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Abstract

Generalized likelihoods are commonly used to obtain consistent estimators with attractive
computational and robustness properties. Formally, any generalized likelihood can be used
to define a generalized posterior distribution, but an arbitrarily defined “posterior” cannot
be expected to appropriately quantify uncertainty in any meaningful sense. In this article,
we provide sufficient conditions under which generalized posteriors exhibit concentration,
asymptotic normality (Bernstein–von Mises), an asymptotically correct Laplace approxi-
mation, and asymptotically correct frequentist coverage. We apply our results in detail
to generalized posteriors for a wide array of generalized likelihoods, including pseudolike-
lihoods in general, the Gaussian Markov random field pseudolikelihood, the fully observed
Boltzmann machine pseudolikelihood, the Ising model pseudolikelihood, the Cox propor-
tional hazards partial likelihood, and a median-based likelihood for robust inference of
location. Further, we show how our results can be used to easily establish the asymptotics
of standard posteriors for exponential families and generalized linear models. We make no
assumption of model correctness so that our results apply with or without misspecification.
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1. Introduction

Many statistical estimation methods are based on maximizing a generalized likelihood func-
tion such as a pseudolikelihood, partial likelihood, or composite likelihood. Generalized
likelihood functions are often advantageous in terms of computation or robustness while
still having consistency guarantees, even though they do not necessarily correspond to the
standard likelihood of a probabilistic model.

Formally, any generalized likelihood can be used to construct a generalized posterior
proportional to the generalized likelihood times a prior. Generalized posteriors have been
proposed based on a variety of generalized likelihoods, including composite likelihoods
(Smith and Stephenson, 2009; Pauli et al., 2011; Ribatet et al., 2012; Friel, 2012), re-
stricted likelihoods (Pettitt, 1983; Doksum and Lo, 1990; Hoff, 2007; Lewis et al., 2014),
partial likelihoods (Raftery et al., 1996; Sinha et al., 2003; Kim and Kim, 2009; Ventura and
Racugno, 2016), substitution likelihoods (Lavine, 1995; Dunson and Taylor, 2005), modular
likelihoods (Liu et al., 2009; Jacob et al., 2017), quasi-likelihoods (Ventura et al., 2010),
generalized method of moments likelihoods (Yin, 2009), loss-based likelihoods (Jiang and
Tanner, 2008; Zhang, 2006; Bissiri et al., 2016), and more.
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Generalized posteriors have been used in a range of applications, including spatial statis-
tics (Ribatet et al., 2012), social networks (Friel, 2012), neural networks (Hyvärinen, 2006),
protein modeling (Zhou and Schmidler, 2009), computer model emulators of physical pro-
cesses (Liu et al., 2009), copula models (Hoff, 2007), survival analysis (Raftery et al., 1996),
infrastructure networks (Bouranis et al., 2017), longitudinal studies (Yin, 2009), and sur-
vey sampling (Williams and Savitsky, 2018). Although various theoretical guarantees have
been provided in various cases, bespoke theory has been needed to verify whether a given
generalized posterior will be valid for statistical inference.

In this article, we provide new theoretical results on the asymptotic validity of general-
ized posteriors. We provide a range of sufficient conditions for concentration (Section 2),
Bernstein–von Mises asymptotic normality and the Laplace approximation (Section 3), and
asymptotic frequentist coverage of credible sets (Section 4) for generalized posteriors. For
generalized posteriors derived from composite likelihoods—a large class covering essentially
all the examples in this article—we informally discuss what can be expected in terms of con-
sistency and coverage (Section 5). We show how our results can easily be applied to many
standard posteriors, including i.i.d. exponential family models and (non-i.i.d.) generalized
linear models for regression (Section 6). We then apply our results to generalized posteriors
for an array of generalized likelihoods, including pseudolikelihoods in general, the Gaussian
Markov random field pseudolikelihood, the fully observed Boltzmann machine pseudolike-
lihood, the Ising model pseudolikelihood, the Cox proportional hazards partial likelihood,
and a median-based likelihood for robust inference of location (Section 7). Finally, we
provide a discussion of previous work (Section 8).

1.1 Novelty and Overview of the Results

In some sense, new Bernstein–von Mises (BvM) theorems are never surprising since they
only verify what we already expect to happen if things are sufficiently nice. Thus, the utility
of a BvM result is directly related to the ease and generality with which it can be applied.
The main novelty of this article is that we provide results that are not only general, but are
also relatively easy to apply in practice.

More specifically, the results in this article are novel in the following respects: (a) we
provide rigorous results on generalized posteriors for non-i.i.d. data without any assumption
of model correctness (in fact, in our main results, we do not even require there to be a
probability model—true or assumed), (b) we provide sufficient conditions that are relatively
easy to verify when they hold, and (c) we apply our results to a number of non-trivial
examples, providing precise and concrete sufficient conditions for each example.

Standard BvM theorems are only applicable to standard posteriors under correctly speci-
fied i.i.d. probabilistic models (Van der Vaart, 2000; Ghosh and Ramamoorthi, 2003). Kleijn
and Van der Vaart (2012) generalize by establishing a Bernstein–von Mises theorem under
misspecification, but their result still only applies to standard posteriors, and they focus
mainly on the i.i.d. case. In contrast, our main results in Sections 2 and 3 do not in-
volve a probability model at all and are applicable to arbitrary distributions of the form
πn(θ) ∝ exp(−nfn(θ))π(θ), where π and the sequence of functions fn are required to satisfy
certain conditions. By treating the problem in this generality, we provide results for i.i.d.
and non-i.i.d. cases with or without misspecification; see the examples in Sections 6 and 7.
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Additionally, BvM theorems often only show that the total variation distance converges to
zero in probability; in contrast, we prove it converges to zero almost surely.

For generalized posteriors, much of the previous work on asymptotic normality tends to
rely on unspecified regularity conditions or only establishes weak convergence, that is, con-
vergence in distribution (Doksum and Lo, 1990; Lazar, 2003; Greco et al., 2008; Pauli et al.,
2011; Ribatet et al., 2012; Ventura and Racugno, 2016). In contrast, we show convergence
in total variation distance and we provide rigorous results with all assumptions explicitly
stated. Further, the usual regularity conditions in previous work include an assumption of
concentration (Bernardo and Smith, 2000); in contrast, we prove concentration.

In general, we make no assumption of model correctness. However, to ensure that a
generalized posterior is doing something reasonable, it is desirable to have a guarantee of
consistency—that is, concentration at the true parameter—if the assumed model is correct
or at least partially correct. To this end, in Section 5 we show that for any composite
likelihood derived from a correct model, the resulting generalized posterior concentrates at
the true parameter under fairly general conditions. Since many generalized likelihoods can
be viewed as composite likelihoods, this establishes consistency in a wide range of cases.
On the other hand, it is well-known that—except in special circumstances—the asymptotic
frequentist coverage of composite likelihood-based posteriors is typically incorrect unless an
adjustment is made (Pauli et al., 2011; Ribatet et al., 2012); see Section 5 for more details.

For each main result in Sections 2 and 3, we provide a range of alternative sufficient
conditions, from more abstract to more concrete. The more abstract versions are more
generally applicable, whereas the more concrete versions have conditions that are easier to
verify when applicable. For instance, Theorem 4 is an abstract BvM theorem involving a
quadratic representation condition; meanwhile, Theorem 5 is a more concrete BvM theorem
involving conditions on derivatives that are roughly analogous to the conditions in classical
BvM theorems. We also provide versions of the theorems based on convexity of fn, see
Theorems 3(3) and 5(2), which is usually easy to verify when it applies and simplifies the
other required conditions.

See Section 8 for a detailed technical discussion of how our assumptions, results, and
proof techniques compare with those in previous work.

2. Posterior Concentration

Theorem 2 is a general concentration result for generalized posteriors Πn on a measurable
space (Θ,A). The basic structure of the proof of Theorem 2 follows that of Schwartz’s
theorem (Schwartz, 1965; Ghosh and Ramamoorthi, 2003). Although Theorem 2 is use-
ful for theoretical purposes, in practice, one typically needs to establish concentration on
neighborhoods in a relevant topology on Θ. To this end, Theorem 3 provides a range of
sufficient conditions for concentration on metric space neighborhoods of a point θ0 ∈ Θ.

Condition 1 Let fn : Θ → R for n ∈ N be a sequence of functions on a probability space
(Θ,A,Π). For all n, assume zn < ∞ where zn =

∫
Θ exp(−nfn(θ))Π(dθ), and define the

probability measure

Πn(dθ) = exp(−nfn(θ))Π(dθ)/zn.

3



Miller

Throughout, all arbitrarily defined functions and sets are assumed to be measurable, and
we denote N = {1, 2, . . .}. Here, exp(−nfn(θ)) is interpreted as the “likelihood”, possibly
in some generalized sense, Π is the “prior”, and Πn is the “posterior”.

