTfromV and varTfromU in exactly the same way as varSfromU and

varSfromV, respectively, but with Y T, µT, W T, ET, rT, V , U , gradT, invFt, varV, and

varU in place of Y , µ, W , E, r, U , V , gradS, invFs, varU, and varV, respectively.

(2) We compute varTfromA and varTfromB in exactly the same way as varSfromU and

varSfromV, respectively, but with Y T, µT, W T, ET, rT, Z, X, I, gradT, invFt, varA,

S57

and varB in place of Y , µ, W , E, r, U , V , D, gradS, invFs, varU, and varV,

respectively.

Compute approximate standard errors.

(1) ŝeA ← reshape(sqrt(varA), K, J)T

(2) ŝeB ← reshape(sqrt(varB), L, I)T

(3) ŝeC ← reshape(sqrt(varC), K, L)

(4) ŝeU ← reshape(sqrt(varU),M, I)T

(5) ŝeV ← reshape(sqrt(varV),M, J)T

(6) ŝeS ← sqrt(invFs + varSfromA + varSfromB + varSfromU + varSfromV)

(7) ŝeT ← sqrt(invFt + varTfromA + varTfromB + varTfromU + varTfromV)

We do not attempt to provide standard errors for D, since it seems difficult to estimate

D without significant bias. Note that here, we reshape the vectorized standard errors to

matrices having the same dimensions as the corresponding components, for instance, ŝeA

has the same dimensions as A, namely J ×K.

S9 Priors for regularization

We place independent normal priors on all the entries of A, B, C, D, U , and V ,

and in the NB-GBM, on the entries of S and T as well. Specifically, the prior is

π(A,B,C,D, U, V, S, T) = πa(A)πb(B)πc(C)πd(D)πu(U)πv(V)πs(S)πt(T) where

πa(A) =
∏

j,k N (ajk | 0, λ−1
a) πu(U) =

∏
i,m N (uim | 0, λ−1

u)

πb(B) =
∏

i,l N (bi` | 0, λ−1
b) πv(V) =

∏
j,m N (vjm | 0, λ−1

v) (S9.1)

πc(C) =
∏

k,` N (ck` | 0, λ−1
c) πs(S) =

∏
i N (si | ms, λ

−1
s)

πd(D) =
∏

m N (dmm | 0, λ−1
d) πt(T) =

∏
j N (tj | mt, λ

−1
t).

S58

Thus, the log-prior is

log π = const− 1
2
λa
∑
j,k

a2
jk − 1

2
λb
∑
i,`

b2
i` − 1

2
λc
∑
k,`

c2
k` − 1

2
λd
∑
m

d2
mm

− 1
2
λu
∑
i,m

u2
im − 1

2
λv
∑
j,m

v2
jm − 1

2
λs
∑
i

(si −ms)
2 − 1

2
λt
∑
j

(tj −mt)
2.

(S9.2)

For the prior parameters, we use the following default settings: λa = λb = λc = λd = λu =

λv = 1, ms = mt = 0, and λs = λt = 1. These defaults are fairly generally applicable

since they are acting on coefficients that are on the same scale in terms of units, due to

the fact that we standardize the covariates to have zero mean and unit variance, that is,

1
I

∑I
i=1 xik = 0 and 1

I

∑I
i=1 x

2
ik = 1 for all k ≥ 2 and 1

J

∑J
j=1 zj` = 0 and 1

J

∑J
j=1 z

2
j` = 1 for

all ` ≥ 2. However, specific applications may call for departures from these defaults.

For the updates to G = UD and H = V D in the GBM estimation algorithm (Sec-

tion S7), we use the priors on G and H induced by the priors on U and V , given D.