Our main theorems in Sections 2 and 3 do not involve a probability model and do
not even require that there be data. Instead, our results apply to arbitrary deterministic
sequences of distributions Πn satisfying certain conditions. Consequently, the mode of
convergence in these theorems is not probabilistic in any sense. In the applications in
Sections 6 and 7 that involve probability models, we show that the conditions hold with
probability 1, and in this way we obtain almost sure convergence.

Theorem 2 Assume Condition 1. If θ0 ∈ Θ and there exists f : Θ→ R such that

(1) fn(θ)→ f(θ) as n→∞ for all θ ∈ Θ,

(2) Π(Aε) > 0 for all ε > 0, where Aε = {θ ∈ Θ : f(θ) < f(θ0) + ε}, and

(3) liminfn infθ∈Acε fn(θ) > f(θ0) for all ε > 0,

then Πn(Aε)→ 1 as n→∞, for any ε > 0.

See Section A for the proof. In Section 8, we discuss the interpretation of this result in
relation to Schwartz’s theorem. When Θ is a metric space, the collection of functions (fn)
is said to be equicontinuous if for any ε > 0 there exists δ > 0 such that for all n ∈ N,
θ, θ′ ∈ Θ, if d(θ, θ′) < δ then |fn(θ)− fn(θ′)| < ε. For a function f : E → R where E ⊆ RD,
we denote the gradient by f ′(θ) (that is, f ′(θ) = ( ∂f∂θi (θ))

D
i=1 ∈ RD) and the Hessian by

f ′′(θ) (that is, f ′′(θ) = ( ∂2f
∂θi∂θj

(θ))Di,j=1 ∈ RD×D) when these derivatives exist. We use the

following definition of convexity to allow the possibility that the domain E ⊆ RD is non-
convex: f : E → R is convex if for all θ, θ′ ∈ E and all t ∈ [0, 1] such that tθ+ (1− t)θ′ ∈ E,
we have f(tθ + (1− t)θ′) ≤ tf(θ) + (1− t)f(θ′).

Theorem 3 Assume Condition 1. Suppose (Θ, d) is a metric space and A is the resulting
Borel sigma-algebra. Fix θ0 ∈ Θ and denote Nε = {θ ∈ Θ : d(θ, θ0) < ε}. If Π(Nε) > 0 for
all ε > 0, fn → f pointwise on Θ for some f : Θ → R, and any one of the following three
sets of assumptions hold, then for any ε > 0, Πn(Nε)→ 1 as n→∞.

(1) f is continuous at θ0 and liminfn infθ∈Nc
ε
fn(θ) > f(θ0) for all ε > 0.

(2) (fn) is equicontinuous on some compact set K ⊆ Θ, θ0 is an interior point of K,
f(θ) > f(θ0) for all θ ∈ K \ {θ0}, and liminfn infθ∈Kc fn(θ) > f(θ0).

(3) fn is convex for each n, Θ ⊆ RD with the Euclidean metric, θ0 is an interior point of
Θ, and either

(a) f(θ) > f(θ0) for all θ ∈ Θ \ {θ0}, or

(b) f ′ exists in a neighborhood of θ0, f ′(θ0) = 0, and f ′′(θ0) exists and is positive
definite.

Further, 2 ⇒1 and 3 ⇒1 under the assumptions of the theorem.
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See Section A for the proof. Note that if Θ is compact, then case 2 with K = Θ
simplifies to (fn) being equicontinuous and f(θ) > f(θ0) for all θ ∈ Θ \ {θ0}. This can be
used to prove consistency results based on classical Wald-type conditions such as in Ghosh
and Ramamoorthi (2003, Section 1.3.4).

3. Asymptotic Normality and the Laplace Approximation

Theorem 4 establishes general sufficient conditions under which a generalized posterior
exhibits asymptotic normality and an asymptotically correct Laplace approximation, along
with concentration at θ0. As in Section 2, π(θ) can be interpreted as the prior density and
πn(θ) ∝ exp(−nfn(θ))π(θ) can be thought of as the “posterior” density. The points θn
can be viewed as maximum generalized likelihood estimates. The proof of Theorem 4 is
concise, but some of the conditions of the theorem are a bit abstract. Thus, we also provide
Theorem 5 to give more concrete sufficient conditions which, when satisfied, are usually
easier to verify. Theorem 5 is the main result used in the examples in the rest of the paper.

We remphasize that unlike previous work on BvM, the results in this section only involve
conditions on fn and π, and do not involve any assumptions at all regarding the data; indeed,
we do not even require that there be any data. Thus, the limits in these theorems are not
probabilistic in any sense—they are simply limits of deterministic sequences. When we
apply the theorems to statistical models in Sections 6 and 7, we handle the randomness in
the data by showing that the conditions of the theorems hold almost surely, which implies
almost sure convergence.

We also highlight two supporting results that are employed in the proof of Theorem 5.
Theorem 6 provides concrete sufficient conditions under which the quadratic representation
(assumption 1) in Theorem 4 holds. Theorem 7 is a pure real analysis result on uniform
convergence of fn, f ′n, and f ′′n , which we believe is interesting in its own right.

Given x0 ∈ RD and r > 0, we write Br(x0) to denote the open ball of radius r at x0,
that is, Br(x0) = {x ∈ RD : |x−x0| < r}. We use | · | to denote the Euclidean norm. Given
positive sequences (an) and (bn), we write an ∼ bn to denote that an/bn → 1 as n → ∞.
We write N (x | µ,C) to denote the normal density with mean µ and covariance matrix C.

Theorem 4 Fix θ0 ∈ RD and let π : RD → R be a probability density with respect to
Lebesgue measure such that π is continuous at θ0 and π(θ0) > 0. Let fn : RD → R for
n ∈ N and assume:

(1) fn can be represented as

fn(θ) = fn(θn) + 1
2(θ − θn)THn(θ − θn) + rn(θ − θn) (3.1)

where θn ∈ RD such that θn → θ0, Hn ∈ RD×D symmetric such that Hn → H0

for some positive definite H0, and rn : RD → R has the following property: there
exist ε0, c0 > 0 such that for all n sufficiently large, for all x ∈ Bε0(0), we have
|rn(x)| ≤ c0|x|3; and

(2) for any ε > 0, liminfn infθ∈Bε(θn)c
(
fn(θ)− fn(θn)

)
> 0.
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Then, defining zn =
∫
RD exp(−nfn(θ))π(θ)dθ and πn(θ) = exp(−nfn(θ))π(θ)/zn, we have∫

Bε(θ0)πn(θ)dθ −−−→
n→∞

1 for all ε > 0, (3.2)

that is, πn concentrates at θ0,

zn ∼
exp(−nfn(θn))π(θ0)

| detH0|1/2
(2π

n

)D/2
(3.3)

as n→∞ (Laplace approximation), and letting qn be the density of
√
n(θ−θn) when θ ∼ πn,∫

RD

∣∣∣qn(x)−N (x | 0, H−1
0 )
∣∣∣dx −−−→

n→∞
0, (3.4)

that is, qn converges to N (0, H−1
0 ) in total variation.

See Section B for the proof. The virtue of Theorem 4 is not its technical depth—indeed,
it is fairly straightforward to prove using the generalized dominated convergence theorem.
Rather, the utility of this result is that it is formulated in such a way that it can be
broadly applied to generalized posteriors. In Section 8, we compare Theorem 4 to previous
Bernstein–von Mises results.

Roughly speaking, assumption 1 of Theorem 4 is that fn(θ) can be approximated by a
quadratic form in a neighborhood of θn. This is similar to a second-order Taylor expansion
where the constants in the bound on the remainder (namely, ε0 and c0) need to work for all n
sufficiently large; however, unlike in Taylor’s theorem, differentiability of fn is not assumed.
Since θn → θ0, the idea of assumption 1 is that the log posterior density approaches a
quadratic form near θ0. The assumption that H0 is positive definite is necessary to ensure
that in the limit, the exponentiated quadratic form can be normalized to a probability
density, namely, N (x | 0, H−1

0 ). Note that in the special case of a correctly specified i.i.d.
probability model, H0 typically coincides with the Fisher information matrix at θ0.

Assumption 2 of Theorem 4 ensures that, asymptotically, the posterior puts negligible
mass outside a neighborhood of θ0, and thus, the locally normal part near θ0 is all that
remains in the limit. Assumption 2 is stronger than necessary, but it is not clear how to
adapt the usual probabilistic separation conditions (such as uniformly consistent tests) to
generalized posteriors, especially since we seek almost sure convergence.