First consider G. For any fixed D, the induced prior on gim = uimdmm is π(gim) =

N (gim | 0, d2
mm/λu). Thus, given D, the prior on each row of G is Gi: ∼ N (0,Λ−1) where

Λ = (D2/λu)
−1. The gradient and Hessian of the log-prior on Gi: are therefore −ΛGi: and

−Λ, respectively. Hence, with this prior, the regularized Fisher scoring approach (Equa-

tion 3.1) yields the G update formulas used in the algorithm (Section S7). The H update is

similar, except that the induced prior is Hj: ∼ N (0,Λ−1) where Λ = (D2/λv)
−1. It seems

reasonable to hold D fixed when computing the induced priors on G and H, rather than

integrating it out, since D tends to be more accurately estimated than U or V (in terms

of relative MSE), presumably due to the fact that D has only M nonzero entries, each of

which is informed by all of the data; see Figure S1 for an empirical example.

S59

S10 Proofs

S10.1 Identifiability and interpretation

Proof of Theorem 5.1. Left-multiplying both sides of Equation 5.1 by XT, we have

XTXAT
1 +XTXC1Z

T = XTXAT
2 +XTXC2Z

T (S10.1)

by Condition 2.1(b). Since XTX is invertible, this implies

AT
1 + C1Z

T = AT
2 + C2Z

T. (S10.2)

Right-multiplying Equation S10.2 by Z, we have C1Z
TZ = C2Z

TZ by Condition 2.1(b).

Since ZTZ is invertible, this implies that C1 = C2. Plugging C1 = C2 into Equation S10.2

yields A1 = A2. Plugging A1 = A2 and C1 = C2 into Equation 5.1, we have

B1Z
T + U1D1V

T
1 = B2Z

T + U2D2V
T

2 . (S10.3)

Right-multiplying Equation S10.3 by Z, using Condition 2.1(b), and using the fact that

ZTZ is invertible, we obtain B1 = B2. This implies that U1D1V
T

1 = U2D2V
T

2 . By the

uniqueness properties of the singular value decomposition, Conditions 2.1(c) and 2.1(d)

imply that D1 = D2, U1 = U2S, and V T
1 = SV T

2 for a diagonal matrix S of the form

S = Diag(±1, . . . ,±1) (Blum et al., 2020). By Condition 2.1(e), S = I. Therefore, U1 = U2

and V1 = V2. This proves that A, B, C, D, U , and V are uniquely determined by E(Y)

for any given X, Z, M .

Proof of Theorem 5.2. First,
∑J

j=1 ajk = 0 follows from the fact that zj1 = 1 for all j by

Condition 2.2(a) and ZTA = 0 by Condition 2.1(b). Likewise,
∑I

i=1 bi` = 0 follows from

xi1 = 1 and XTB = 0. In the same way,
∑I

i=1 uim = 0 and
∑J

j=1 vjm = 0 since xi1 = 1,

zj1 = 1, XTU = 0, and ZTV = 0.

S60

When Condition 2.2(a) holds, we can rearrange Equation 2.1 as

g(µij) = c11 + aj1 + bi1 +
K∑
k=2

(ck1 + ajk)xik +
L∑
`=2

(c1` + bi`)zj`

+
K∑
k=2

L∑
`=2

ck`xikzj` +
M∑
m=1

uimdmmvjm. (S10.4)

Averaging Equation S10.4 over all i, and using these sum-to-zero properties (specifically,

using that
∑I

i=1 xik = 0 for k ≥ 2,
∑I

i=1 bi` = 0, and
∑I

i=1 uim = 0),

1

I

I∑
i=1

g(µij) = c11 + aj1 + (1
I

∑
i bi1) +

K∑
k=2

(ck1 + ajk)(
1
I

∑
i xik) +

L∑
`=2

(
c1` + (1

I

∑
i bi`)

)
zj`

+
K∑
k=2

L∑
`=2

ck`(
1
I

∑
i xik)zj` +

M∑
m=1

(1
I

∑
i uim)dmmvjm

= c11 + aj1 +
L∑
`=2

c1`zj`. (S10.5)

In the same way, averaging Equation S10.4 over all j (and using that
∑J

j=1 zj` = 0 for

` ≥ 2,
∑J

j=1 ajk = 0, and
∑J

j=1 vjm = 0), we have

1

J

J∑
j=1

g(µij) = c11 + bi1 +
K∑
k=2

ck1xik.