Throughout, we use the Euclidean–Frobenius norms on vectors v ∈ RD, matrices M ∈
RD×D, and tensors T ∈ RD3

, that is, |v| = (
∑

i v
2
i )

1/2, ‖M‖ = (
∑

i,jM
2
ij)

1/2, and ‖T‖ =

(
∑

i,j,k T
2
ijk)

1/2. Convergence and boundedness for vectors, matrices, and tensors is defined
with respect to these norms. A collection of functions hn : E → F , where F is a normed
space, is uniformly bounded if the set {‖hn(x)‖ : x ∈ E, n ∈ N} is bounded, and is pointwise
bounded if {‖hn(x)‖ : n ∈ N} is bounded for each x ∈ E. Let f ′′′(θ) denote the tensor of

third derivatives, that is, f ′′′(θ) = ( ∂3f
∂θi∂θj∂θk

(θ))Di,j,k=1 ∈ RD3
.

Theorem 5 Let Θ ⊆ RD. Let E ⊆ Θ be open (in RD) and bounded. Fix θ0 ∈ E and
let π : Θ → R be a probability density with respect to Lebesgue measure such that π is
continuous at θ0 and π(θ0) > 0. Let fn : Θ → R have continuous third derivatives on E.
Suppose fn → f pointwise for some f : Θ → R, f ′′(θ0) is positive definite, and (f ′′′n ) is
uniformly bounded on E. If either of the following two assumptions is satisfied:
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(1) f(θ) > f(θ0) for all θ ∈ K \{θ0} and liminfn infθ∈Θ\K fn(θ) > f(θ0) for some compact
K ⊆ E with θ0 in the interior of K, or

(2) each fn is convex and f ′(θ0) = 0,

then there is a sequence θn → θ0 such that f ′n(θn) = 0 for all n sufficiently large, fn(θn)→
f(θ0), Equation 3.2 (concentration at θ0) holds, Equation 3.3 (Laplace approximation) holds,
and Equation 3.4 (asymptotic normality) holds, where H0 = f ′′(θ0). Further, 2 ⇒1 under
the assumptions of the theorem.

See Section B for the proof. While Theorem 4 is more general, Theorem 5 provides
conditions that are easier to verify when applicable. The set E simply serves as a neigh-
borhood of θ0 on which fn is well-behaved. The assumption that f ′′(θ0) is positive definite
ensures that f is locally convex at θ0, but not necessarily globally convex. See Section 8 for
comparison with previous work. The following result is used in the proof of Theorem 5.

Theorem 6 Let E ⊆ RD be open and convex, and let θ0 ∈ E. Let fn : E → R have
continuous third derivatives, and assume:

(1) there exist θn ∈ E such that θn → θ0 and f ′n(θn) = 0 for all n sufficiently large,

(2) f ′′n(θ0)→ H0 as n→∞ for some positive definite H0, and

(3) (f ′′′n ) is uniformly bounded.

Letting Hn = f ′′n(θn), assumption 1 of Theorem 4 is satisfied for all n sufficiently large.

See Section B for the proof. The main tool used in the proof of Theorem 5 is the
following result, which provides somewhat more than we require. A collection of functions
hn : E → F , where E and F are subsets of normed spaces, is equi-Lipschitz if there exists
c > 0 such that for all n ∈ N, x, y ∈ E, we have ‖hn(x)− hn(y)‖ ≤ c‖x− y‖.

Theorem 7 (Regular convergence) Let E ⊆ RD be open, convex, and bounded. For
n ∈ N, let fn : E → R have continuous third derivatives, and suppose (f ′′′n ) is uniformly
bounded. If (fn) is pointwise bounded, then (fn), (f ′n), and (f ′′n) are all equi-Lipschitz and
uniformly bounded. If fn → f pointwise for some f : E → R, then f ′ and f ′′ exist, fn → f
uniformly, f ′n → f ′ uniformly, and f ′′n → f ′′ uniformly.

Note that if fn → f pointwise then (fn) is pointwise bounded; thus, if fn → f pointwise
then we also get the equi-Lipschitz and uniform bounded result. See Section C for proof.

4. Coverage

For a generalized posterior to provide useful quantification of uncertainty, it is important
that it be reasonably well-calibrated in terms of frequentist coverage. Ideally, we would like
Πn to have correct frequentist coverage in the sense that posterior credible sets of probability
ρ have frequentist coverage ρ. Obviously, an arbitrarily chosen generalized posterior cannot
be expected to have correct coverage. Thus, in Theorem 8, we provide simple conditions
under which a generalized posterior has correct frequentist coverage, asymptotically.
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Unfortunately, it seems that, like misspecified models, many common choices of gen-
eralized posterior do not exhibit correct coverage, even asymptotically. In Section 5.2, we
discuss why this problem occurs in the context of composite likelihood-based posteriors,
which is a very general class that includes nearly all of the examples in this paper. Due to
this, we do not apply our main coverage result (Theorem 8) to the examples in Sections 6
and 7 for the simple reason that we do not expect it to hold, except under correct speci-
fication or in special circumstances. Nonetheless, we present the theorem here in order to
help find those special circumstances when they do arise, and to provide a foundation for
future work that may generalize upon this result. For instance, having correct coverage
for each univariate component of the parameter, marginally, rather than jointly, is a less
stringent property that would still be very useful in practice. Alternatively, one could aim
for conservative coverage, which would be more achievable as well.

To interpret Theorem 8, we think of θn as a maximum generalized likelihood estimate,
θ0 as the “true” parameter we want to cover, Πn as the generalized posterior distribution,
Sn as a credible set of asymptotic probability ρ, Qn as a centered and scaled version of
Πn, and Rn as a centered and scaled version of Sn. Roughly, the theorem says that if
Qn converges in total variation to the asymptotic distribution of −

√
n(θn − θ0), and Rn

converges pointwise, then asymptotically, Sn contains the true parameter 100ρ percent of
the time. In other words, if the conditions of the theorem hold, then asymptotically, Πn has
correct frequentist coverage in the sense that posterior credible sets of probability ρ have
frequentist coverage ρ.

Typically, when things work out nicely, θn is
√
n-consistent and asymptotically normal

and a BvM result holds for Πn, in which case the result says that Πn has correct coverage
asymptotically if the covariance matrices of these two normal distributions are equal. In

other words, if
√
n(θn − θ0)

D−→ N (0, C1) and Qn → N (0, C2) in total variation distance,
then Πn has correct asymptotic frequentist coverage if C1 = C2. In this case, the only other
condition is that Rn converges to a set R with finite nonzero Lebesgue measure, because
it is guaranteed that Q(∂R) = 0. (Note that if X ∼ N (0, C1) then −X ∼ N (0, C1) also.)
This result is precisely what one would expect; thus, the purpose of the theorem is to make
this rigorous under easy-to-verify conditions.

We give RD the Euclidean topology and the resulting Borel sigma-algebra, B, and we
use m(·) to denote Lebesgue measure on RD. We write ∂R to denote the boundary of a set
R ∈ RD, that is, ∂R = R̄ \ R◦, where R̄ is the closure and R◦ is the interior of R. Given
R,R1, R2, . . . ⊆ RD, we write Rn → R to denote that for all x ∈ RD, 1(x ∈ Rn)→ 1(x ∈ R)
as n→∞. Define d(x,A) = infy∈A ‖x− y‖ for x ∈ RD and A ⊆ RD.

Theorem 8 Let θ1, θ2, . . . ∈ RD be a sequence of random vectors, and let θ0 ∈ RD be fixed.
Let Π1,Π2, . . . be a sequence of random probability measures on RD, possibly dependent on
θ1, θ2, . . .. Let S1, S2, . . . ⊆ RD be a sequence of random convex measurable sets such that
Πn(Sn)

a.s.−−→ ρ for some fixed ρ ∈ (0, 1). For A ∈ B, define Qn(A) =
∫
1
(√
n(θ − θn) ∈

A
)
Πn(dθ) and define Rn = {

√
n(θ − θn) : θ ∈ Sn}. Suppose there is a fixed probability

measure Q and a fixed set R ⊆ RD such that

(1) −
√
n(θn − θ0)

D−→ Q as n→∞ (where
D−→ denotes convergence in distribution),

(2) supA∈B |Qn(A)−Q(A)| a.s.−−→ 0 as n→∞ (that is, Qn
a.s.−−→ Q in total variation),
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(3) Rn
a.s.−−→ R as n→∞ (that is, a.s., for all x ∈ RD, 1(x ∈ Rn)→ 1(x ∈ R)), and

(4) Q(∂R) = 0 and 0 < m(R) <∞, where m denotes Lebesgue measure on RD.

Then P(θ0 ∈ Sn)→ ρ as n→∞.