Finally, averaging Equation S10.5 over all j, we have 1
IJ

∑I
i=1

∑J
j=1 g(µij) = c11.

Proof of Theorem 5.3. For any Q ∈ Rm×n, we have SS(Q) = tr(QTQ), where tr(·) denotes

the trace. Define Q = XAT + BZT + XCZT + UDV T. By using XTB = 0, ZTA = 0,

XTU = 0, and ZTV = 0, we have that

QTQ = (AXT + ZBT + ZCTXT + V DUT)(XAT +BZT +XCZT + UDV T)

= AXTXA+ AXTXCZT + ZBTBZT + ZBTUDV T + ZCTXTXAT

+ ZCTXTXCZT + V DUTBZT + V DUTUDV T.

S61

By the cyclic property of the trace,

tr(AXTXCZT) = tr(XCZTAXT) = 0,

tr(ZBTUDV T) = tr(BTUDV TZ) = 0,

tr(ZCTXTXAT) = tr(XATZCTXT) = 0,

tr(V DUTBZT) = tr(BZTV DUT) = 0.

Therefore, by the linearity of the trace,

SS(Q) = tr(QTQ) = tr(AXTXAT) + tr(ZBTBZT) + tr(ZCTXTXCZT) + tr(V DUTUDV T)

= SS(XAT) + SS(BZT) + SS(XCZT) + SS(UDV T).

S10.2 Likelihood-preserving projections

Proof of Theorem 5.4. (1.) For the projection of Ã, plugging in the definitions of A1 and

C1, we have

XAT
1 +XC1Z

T = XÃT −X(Z+Ã)TZT +XCZT +X(Z+Ã)TZT = XÃT +XCZT,

and therefore, η(A1, B, C1, D, U, V) = η(Ã, B, C,D, U, V). To see that Condition 2.1 is

satisfied, first note that ZT(I− ZZ+) = ZT − ZTZ(ZTZ)−1ZT = 0, and therefore

ZTA1 = ZT(Ã− ZZ+Ã) = ZT(I− ZZ+)Ã = 0.

S62

(2.) Similarly, for the projection of B̃, we have B1Z
T + XC1Z

T = B̃ZT + XCZT and

XTB1 = 0. (3.) For the projection of G̃, we have

XAT
1 +XC1Z

T + U1D1V
T

1 = XAT
0 −X(Z+A0)TZT +XCZT +X(Z+A0)TZT +G0V

T

= XAT +X(X+G̃)V T +XCZT + G̃V T −X(X+G̃)V T

= XAT +XCZT + G̃IV T,

and thus, η(A1, B, C1, D1, U1, V1) = η(A,B,C, I, G̃, V). To check that Condition 2.1 is

satisfied, first observe that ZTA1 = ZT(I− ZZ+)A0 = 0 and XTG0 = XT(I−XX+)G̃ = 0.

Hence,

0
(a)
= XTG0V

TV1D
−1
1

(b)
= XTU1D1V

T
1 V1D

−1
1

(c)
= XTU1

where we have used (a) XTG0 = 0, (b) G0V
T = U1D1V

T
1 , and (c) V T

1 V1 = I and D1D
−1
1 = I.

Likewise, since V TZ = 0 by assumption,

0 = D−1
1 UT

1G0V
TZ = D−1

1 UT
1U1D1V

T
1 Z = V T

1 Z

since UT
1U1 = I and D−1

1 D1 = I.

(4.) For the projection of H̃, in an altogether similar way, we have

B1Z
T +XC1Z

T + U1D1V
T

1 = BZT +XCZT + UIH̃T.

Further, XTB1 = XT(I−XX+)B0 = 0 and ZTH0 = 0, thus

0 = ZTH0U
TU1D

−1
1 = ZTV1D1U

T
1U1D

−1
1 = ZTV1

0 = XTUHT
0V1D

−1
1 = XTU1D1V

T
1 V1D

−1
1 = XTU1.

Computationally, it is highly advantageous to structure the calculation of the projec-

S63

tions in Theorem 5.4 as follows. First, one can precompute the pseudoinverses X+ and

Z+ since X and Z are fixed throughout the algorithm. In the updates to A (or B), it

is advantageous to first compute Z+Ã (or X+B̃, respectively) in order to avoid explicitly

computing and storing XX+ ∈ RI×I and ZZ+ ∈ RJ×J . Likewise, in the projection of G̃ (or

H̃), first compute X+G̃ and Z+A0 (or Z+H̃ and X+B0, respectively). We use this approach

in the step-by-step algorithm provided in Section S7.

The interpretation of the operations in Theorem 5.4 is as follows. For Ã, the idea is

that A1 = (I− ZZ+)Ã is an orthogonal projection of the columns of Ã onto the nullspace

of ZT, and C1 is a shifted version of C to compensate for the shift from Ã to A1. Likewise

for B̃, but with X instead of Z. For G̃, the idea is that (a) G0 is a projection of G̃ onto the

nullspace of XT, (b) the SVD enforces the orthonormality, ordering, and sign constraints

on U1, D1, and V1 while maintaining XTU1 = 0 and ZTV1 = 0, (c) A0 compensates for the

shift from G̃ to G0, (d) A1 projects A0 onto the nullspace of ZT, and (e) C1 compensates

for the shift from A0 to A1. For H̃, the interpretation is similar.

S10.3 Estimation time complexity

In this section, we justify the expressions in Section 5 giving the time complexity of the

estimation algorithm as a function of I, J , K, L, and M , assuming max{K2, L2,M} ≤

min{I, J} (Equation 5.2). The outline of the estimation algorithm is in Section 3, and the

step-by-step details are in Section S7. Denote x ∧ y = min{x, y} and x ∨ y = max{x, y}.

For the updates to each of A, B, C, D, UD, V D, S, and T , we report the computation

time complexity after η, µ, W , and E have been recomputed.

Cost of preprocessing and initialization. Precomputing the pseudoinverses X+ and

Z+ takes O(IK2) and O(JL2) time, respectively; thus, both are O(IJ) by Equation 5.2.

Computing C ← X+Y̌ (Z+)T takes O(IJ(K ∧L)) time, A← (X+Y̌ −CZT)T takes O(IJK)

time, and B ← Y̌ (Z+)T−XC takes O(IJL) time. Computing D, U , and V takes O(IJM)

time, since the truncated SVD of rank M for an I×J matrix can be done in O(IJM) time

S64

(Halko et al., 2011). Finally, each update to S and T takes O(IJ) time (see below). Thus,

overall, preprocessing and initialization takes O(IJ(K ∨ L ∨M)) time.

Cost of computing η, µ, W , and E. Computing η = XAT +BZT +XCZT +UDV T

takes O(IJ(K∨L∨M)) time, since XAT, BZT, XCZT, and UDV T take O(IJK), O(IJL),

O(IJ(K∧L)), and O(IJM) time, respectively. Computing µ, W , and E takes O(IJ) time

given η.

Cost of updating A. For each j, computing the Fisher scoring step takes O(IK2) time,

so altogether the J steps take O(IJK2) time. For the projection, we compute Q ← Z+A

and ZQ, which takes O(JKL) time. By Equation 5.2, we have L ≤ I, so the cost of

computing the projection can be absorbed into the cost of the Fisher scoring steps.

Cost of updating B. By symmetry, this takes O(IJL2) time.

Cost of updating C. Computing the Fisher information matrix F takes O(IJK2 +

JK2L2) time, which is O(IJK2) since L2 ≤ I by Equation 5.2. Inverting F + λcI takes

O((KL)3) = O(IJKL) time (using Equation 5.2), and computing XTEZ takes O(IJK)

time, so the update to C can be done in O(IJ(K2 ∨ L2) time.