See Section D for the proof. If Q has a density with respect to Lebesgue measure, then
the condition that Q(∂R) = 0 is automatically satisfied, since the assumptions imply that
R is convex and thus m(∂R) = 0. In Theorem 8, the assumption that the confidence sets
Sn are convex is not essential. The only place that convexity is used is to ensure that the
conclusion of Lemma 10 holds. Indeed, Theorem 8 still holds if S1, S2, . . . are not assumed
to be convex and assumption 3 is replaced by the conclusion of Lemma 10 (that is, for any
ε > 0, if A = {x ∈ RD : d(x,Rc) > ε} and B = {x ∈ RD : d(x,R) ≤ ε} then for all n
sufficiently large, A ⊆ Rn ⊆ B). We chose to state the theorem in this way because credible
sets are often convex by construction, and pointwise convergence of Rn to R is considerably
easier to verify than the conclusion of Lemma 10. The following lemmas are used in the
proof of Theorem 8, and may be useful in their own right. See Section D for their proofs.

Lemma 9 Let X1, X2, . . . ∈ RD be random vectors such that Xn
D−→ X for some random

vector X. Let R1, R2, . . . ⊆ RD be random convex measurable sets, possibly dependent on
X1, X2, . . .. Assume there exists some fixed R ⊆ RD with 0 < m(R) <∞ and P(X ∈ ∂R) =
0 such that Rn → R almost surely as n→∞. Then P(Xn ∈ Rn)→ P(X ∈ R) as n→∞.

The probability P(Xn ∈ Rn) should be interpreted as
∫
1(Xn(ω) ∈ Rn(ω))P (dω), that

is, Xn and Rn are jointly integrated over and P(Xn ∈ Rn) is a non-random quantity.

Lemma 10 Let R1, R2, . . . ⊆ RD be convex sets. Assume Rn → R for some R ⊆ RD with
0 < m(R) < ∞. For any ε > 0, if A = {x ∈ RD : d(x,Rc) > ε} and B = {x ∈ RD :
d(x,R) ≤ ε} then for all n sufficiently large, A ⊆ Rn ⊆ B.

5. Composite Likelihood-based Posteriors

Composite likelihoods (CLs) (Lindsay, 1988) represent a large class of generalized likelihoods
that encompasses essentially all of the examples in Sections 6 and 7. The theory of maximum
composite likelihood estimation is well-established (Lindsay, 1988; Molenbergs and Verbeke,
2005; Varin et al., 2011). Theoretical results for CL-based generalized posteriors have been
provided (Pauli et al., 2011; Ribatet et al., 2012; Ventura and Racugno, 2016; Greco et al.,
2008; Lazar, 2003), subject to the caveats discussed in the introduction. The purpose of
this section is to discuss how these previous results on CL-based generalized posteriors, or
CL-posteriors for short, can be strengthened using our results in Sections 2 to 4. Roughly
speaking, CL-posteriors derived from a correctly specified model can generally be expected
to be consistent, but not necessarily correctly calibrated with respect to frequentist coverage.

Let y denote the full data set, which may take any form such as a sequence, a graph,
a database, or any other data structure. Suppose {Pθ : θ ∈ Θ} is an assumed model for
the distribution of y given θ, where Θ ⊆ RD. For j = 1, . . . , k, suppose sj(y) and tj(y)
are functions of the data and, when Y ∼ Pθ, suppose the conditional distribution of sj(Y )

9
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given tj(Y ) has density pθ(sj |tj) with respect to a common dominating measure λj for all
values of θ and tj . Define the composite likelihood (Lindsay, 1988),

LCL(θ) =

k∏
j=1

pθ(sj |tj).

A few examples are given here and in Section 7; see Varin et al. (2011) for more examples.

Example 1 (i.i.d. likelihood) If y = (y1, . . . , yn), sj(y) = yj, and tj(y) = 0, then
LCL(θ) =

∏n
j=1 pθ(yj) is simply the likelihood for an i.i.d. model.

Example 2 (pseudolikelihood) If y = (y1, . . . , yn), sj(y) = yj, and tj(y) = y−j :=
(y1, . . . , yj−1, yj+1, . . . , yn), then LCL(θ) =

∏n
j=1 pθ(yj |y−j) is a pseudolikelihood (Besag,

1975).

Example 3 (restricted likelihood) If k = 1, t1(y) = 0, and s1(y) is an insufficient
statistic, then LCL(θ) is a restricted likelihood (Lewis et al., 2014). For instance, if s1(y)
consists of ranks or selected quantiles, then LCL(θ) is a rank likelihood (Pettitt, 1983; Hoff,
2007) or a quantile-based likelihood (Doksum and Lo, 1990), respectively.

Due to the special structure of composite likelihoods, one can make some general obser-
vations about CL-posteriors of the form πn(θ) ∝ LCL(θ)π(θ). First, a reassuring property
is that if the model is correctly specified, then CL-posteriors are consistent under fairly
general conditions; we discuss this next.

5.1 Consistency of CL-posteriors under Correct Specification

Throughout this article, we make no assumption of model correctness in the main results
(Sections 2 to 4) or the applications (Sections 6 and 7). However, for interpretability, it is
important to have a guarantee of consistency if the assumed model is correct or at least
partially correct. Here, we show that in many cases of interest, if the model is correctly
specified—or at least, if the conditional densities pθ(sj |tj) are correctly specified—then the
CL-posterior concentrates at the true parameter. The analogue of this result for maximum
CL estimators is well-known (Lindsay, 1988; Varin et al., 2011); also see Pauli et al. (2011)
and Ribatet et al. (2012).

First, observe that if Y ∼ Pθ0 , Sj = sj(Y ), and Tj = tj(Y ), then for all θ ∈ Θ,

E
(

log pθ0(Sj |Tj)
)
≥ E

(
log pθ(Sj |Tj)

)
(5.1)

because the conditional relative entropy E
(

log(pθ0(Sj |Tj)/pθ(Sj |Tj))
)

is nonnegative; this
is referred to as the information inequality by Lindsay (1988). Now, suppose that for each
n ∈ {1, 2, . . .}, we have a data set Y n, model {Pnθ : θ ∈ Θ} (where Θ does not depend on
n), and functions snj , tnj for j = 1, . . . , kn. Further, suppose the assumed model is correct,
such that Y n ∼ Pnθ0 where the true parameter θ0 is shared across all n. Define

fn(θ) = − 1

n
logLCL

n (θ) = − 1

n

kn∑
j=1

log pnθ (Snj |Tnj )

10
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and πn(θ) ∝ exp(−nfn(θ))π(θ) = LCL
n (θ)π(θ) where Snj = snj (Y n) and Tnj = tnj (Y n). In

many cases of interest (see Sections 6 and 7), we have that with probability 1, for all θ ∈ Θ,
limn→∞ fn(θ) = f(θ) where f(θ) = limn→∞ E

(
fn(θ)

)
. Then, by Equation 5.1, f(θ0) ≤ f(θ)

for all θ ∈ Θ, in other words, θ0 is a minimizer of f . Further, in many cases, f has a unique
minimizer, and πn concentrates at the unique minimizer; in particular, this holds if the
conditions of Theorem 3 or Theorem 5 are met. Therefore, in such cases, the CL-posterior
πn concentrates at the true parameter, θ0.

5.2 Coverage of CL-posteriors under Correct Specification

Although CL-posteriors have appealing consistency properties, they do not generally have
correct asymptotic frequentist coverage, except in special circumstances (Pauli et al.,
2011; Ribatet et al., 2012). Continuing in the notation of Section 5.1, suppose Y n ∼
Pnθ0 , let πn(θ) ∝ exp(−nfn(θ))π(θ) = LCL

n (θ)π(θ) be the CL-posterior, and let θn =

arg maxθ LCL
n (θ) = arg minθ fn(θ) be the maximum composite likelihood estimator. If The-

orem 5 applies with probability 1, then Qn
a.s.−−→ N (0, H−1

0 ) in total variation distance,
where H0 = f ′′(θ0) and Qn is the distribution of

√
n(θ−θn) when θ ∼ πn. This strengthens

previous BvM results for CL-posteriors by showing almost sure convergence (rather than
convergence in probability) with respect to total variation distance (rather than in the weak
topology).

To use Theorem 8, we also need to know the asymptotic distribution of θn. The
asymptotics of θn are well-known (Lindsay, 1988; Varin et al., 2011), but for complete-
ness we provide an informal derivation (see below). Define Gnj = ∇θ

∣∣
θ=θ0

log pnθ (Snj |Tnj ).

It turns out that −
√
n(θn − θ0) ≈ N (0, A−1

n JnA
−1
n ) under regularity conditions, where

An = 1
n

∑kn
j=1 Cov(Gnj ) and Jn = 1

nCov
(∑kn

j=1G
n
j

)
. Typically, An → H0 and Jn → J0 for

some J0, so that

−
√
n(θn − θ0)

D−−→ N (0, H−1
0 J0H

−1
0 ).