Cost of updating D. Computing the Fisher information matrix F takes O(IJM2)

time, inverting F + λdI takes O(M3) time, and computing diag(UTEV) takes O(IJM)

time. Thus, the update to D takes O(IJM2) time.

Cost of updating G = UD. By comparison with the B update, the Fisher scoring

steps cost O(IJM2) time. The projection steps (except for the SVD) take O(IKM +

JKM +JKL) time, and by Equation 5.2, this is O(IJM). Computing the truncated SVD

of rank M for an I×J matrix can be done in O(IJM) time (Halko et al., 2011). Therefore,

the cost of the projection can be absorbed into the Fisher scoring steps.

Cost of updating H = V D. By symmetry, this takes O(IJM2) time.

Cost of updating S and T . Given µ, updating S and T takes O(IJ) time, since

computing δ and δ′ involves a loop over all i and j.

S65

S10.4 Inference time complexity

Here, we justify the expressions in Section 5 giving the time complexity of the inference

algorithm, assuming max{K2, L2,M} ≤ min{I, J} (Equation 5.2) and also assuming I ≥

J . The outline of the inference algorithm is in Section 4.2, and the step-by-step details are

in Section S8. Denote x ∧ y = min{x, y} and x ∨ y = max{x, y}.

Cost of preprocessing. Computing η, µ, W , and E takes O(IJ(K ∨ L ∨M)) time.

Computing gradA, gradB, and gradC takes O(IJK), O(IJL), and O(IJK) time, respec-

tively. All of the other preprocessing steps take O(IJ) time.

Cost of computing conditional uncertainty for each component. Computing

invFa, invFb, and invFc take O(IJK2), O(IJL2), and O(IJ(K2∨L2)) time, respectively.

Both invFu and invFv take O(IJM2) time, and invFs and invFt take O(IJ) time. Thus,

overall, this part is O(IJ(K2 ∨ L2 ∨M2)).

Cost of computing constraint Jacobians for U and V . Computing Ju and Jv

take O(I(KM2 +M3)) and O(J(LM2 +M3)) time, respectively.

Cost of computing joint uncertainty in (U, V) accounting for constraints. The

most expensive steps are computing FuvFFuv← FuvT × FFuv,

B←

[
A JvT

Jv 0

]−1

,

and g ← colsums(FuvD � (C × FuvD)), which take O(IJ2M3), O(J3M3), and O(IJ2M3)

time, respectively. Since we assume I ≥ J , these are all O(IJ2M3). It is tedious but

straightforward to check that all of the other steps in this part take less than O(IJ2M3)

time, assuming I ≥ J and max{K2, L2,M} ≤ min{I, J} (Equation 5.2).

Cost of propagating uncertainty from U and V to A and B. Computing

varAfromU and varAfromV take O(IJK(K∨M)) and O(IJK2M) time, respectively; com-

bined, this is O(IJK2M). By symmetry, varBfromU and varBfromV take O(IJL2M) time.

Cost of propagating uncertainty from A and B to C. First, consider comput-

S66

ing varCfromA. Each step in the loop over j and k takes O(IK2) time (since L2 ≤ I),

thus, computing dC takes O(IJK3) time altogether. Computing invFdC takes O(JK3L)

time, and the last step is O(JK2L). Thus, overall, varCfromA takes O(IJK3) time. By

symmetry, varCfromB takes O(IJL3) time.

Cost of propagating uncertainty from (A,B, U, V) to S. Computing varSfromA,

varSfromB, varSfromU, and varSfromV take O(IJK), O(IJL), O(IJM), and O(IJM)

time, respectively. Thus, overall this takes O(IJ(K ∨ L ∨M)) time.

Cost of propagating uncertainty from (A,B, U, V) to T . By symmetry,

varTfromA, varTfromB, varTfromU, and varTfromV takes O(IJ(K ∨L∨M)) time overall.

Cost of computing approximate standard errors. Given the approximate

element-wise variances, this is only takes as much time as the dimension of the each of

the parameter matrices/vectors; namely, O(JK), O(IL), O(KL), O(IM), O(JM), O(I),

and O(J) for each of A, B, C, U , V , S, and T , respectively. Using Equation 5.2 to easily

upper bound each of these shows that, overall, this is O(IJ).

References

Agresti, A. Foundations of Linear and Generalized Linear Models. John Wiley & Sons, 2015.

Aitchison, J. and Silvey, S. Maximum-likelihood estimation of parameters subject to restraints.
The Annals of Mathematical Statistics, pages 813–828, 1958.

Babadi, M., Lee, S. K., and Smirnov, A. N. GATK gCNV: accurate germline copy-number variant
discovery from sequencing read-depth data. The International Conference on Probabilistic
Programming (PROBPROG), Oct 2018.

Benzécri, J. L’analyse des Correspondances. L’analyse des Données, Vol. 2. Dunod. Paris, 1973.

Blum, A., Hopcroft, J., and Kannan, R. Foundations of Data Science. Cambridge University
Press, 2020.

Boyd, S. and Vandenberghe, L. Convex Optimization. Cambridge University Press, 2004.

Buettner, F., Pratanwanich, N., McCarthy, D. J., Marioni, J. C., and Stegle, O. f-scLVM: scalable
and versatile factor analysis for single-cell RNA-seq. Genome Biology, 18(1):212, 2017.

Carroll, J. D., Pruzansky, S., and Kruskal, J. B. CANDELINC: A general approach to multidi-
mensional analysis of many-way arrays with linear constraints on parameters. Psychometrika,
45(1):3–24, 1980.

S67

Carvalho, C. M., Chang, J., Lucas, J. E., Nevins, J. R., Wang, Q., and West, M. High-dimensional
sparse factor modeling: applications in gene expression genomics. Journal of the American
Statistical Association, 103(484):1438–1456, 2008.

Chadoeuf, J. and Denis, J. B. Asymptotic variances for the multiplicative interaction model.
Journal of Applied Statistics, 18(3):331–353, 1991.

Choulakian, V. Generalized bilinear models. Psychometrika, 61(2):271–283, 1996.

Cochran, W. The comparison of different scales of measurement for experimental results. The
Annals of Mathematical Statistics, 14(3):205–216, 1943.

Davies, P. and Tso, M. K.-S. Procedures for reduced-rank regression. Journal of the Royal
Statistical Society: Series C (Applied Statistics), 31(3):244–255, 1982.

de Falguerolles, A. GBMs: GLMs with bilinear terms. In COMPSTAT, pages 53–64. Springer,
2000.

Denis, J.-B. and Gower, J. C. Asymptotic confidence regions for biadditive models: Interpreting
genotype-environment interactions. Journal of the Royal Statistical Society: Series C (Applied
Statistics), 45(4):479–493, 1996.

Dorkenoo, K. and Mathieu, J.-R. Etude d’un modele factoriel d’analyse de la variance comme
modele lineaire generalise. Revue de Statistique Appliquée, 41(2):43–57, 1993.

Fisher, R. and Mackenzie, W. Studies in Crop Variation: The Manurial Response of Different
Potato Varieties. Journal of Agricultural Sciences, 13:311–320, 1923.

Freeman, G. Statistical methods for the analysis of genotype-environment interactions. Heredity,
31(3):339–354, 1973.

Fromer, M., Moran, J. L., Chambert, K., Banks, E., Bergen, S. E., Ruderfer, D. M., Handsaker,
R. E., McCarroll, S. A., O’Donovan, M. C., Owen, M. J., et al. Discovery and statistical geno-
typing of copy-number variation from whole-exome sequencing depth. The American Journal
of Human Genetics, 91(4):597–607, 2012.