Hence, under typical conditions, the asymptotic distribution of −
√
n(θn − θ0) and the

limit ofQn are the same if and only ifH0 = J0. Therefore, under these conditions, ifH0 = J0

then the CL-posterior πn has correct asymptotic frequentist coverage by Theorem 8. For
instance, if for each n, Gn1 , . . . , G

n
kn

are pairwise uncorrelated, then An = Jn and hence
H0 = J0. However, in many cases of interest, H0 6= J0 and the CL-posterior needs to be
affinely transformed to have correct coverage (Ribatet et al., 2012; Pauli et al., 2011; Friel,
2012; Stoehr and Friel, 2015); also see Williams and Savitsky (2018) for a similar technique
in survey sampling.

For completeness, here we provide a rough sketch of the derivation of the asymp-
totic distribution of θn; see Lindsay (1988) and Varin et al. (2011). By a first-order
Taylor approximation applied to each entry of f ′n(θ) ∈ RD, when θn is near θ0 we have
0 = f ′n(θn) ≈ f ′n(θ0) + f ′′n(θ0)(θn − θ0), and thus, −

√
n(θn − θ0) ≈ f ′′n(θ0)−1(

√
nf ′n(θ0)),

assuming f ′′n(θ0) ∈ RD×D exists and is invertible and the error terms are negligible. When
n is large, we typically have f ′′n(θ0) ≈ Ef ′′n(θ0) (for instance, due to a law of large num-
bers result), and thus, f ′′n(θ0) ≈ Ef ′′n(θ0) = 1

n

∑kn
j=1 E(GnjG

n
j
T) = 1

n

∑kn
j=1 Cov(Gnj ) = An

since E(Gnj ) = 0 and E
(
∇2
θ

∣∣
θ=θ0

log pnθ (Snj |Tnj )
)

= −E(GnjG
n
j
T), as long as we can inter-

change the order of integrals and derivatives. Further, assuming a central limit theorem
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holds,
√
nf ′n(θ0) = − 1√

n

∑kn
j=1G

n
j ≈ N (0, Jn) where Jn = 1

nCov
(∑kn

j=1G
n
j

)
. Thus, under

appropriate conditions, −
√
n(θn − θ0) ≈ N (0, A−1

n JnA
−1
n ).

6. Applications to Standard Posteriors

In this section, we illustrate how our results can be used to easily prove posterior concen-
tration, the Laplace approximation, and asymptotic normality for standard models such
as exponential families, linear regression, and generalized linear models including logistic
regression and Poisson regression. We do not assume that the model is correctly specified;
thus, this section can be compared to the misspecified setting of Kleijn and Van der Vaart
(2012). Even in these standard models, our results go beyond the existing theory of Kleijn
and Van der Vaart (2012) by showing almost sure convergence and employing conditions
that we believe are easier to verify; see Section 8.5 for a detailed comparison. Further, these
“toy” examples serve to illustrate our general results in familiar settings, enabling one to
compare our assumptions with commonly used assumptions for these models.

6.1 Exponential Families

Consider an exponential family with density q(y|η) = exp(ηTs(y) − κ(η)) with respect
to a sigma-finite Borel measure λ on Y ⊆ Rd where s : Y → Rk, η ∈ E ⊆ Rk, and
κ(η) = log

∫
Y exp(ηTs(y))λ(dy). Any exponential family on Rd can be put in this form by

choosing λ appropriately and possibly reparametrizing to η. Let Qη(E) =
∫
E q(y|η)λ(dy)

and denote Eηs(Y ) =
∫
Y s(y)Qη(dy). For any m ∈ N, we give Rm the Euclidean metric and

the resulting Borel sigma-algebra unless otherwise specified.

Condition 11 Assume q(y|η) is of the form above, E = {η ∈ Rk : |κ(η)| <∞}, E is open,
E is nonempty, and η 7→ Qη is one-to-one (that is, η is identifiable).

Theorem 12 (Exponential families) Consider a family q(y|η) satisfying Condition 11.
Suppose Y1, Y2, . . . ∈ Y are i.i.d. random vectors such that Es(Yi) = Eθ0s(Y ) for some
θ0 ∈ Θ := E. Then for any open ball E such that θ0 ∈ E and Ē ⊆ Θ, fn(θ) :=
− 1
n

∑n
i=1 log q(Yi|θ) satisfies the conditions of Theorem 5 with probability 1.

Condition 11 is that the exponential family is full, regular, nonempty, identifiable, and in
natural form; these are standard conditions that hold for most commonly used exponential
families (Hoffman-Jørgensen, 1994; Miller and Harrison, 2014). Recall that the maximum
likelihood estimate (MLE) is obtained by matching the expected sufficient statistics to the
observed sufficient statistics. Thus, the assumption that Es(Yi) = Eθ0s(Y ) for some θ0 is
simply assuming that this moment matching is possible, asymptotically. In many cases,
this holds automatically since the moment space M := {Eθs(Y ) : θ ∈ Θ} is often equal to
the full set of possible values of Es(Yi), due to the fact that M is convex (e.g., Miller and
Harrison, 2014, Prop. 19). Thus, while exceptions can occur, the result holds very generally.

Proof of Theorem 12 Note that fn(θ) = κ(θ)− θTSn where Sn = 1
n

∑n
i=1 s(Yi). By stan-

dard exponential family theory (e.g., Miller and Harrison, 2014, Prop. 19), κ is C∞ (that is, κ
has continuous derivatives of all order), κ is convex on Θ, κ′(θ) = Eθs(Y ), and κ′′(θ) is sym-
metric positive definite for all θ ∈ Θ. Let s0 = Es(Yi). Since s0 = Es(Yi) = Eθ0s(Y ) = κ′(θ0)

12
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and κ′(θ0) is finite (because κ is C∞), Sn → s0 with probability 1 by the strong law of large
numbers. Thus, letting f(θ) = κ(θ)− θTs0, we have that with probability 1, for all θ ∈ Θ,
fn(θ) = κ(θ)− θTSn → κ(θ)− θTs0 = f(θ). (Note that due to the almost sure convergence
of the sufficient statistics, we not only have that for all θ, with probability 1, fn(θ)→ f(θ),
but we have the stronger consequence that with probability 1, for all θ, fn(θ)→ f(θ), which
is needed for Theorem 5 to apply.) Let E be an open ball such that θ0 ∈ E and Ē ⊆ Θ.
Then κ′′′(θ) is bounded on Ē, since κ′′′(θ) is continuous and Ē is compact. Hence, (f ′′′n ) is
uniformly bounded on E because f ′′′n (θ) = κ′′′(θ). Therefore, with probability 1, fn → f
pointwise, fn is convex and has continuous third derivatives on Θ, f ′(θ0) = κ′(θ0)− s0 = 0,
f ′′(θ0) = κ′′(θ0) is positive definite, and (f ′′′n ) is uniformly bounded on E.

6.2 Generalized Linear Models (GLMs)

First, we state a general theorem for GLMs, then we show how it applies to commonly used
GLMs. Consider a regression model of the form p(yi | θ, xi) ∝θ q(yi | θTxi) for covariates
xi ∈ X ⊆ RD and coefficients θ ∈ Θ ⊆ RD, where q(y|η) = exp(ηs(y) − κ(η)) is a one-
parameter exponential family satisfying Condition 11. Note that the proportionality is with
respect to θ, not yi. Assume Θ is open, Θ is convex, and θTx ∈ E for all θ ∈ Θ, x ∈ X .

Theorem 13 (GLMs) Suppose (X1, Y1), (X2, Y2), . . . ∈ X × Y i.i.d. such that:

(1) f ′(θ0) = 0 for some θ0 ∈ Θ, where f(θ) = −E log q(Yi | θTXi),

(2) E|Xis(Yi)| <∞ and E|κ(θTXi)| <∞ for all θ ∈ Θ,

(3) for all a ∈ RD, if aTXi
a.s.
= 0 then a = 0, and

(4) there is an open ball E ⊆ RD such that θ0 ∈ E, Ē ⊆ Θ, and for all j, k, ` ∈ {1, . . . , D},
E
(

supθ∈Ē |κ′′′(θTXi)XijXikXi`|
)
<∞.

Then for any open ball E satisfying assumption 4, fn(θ) := − 1
n

∑n
i=1 log q(Yi | θTXi) satis-

fies the conditions of Theorem 5 with probability 1.