Gabriel, K. R. Least squares approximation of matrices by additive and multiplicative models.
Journal of the Royal Statistical Society: Series B (Methodological), 40(2):186–196, 1978.

Gabriel, K. R. Generalised bilinear regression. Biometrika, 85(3):689–700, 1998.

Gabriel, K. R. and Zamir, S. Lower rank approximation of matrices by least squares with any
choice of weights. Technometrics, 21(4):489–498, 1979.

Gauch, H. G. Jr. Model selection and validation for yield trials with interaction. Biometrics,
pages 705–715, 1988.

Gauch, H. G. Jr. Statistical analysis of yield trials by AMMI and GGE. Crop Science, 46(4):
1488–1500, 2006.

Gauch, H. G. Jr., Piepho, H.-P., and Annicchiarico, P. Statistical analysis of yield trials by AMMI
and GGE: Further considerations. Crop Science, 48(3):866–889, 2008.

S68

Gilbert, N. Non-additive combining abilities. Genetics Research, 4(1):65–73, 1963.

Gollob, H. F. A statistical model which combines features of factor analytic and analysis of
variance techniques. Psychometrika, 33(1):73–115, 1968.

Goodman, L. A. Simple models for the analysis of association in cross-classifications having
ordered categories. Journal of the American Statistical Association, 74(367):537–552, 1979.

Goodman, L. A. Association models and canonical correlation in the analysis of cross-
classifications having ordered categories. Journal of the American Statistical Association, 76
(374):320–334, 1981.

Goodman, L. A. Some useful extensions of the usual correspondence analysis approach and the
usual log-linear models approach in the analysis of contingency tables. International Statistical
Review/Revue Internationale de Statistique, pages 243–270, 1986.

Goodman, L. A. Measures, models, and graphical displays in the analysis of cross-classified data.
Journal of the American Statistical Association, 86(416):1085–1111, 1991.

Goodman, L. A. and Haberman, S. J. The analysis of nonadditivity in two-way analysis of
variance. Journal of the American Statistical Association, 85(409):139–145, 1990.

Gower, J. Discussion of the paper by van der Heijden, de Falguerolles and de Leeuw. Applied
Statistics, 38:273–276, 1989.

Greenacre, M. J. Theory and applications of correspondence analysis. London (UK) Academic
Press, 1984.

Halko, N., Martinsson, P.-G., and Tropp, J. A. Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions. SIAM review, 53(2):217–288,
2011.

Hoff, P. D. Multilinear tensor regression for longitudinal relational data. The Annals of Applied
Statistics, 9(3):1169, 2015.

Jiang, Y., Oldridge, D. A., Diskin, S. J., and Zhang, N. R. CODEX: A normalization and copy
number variation detection method for whole exome sequencing. Nucleic Acids Research, 43
(6):e39–e39, 2015.

Jørgensen, B. Exponential dispersion models. Journal of the Royal Statistical Society: Series B
(Methodological), 49(2):127–145, 1987.

Killick, R., Fearnhead, P., and Eckley, I. A. Optimal detection of changepoints with a linear
computational cost. Journal of the American Statistical Association, 107(500):1590–1598, 2012.

Krumm, N., Sudmant, P. H., Ko, A., O’Roak, B. J., Malig, M., Coe, B. P., Quinlan, A. R.,
Nickerson, D. A., and Eichler, E. E. Copy number variation detection and genotyping from
exome sequence data. Genome Research, 22(8):1525–1532, 2012.

Leek, J. T. and Storey, J. D. Capturing heterogeneity in gene expression studies by surrogate
variable analysis. PLoS Genetics, 3(9):e161, 2007.

S69

Leek, J. T. and Storey, J. D. A general framework for multiple testing dependence. Proceedings
of the National Academy of Sciences, 105(48):18718–18723, 2008.

Mandel, J. Non-additivity in two-way analysis of variance. Journal of the American Statistical
Association, 56(296):878–888, 1961.