Assumption 1 of Theorem 13 is essentially that the MLE exists, asymptotically. As-
sumption 3 is that the support of the covariate vector Xi is not contained in any proper
subspace of RD; this is necessary to ensure identifiability. When EXiX

T
i exists and is fi-

nite, assumption 3 is equivalent to the assumption that EXiX
T
i is non-singular, which is

commonly used to ensure identifiability in GLMs (Van der Vaart, 2000, Example 16.8); al-
ternatively, it is sometimes assumed that 1

n

∑n
i=1XiX

T
i is non-singular for all n sufficiently

large (Fahrmeir and Kaufmann, 1985). Assumptions 2 and 4 are moment conditions that
are fairly easy to work with; for instance, if the covariates are bounded and Es(Yi) exists,
then assumptions 2 and 4 are always satisfied since κ is C∞ smooth.

For comparison, traditional theorems on the asymptotic normality of the MLE in a GLM
typically assume the model is correctly specified (whereas we do not), and they assume
conditions on the observed Fisher information nf ′′n(θ), such as divergence of the smallest
eigenvalue of nf ′′n(θ0) and bounds on the variability of f ′′n(θ) near θ0 as n → ∞ (Fahrmeir
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and Kaufmann, 1985). These Fisher information conditions are more closely analogous to
assumption 1 of Theorem 4, which is implied by our result in Theorem 13. On the other
hand, we show almost sure convergence of the posterior in TV distance, whereas Fahrmeir
and Kaufmann (1985) only show convergence in distribution of the MLE.

Proof of Theorem 13 For all θ ∈ Θ, fn(θ) = 1
n

∑n
i=1 κ(θTXi) − θTSn where Sn =

1
n

∑n
i=1Xis(Yi). Thus, fn(θ) is C∞ on Θ by the chain rule, since κ(η) is C∞ on E . Further,

fn(θ) is convex since κ(η) is convex. Noting that

f(θ) = −E log q(Yi | θTXi) = E(κ(θTXi))− θTE(Xis(Yi)),

the assumed moment conditions (2) ensure that for all θ ∈ Θ, with probability 1, fn(θ)→
f(θ). This implies that with probability 1, for all θ ∈ Θ, fn(θ) → f(θ), by the following
argument. For any countable set C ⊆ Θ, we have that with probability 1, for all θ ∈ C,
fn(θ) → f(θ). Hence, letting C be a countable dense subset of Θ, and using the fact that
each fn is convex, we have that with probability 1, the limit f̃(θ) := limn fn(θ) exists and
is finite for all θ ∈ Θ and f̃ is convex (Rockafellar, 1970, Theorem 10.8). Since f is also
convex, then f̃ and f are continuous functions (Rockafellar, 1970, Theorem 10.1) that agree
on a dense subset, so they are equal.

Choose E according to assumption 4. We show that with probability 1, (f ′′′n ) is uniformly
bounded on E. Fix j, k, ` ∈ {1, . . . , D}, and define T (θ, x) = κ′′′(θTx)xjxkx` for θ ∈ Θ, x ∈
X . For all x ∈ X , θ 7→ T (θ, x) is continuous, and for all θ ∈ Θ, x 7→ T (θ, x) is measurable.
Since f ′′′n (θ)jk` = 1

n

∑n
i=1 T (θ,Xi), assumption 4 implies that with probability 1, (f ′′′n (θ)jk`)

is uniformly bounded on Ē, by the uniform law of large numbers (Ghosh and Ramamoorthi,
2003, Theorem 1.3.3). Letting Cjk`(X1, X2, . . .) be such a uniform bound for each j, k, `,
we have that with probability 1, for all n ∈ N, θ ∈ Ē, ‖f ′′′n (θ)‖2 =

∑
j,k,` f

′′′
n (θ)2

jk` ≤∑
j,k,`Cjk`(X1, X2, . . .)

2 <∞. Thus, (f ′′′n ) is a.s. uniformly bounded on Ē, and hence on E.

By Theorem 7, f ′′(θ0)
a.s.
= limn→∞ f

′′
n(θ0) = lim 1

n

∑n
i=1 κ

′′(θT0Xi)XiX
T
i . Since this limit

exists and is finite almost surely, then by the strong law of large numbers, the limit
must be equal to the expectation (Kallenberg, 2002, Theorem 4.23), that is, f ′′(θ0) =
E
(
κ′′(θT0Xi)XiX

T
i

)
. Thus, f ′′(θ0) is positive definite, since for all nonzero a ∈ RD,

aTf ′′(θ0)a = E
(
κ′′(θT0Xi)a

TXiX
T
i a
)
> 0, by the fact that κ′′(η) > 0 for all η ∈ E and

by assumption 3, aTXiX
T
i a = |aTXi|2 is strictly positive with positive probability.

6.2.1 Linear Regression

The linear regression model is p(yi | θ, xi) = N (yi | θTxi, σ2) for yi ∈ Y := R, xi ∈ X := RD,
and θ ∈ Θ := RD. The model can equivalently be written as p(yi | θ, xi) ∝θ q(yi | θTxi)
where q(y|η) := exp(ηs(y) − κ(η)) is a density with respect to λ(dy) = N (y | 0, σ2)dy for
y ∈ Y and η ∈ E := R, by defining s(y) = y/σ2 and κ(η) = η2/(2σ2).

Theorem 14 (Linear regression) Suppose (X1, Y1), (X2, Y2), . . . ∈ X×Y i.i.d. such that:

(1) E|XiYi| <∞, E‖XiX
T
i ‖ <∞, and

(2) for all a ∈ RD, if aTXi
a.s.
= 0 then a = 0.
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Then θ0 := (EXiX
T
i )−1EXiYi is well-defined and for any open ball E such that θ0 ∈ E,

fn(θ) := − 1
n

∑n
i=1 log q(Yi | θTXi) satisfies the conditions of Theorem 5 with probability 1.

Assumption 1 is necessary to ensure that θ0 := (EXiX
T
i )−1EXiYi is well-defined and

assumption 2 is necessary to ensure identifiability, as in the case of Theorem 13. Since κ(η) =
η2/(2σ2), we have f ′′n(θ) = 1

n

∑n
i=1XiX

T
i /σ

2. Thus, for the traditional MLE conditions of
Fahrmeir and Kaufmann (1985), it is not necessary to bound the variability of f ′′n(θ), since
f ′′n(θ) does not depend on θ in the linear regression model. Hence, these traditional MLE
conditions reduce to assuming divergence of the smallest eigenvalue of

∑n
i=1XiX

T
i , which

can be shown to be equivalent to assumption 2 of Theorem 14 when X1, X2, . . . are i.i.d.

Proof of Theorem 14 For any random vector Z ∈ Rk, E|Z| <∞ if and only if EZ exists
and is finite; likewise for matrices and tensors. Thus, EXiYi and EXiX

T
i exist and are finite.

Further, EXiX
T
i is positive definite (and hence, invertible) since for all nonzero a ∈ RD,

aT(EXiX
T
i )a = E|aTXi|2 > 0. Condition 11 is easily checked: E = {η ∈ R : |κ(η)| < ∞}

since η2/(2σ2) < ∞ for all η ∈ R, E is open and nonempty, and the mean of a normal
distribution is identifiable. The GLM conditions are also straightforward to verify. Θ is
open and convex, and θTx ∈ E for all θ ∈ Θ, x ∈ X . Assumption 3 of Theorem 13 is satisfied
by assumption, and assumption 4 of Theorem 13 is satisfied trivially since κ′′′(η) = 0 for all
η ∈ E . Assumption 1 of Theorem 14 implies that assumption 2 of Theorem 13 holds, since
E|Xis(Yi)| = E|XiYi|/σ2 <∞ and E|κ(θTXi)| = θT(EXiX

T
i )θ/(2σ2) <∞. It is straightfor-

ward to verify that assumption 1 of Theorem 13 holds with θ0 = (EXiX
T
i )−1EXiYi.

6.2.2 Logistic Regression

The logistic regression model is p(yi | θ, xi) = Bernoulli(yi | σ(θTxi)) for yi ∈ Y := {0, 1},
xi ∈ X := RD, and θ ∈ Θ := RD, where σ(η) = 1/(1 + e−η) for η ∈ E := R. Thus,
p(yi | θ, xi) = q(yi | θTxi) where q(y|η) := exp(ηy − κ(η)) is a density with respect to
λ = δ0 + δ1 for y ∈ Y and η ∈ E , by defining κ(η) = log(1 + eη). Here, δy denotes the unit
point mass at y.

Theorem 15 (Logistic regression) Suppose (X1, Y1), (X2, Y2), . . . ∈ X × Y i.i.d. such
that:

(1) f ′(θ0) = 0 for some θ0 ∈ Θ, where f(θ) = −E log q(Yi | θTXi),

(2) E|XijXikXi`| <∞ for all j, k, ` ∈ {1, . . . , D}, and

(3) for all a ∈ RD, if aTXi
a.s.
= 0 then a = 0.

Then for any open ball E ⊆ Θ such that θ0 ∈ E, fn(θ) := − 1
n

∑n
i=1 log q(Yi | θTXi) satisfies

the conditions of Theorem 5 with probability 1.

Assumption 1 is essentially that the MLE exists, asymptotically, and assumption 3 is
necessary for identifiability (see the remarks following Theorem 13); these are both very
mild. Assumption 2 is a third-moment condition on the covariates, which we use to bound
f ′′′n (θ); this is more stringent, but is reasonable in many practical applications.
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Proof Condition 11 is easily checked: E = {η ∈ R : |κ(η)| <∞}, E is open and nonempty,
and η is identifiable since σ(η) is one-to-one. Trivially, Θ is open and convex, and θTx ∈ E
for all θ ∈ Θ, x ∈ X . Assumptions 1 and 3 of Theorem 13 are satisfied by assumptions 1 and
3 of Theorem 15, respectively. Assumption 4 of Theorem 13 is satisfied due to assumption
2 and the fact that |κ′′′(η)| ≤ 3 for all η ∈ E , because κ′′′ = σ(1− σ)(1− 2σ)2− 2σ2(1− σ)2

and 0 < σ(η) < 1. Assumption 2 also implies that E|Xi| < ∞, because |Xi| ≤
∑

j |Xij |
and E|Xij | <∞ for all j (Folland, 2013, 6.12). It follows that assumption 2 of Theorem 13
holds, since E|XiYi| ≤ E|Xi| <∞ and E|κ(θTXi)| ≤ log 2 + E|θTXi| ≤ log 2 + |θ|E|Xi| <∞,
where we have used the inequality |κ(η)| = log(1 + eη) ≤ log 2 + |η| for η ∈ R.

6.2.3 Poisson Regression

The Poisson regression model is p(yi | θ, xi) = Poisson(yi | exp(θTxi)) for yi ∈ Y :=
{0, 1, 2, . . .}, xi ∈ X := RD, and θ ∈ Θ := RD. Thus, p(yi | θ, xi) ∝θ q(yi | θTxi) where
q(y|η) := exp(ηy − κ(η)) is a density with respect to λ :=

∑
y∈Y δy/y! for y ∈ Y and

η ∈ E := R, by defining κ(η) = eη.

Theorem 16 (Poisson regression) Suppose (X1, Y1), (X2, Y2), . . . ∈ X × Y i.i.d. such
that:

(1) f ′(θ0) = 0 for some θ0 ∈ Θ, where f(θ) = −E log q(Yi | θTXi),

(2) E|XiYi| <∞ and E exp(c|Xi|) <∞ for all c > 0, and

(3) for all a ∈ RD, if aTXi
a.s.
= 0 then a = 0.

Then for any open ball E ⊆ Θ such that θ0 ∈ E, fn(θ) := − 1
n

∑n
i=1 log q(Yi | θTXi) satisfies

the conditions of Theorem 5 with probability 1.

Proof As before, Condition 11 is easily checked: E = {η ∈ R : |κ(η)| < ∞}, E is open
and nonempty, and η is identifiable. Trivially, Θ is open and convex, and θTx ∈ E for all
θ ∈ Θ, x ∈ X . Assumptions 1 and 3 of Theorem 13 are satisfied by assumptions 1 and 3 of
Theorem 16. Assumption 2 of Theorem 13 is satisfied due to assumption 2 of Theorem 16,
since for all θ ∈ Θ, E|κ(θTXi)| = E exp(θTXi) ≤ E exp(|θ||Xi|) < ∞. For all m ∈ N and
j ∈ {1, . . . , D}, E|Xij |m ≤ E|Xi|m = m!E(|Xi|m/m!) ≤ m!E exp(|Xi|) <∞. Further, letting
r > 0, c = |θ0| + r, and E = Br(θ0), we have that for all θ ∈ Ē, κ′′′(θTXi) = exp(θTXi) ≤
exp(c|Xi|). Hence,

E
(

sup
θ∈Ē
|κ′′′(θTXi)XijXikXi`|

)
≤ E

(
ec|Xi||XijXikXi`|

)
≤
(

Ee4c|Xi|E|Xij |4E|Xik|4E|Xi`|4
)1/4

by Hölder’s inequality (Folland, 2013, 6.2); thus, assumption 4 of Theorem 13 holds.

7. Applications to Generalized Posteriors

In this section, we apply our results to a number of generalized posteriors of interest.
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7.1 Pseudolikelihood-based Posteriors

Pseudolikelihood (Besag, 1975) is a powerful approach for many models in which the like-
lihood is difficult to compute due to intractability of the normalization constant. Instead
of the standard likelihood p(y1, . . . , yn | θ), the basic idea is to use a pseudolikelihood
L(θ) =

∏n
i=1 p(yi | y−i, θ) where y−i = (y1, . . . , yi−1, yi+1, . . . , yn). Maximum pseudolikeli-

hood estimates are used in many applications and have been shown to be consistent and
asymptotically normal in a range of cases (Besag, 1975; Geman and Graffigne, 1986; Gidas,
1988; Comets, 1992; Jensen and Künsch, 1994; Mase, 1995; Liang and Yu, 2003; Hyvärinen,
2006). Usage of pseudolikelihoods for constructing generalized posteriors is much less com-
mon, perhaps due to concerns about the validity of the resulting posterior (but see Zhou and
Schmidler, 2009; Bouranis et al., 2017; Pauli et al., 2011; Rydén and Titterington, 1998).

In this section, we provide sufficient conditions for concentration, asymptotic normal-
ity, and the Laplace approximation for a large class of pseudolikelihood-based posteriors.
Specifically, we consider pseudolikelihoods in which each factor takes the form of a gen-
eralized linear model. We provide a general result for pseudolikelihoods in this class, and
then consider three cases in particular: Gaussian Markov random fields (Section 7.2), fully
visible Boltzmann machines (Section 7.3), and the Ising model on Zm (Section 7.4). Any
pseudolikelihood is a composite likelihood, so as discussed in Section 5, if the model is
correct then we can expect consistency but not necessarily correct frequentist coverage.

Condition 17 Suppose the data can be arranged in a sequence y1, y2, . . . ∈ Y ⊆ Rd and
consider a pseudolikelihood of the form:

Lpseudo
n (θ) ∝

n∏
i=1

q
(
yi | θTϕi(~y)

)
for θ ∈ Θ ⊆ RD, where ϕi(~y) ∈ X ⊆ RD is a function of ~y = (y1, y2, . . .) and q(y|η) =
exp(ηs(y)− κ(η)) is a one-parameter exponential family satisfying Condition 11 for y ∈ Y,
η ∈ E. Assume Θ is open and convex, and θTx ∈ E for all θ ∈ Θ, x ∈ X .

Theorem 18 Assume the setup in Condition 17. Let ~Y = (Y1, Y2, . . .) be a sequence of
random vectors in Y and define Xi = ϕi(~Y ). Suppose (X1, Y1), (X2, Y2), . . . are identically
distributed, but not necessarily independent. Define fn(θ) = − 1

n

∑n
i=1 log q(Yi | θTXi) and

f(θ) = −E log q(Yi | θTXi) for θ ∈ Θ. Assume:

(1) for all θ ∈ Θ, f(θ) is finite and fn(θ)
a.s.−−→ f(θ) as n→∞,

(2) there exists θ0 ∈ Θ such that f ′(θ0) = 0 and f ′′(θ0) = E
(
κ′′(θT0Xi)XiX

T
i

)
,

(3) for all a ∈ RD, if aTXi
a.s.
= 0 then a = 0, and

(4) with probability 1, (f ′′′n ) is uniformly bounded on some open ball E ⊆ Θ containing θ0.

For any E as in assumption 4, fn satisfies the conditions of Theorem 5 with probability 1.

Proof As in the proof of Theorem 13, fn is C∞, fn is convex, and by convexity, as-
sumption 1 implies that with probability 1, for all θ ∈ Θ, fn(θ) → f(θ). By Theorem 7,
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f ′′(θ0) exists and is finite. Thus, f ′′(θ0) is positive definite since for all nonzero a ∈ RD,
aTf ′′(θ0)a = E

(
κ′′(θT0Xi)a

TXiX
T
i a
)
> 0 by assumptions 2 and 3 and the fact that κ′′(η) > 0.

To explain the notation, the observed data consist of the first n elements of single
random sequence ~Y = (Y1, Y2, . . .), where each Yi is a random vector. In the Gaussian
Markov random field and Ising model examples in Sections 7.2 and 7.4 below, ~Y contains
the values at the vertices of a single infinite graph, arranged as a sequence. Meanwhile, in
the fully visible Boltzmann machine (Section 7.3), we have i.i.d. samples of graphs.