Mandel, J. The partitioning of interaction in analysis of variance. Journal of Research of the
National Bureau of Standards, Series B, 73:309–328, 1969.

Marchenko, V. A. and Pastur, L. A. Distribution of eigenvalues for some sets of random matrices.
Matematicheskii Sbornik, 114(4):507–536, 1967.

Perry, P. O. and Pillai, N. S. Degrees of freedom for combining regression with factor analysis.
arXiv preprint arXiv:1310.7269, 2013.

Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., and Reich, D.
Principal components analysis corrects for stratification in genome-wide association studies.
Nature Genetics, 38(8):904–909, 2006.

Risso, D., Ngai, J., Speed, T. P., and Dudoit, S. Normalization of RNA-seq data using factor
analysis of control genes or samples. Nature Biotechnology, 32(9):896–902, 2014.

Silvey, S. D. The Lagrangian multiplier test. The Annals of Mathematical Statistics, 30(2):
389–407, 1959.

Silvey, S. D. Statistical Inference. CRC Press, 1975.

Stegle, O., Parts, L., Durbin, R., and Winn, J. A Bayesian framework to account for complex
non-genetic factors in gene expression levels greatly increases power in eQTL studies. PLoS
Comput Biol, 6(5):e1000770, 2010.

Sun, Y., Zhang, N. R., and Owen, A. B. Multiple hypothesis testing adjusted for latent variables,
with an application to the AGEMAP gene expression data. The Annals of Applied Statistics,
6(4):1664–1688, 2012.

Takane, Y. and Shibayama, T. Principal component analysis with external information on both
subjects and variables. Psychometrika, 56(1):97–120, 1991.

Townes, F. W. Generalized principal component analysis. arXiv preprint arXiv:1907.02647, 2019.

Tukey, J. W. One degree of freedom for non-additivity. Biometrics, 5(3):232–242, 1949.

Tukey, J. W. The future of data analysis. The Annals of Mathematical Statistics, 33(1):1–67,
1962.

Van Eeuwijk, F. A. Multiplicative interaction in generalized linear models. Biometrics, pages
1017–1032, 1995.

Williams, E. J. The interpretation of interactions in factorial experiments. Biometrika, 39(1-2):
65–81, 1952.

S70

	Introduction
	Model
	Identifiability and interpretation
	Outcome distributions
	Residuals and adjusting out selected effects

	Estimation
	Inference
	Delta propagation method
	Outline of inference algorithm

	Theory
	Simulations
	Consistency and statistical efficiency
	Accuracy of standard errors
	Computation time and algorithm convergence
	Robustness to the outcome distribution

	Application to gene expression analysis
	Comparing to DESeq2 on lymphoblastoid cell lines
	Analyzing GTEx data for aging-related genes

	Application to cancer genomics
	Conclusion
	Discussion
	Previous work
	Normal bilinear models without covariates.
	Normal bilinear models with covariates.
	Generalized bilinear models without covariates.
	Generalized bilinear models with covariates.
	Recent applications of bilinear models.

	Challenges and solutions
	Enforcing the GBM identifiability constraints

	Additional simulation results and details
	Additional application results and details
	Gene expression application – Details on Section 7
	Cancer genomics application – Details on Section 8

	Exponential dispersion families
	Gradient and Fisher information for EDF-GBMs
	Gradient and Fisher information for each component
	NB-GBM with log link: Gradient and Fisher information
	Fisher information between components of the model

	Constraint-augmented Fisher information
	Constraint-augmentation technique
	Constraint-augmented Fisher information for (U,V)
	Full constraint-augmented Fisher information for GBMs

	Step-by-step estimation algorithm
	Initialization procedure
	Updates to each component of the model
	Remarks on the estimation algorithm

	Step-by-step inference algorithm
	Priors for regularization
	Proofs
	Identifiability and interpretation
	Likelihood-preserving projections
	Estimation time complexity
	Inference time complexity