7.2 Gaussian Markov Random Fields

Gaussian Markov random fields (GMRFs) are widely used in spatial statistics and time-
series (Banerjee et al., 2014). Let G be an infinite regular graph with vertices v(1), v(2), . . .,
and let y1, y2, . . . ∈ R be variables associated with the vertices of G such that yi is the
value at v(i). Consider a model in which the conditional distribution of yi given y−i is
pθ(yi|y−i) = N (yi | θTϕi(~y), γ−1) where θ ∈ Θ := RD, ϕi(~y) = (yj : j ∈ Ni) ∈ RD, and
Ni = {j ∈ N : v(j) is adjacent to v(i)}. This leads to the pseudolikelihood (Besag, 1975)

LGRF
n (θ) =

n∏
i=1

pθ(yi|y−i) =
n∏
i=1

N
(
yi | θTϕi(~y), γ−1

)
.

By defining q(y|η) = exp(ηγy − κ(η)) for y ∈ R and η ∈ R, where κ(η) = 1
2γη

2, this
pseudolikelihood can be written as LGRF

n (θ) ∝
∏n
i=1 q

(
yi | θTϕi(~y)

)
.

Theorem 19 Let ~Y = (Y1, Y2, . . .) be a sequence of random variables in R and define
Xi = (Yj : j ∈ Ni) ∈ RD where Ni is defined as above. Suppose (X1, Y1), (X2, Y2), . . . are
identically distributed, but not necessarily independent. Assume:

(1) 1
n

∑n
i=1XiYi

a.s.−−→ EXiYi ∈ RD and 1
n

∑n
i=1XiX

T
i

a.s.−−→ EXiX
T
i ∈ RD×D, and

(2) for all a ∈ RD, if aTXi
a.s.
= 0 then a = 0.

Then θ0 := (EXiX
T
i )−1EXiYi is well-defined and for any open ball E such that θ0 ∈ E,

fn(θ) := − 1
n

∑n
i=1 log q(Yi | θTXi) satisfies the conditions of Theorem 5 with probability 1.

Proof We apply Theorem 18. Let f(θ) = −E log q(Yi | θTXi) = 1
2γθ

T(EXiX
T
i )θ−γθTEXiYi

for θ ∈ RD. Thus, f ′′(θ) = γ(EXiX
T
i ) = E

(
κ′′(θTXi)XiX

T
i

)
since κ′′(η) = γ. By assump-

tion 1, for all θ ∈ RD, f(θ) is finite and fn(θ)
a.s.−−→ f(θ) as n→∞. As in the case of linear

regression (Theorem 14), EXiX
T
i is positive definite by assumption 2, f ′(θ0) = 0, and (f ′′′n )

is a.s. uniformly bounded on all of RD since κ′′′(η) = 0.

The setup of Theorem 19 is quite general; note that the graph G may consist of a single
connected component (such as the m-dimensional integer lattice Zm) or it may consist
of many disconnected components, each of which could contain finitely many or infinitely
many vertices. Further, the setup is that there is a single graph G, and more and more of
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the graph is observed as n grows; thus, it is necessary that G be infinite in order to obtain
an asymptotic result, as we do in Theorem 19. The identically distributed assumption is
quite general as well; for instance, it holds whenever the true distribution is stationary
with respect to a set of transformations that can map v(i) to v(j) for any i, j. Thus,
this assumption is reasonable since stationarity is commonly assumed (Banerjee et al.,
2014; Lee et al., 2002; Kervrann and Heitz, 1995); also see Künsch (1981) for background.
Assumption 1 of Theorem 19 is that a strong law of large numbers holds for XiYi and XiX

T
i ;

in Theorem 20 we show that this holds whenever the true distribution is a stationary,
ergodic process on the integer lattice Zm, assuming a moment condition. Assumption 2
of Theorem 19 is simply that the support of the neighbor vector Xi is not contained in
any proper subspace of RD; see Theorem 13 for further discussion of this non-degeneracy
assumption.

Many applications in spatial statistics involve more complex models that do not sat-
isfy the assumption of a regular graph with identically distributed neighborhoods (Xi, Yi)
(Ferreira and De Oliveira, 2007). While Theorem 19 could be extended to handle such gen-
eralizations, we chose to keep it relatively simple in order to capture the essential features
of this class of models without being overburdened with details.

Theorem 20 Suppose G is the m-dimensional lattice on Zm, and let v : N → Zm be a
bijection from N to Zm such that R(v(1)) ≤ R(v(2)) ≤ · · · where R(j) = max{|j1|, . . . , |jm|}
for j ∈ Zm. Let T1, . . . , Tm denote the shift transformations on Zm. Suppose (Y1, Y2, . . .) is
a stochastic process such that the random field (Yv−1(j) : j ∈ Zm) is stationary with respect
to T1, . . . , Tm and ergodic with respect to at least one of T1, . . . , Tm. If E|Y1|4 < ∞, then
assumption 1 of Theorem 19 holds.

See Section E for the proof.

7.3 Fully Visible Boltzmann Machines

The Boltzmann machine is a stochastic recurrent neural network originally developed as a
model of neural computation (Hinton and Sejnowski, 1983; Ackley et al., 1985). Maximum
pseudolikelihood estimation has been shown to be consistent for fully visible Boltzmann
machines (Hyvärinen, 2006). Here, we consider the corresponding pseudolikelihood-based
generalized posteriors. To our knowledge, Theorem 21 is the first result establishing a
Bernstein–von Mises theorem for this model.

Define pA,b(y) ∝ exp(yTAy + bTy) for y ∈ Y := {−1, 1}d, where A ∈ Rd×d is a strictly
upper triangular matrix and b ∈ Rd. Given samples from pA,b, inference for A and b is
complicated by the intractability of the normalization constant ZA,b =

∑
y∈Y exp(yTAy +

bTy) since |Y| = 2d is very large when d is large. Observe that we can write

pA,b(yj |y−j) ∝yj exp
(∑j−1

k=1Akjykyj +
∑d

k=j+1Ajkyjyk + bjyj
)

= exp
(
yjθ

Tϕj(y)
)

(7.1)

where θ = θ(A, b) ∈ RD is a D = d+d(d− 1)/2 dimensional vector concatenating b and the
strictly upper triangular entries of A, and ϕj(y) ∈ {−1, 0, 1}D is a function that does not
depend on yj . Thus, we have pA,b(yj |y−j) = q

(
yj | θTϕj(y)

)
by defining q(yj |η) = exp(ηyj−

κ(η)) for yj ∈ {−1, 1} and η ∈ R, where κ(η) = log(eη + e−η). Now, suppose we have n
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samples y1, . . . , yn ∈ Y = {−1, 1}d and for θ ∈ Θ := RD, consider the pseudolikelihood

LBoltz
n (θ) =

n∏
i=1

d∏
j=1

pA,b(yij |yi,−j) =
n∏
i=1

d∏
j=1

q
(
yij | θTϕj(yi)

)
.

Theorem 21 Let Y1, Y2, . . . ∈ Y be i.i.d. random vectors and define Xij = ϕj(Yi). Define

f(θ) = −
∑d

j=1 E log q(Yij | θTXij) for θ ∈ Θ. Assume:

(1) f ′(θ0) = 0 for some θ0 ∈ Θ, and

(2) for all nonzero a ∈ Rd, Var(aTYi) > 0.

Then for any open ball E such that θ0 ∈ E, fn(θ) := − 1
n

∑n
i=1

∑d
j=1 log q

(
Yij | θTXij

)
satisfies the conditions of Theorem 5 with probability 1.

The assumptions of Theorem 21 are extremely mild and can be expected to typically
hold in practice. Assumption 1 is simply that the maximum pseudolikelihood estimator
exists, asymptotically – or more precisely, that the asymptotic pseudolikelihood function
has a critical point. Assumption 2 is that there is no lower-dimensional affine subspace that
contains Yi almost surely; this is analogous to the non-degeneracy condition in Theorem 18.

Proof of Theorem 21 Observe that

fn(θ) =
1

n

n∑
i=1

d∑
j=1

κ(θTXij) − θT
( 1

n

n∑
i=1

d∑
j=1

XijYij

)
and f(θ) =

∑d
j=1 Eκ(θTXij) − θT

(∑d
j=1 EXijYij

)
. As in the proof of Theorem 13, fn is

C∞ and convex. Since {−1, 0, 1}D is a finite set, sup
{
|κ(θTx)| : x ∈ {−1, 0, 1}D

}
< ∞ for

all θ ∈ Θ. Also, |XijkYij | ≤ 1, and thus, f(θ) is finite and fn(θ)
a.s.−−→ f(θ) by the strong law

of large numbers. (Note that the standard strong law of large numbers applies here since
the data consist of n i.i.d. samples from the Boltzmann machine, rather than the first n
elements of a single sample as in the GMRF example.) Due to convexity, this implies that
with probability 1, for all θ ∈ Θ, fn(θ)→ f(θ) as n→∞.

Let E be an open ball containing θ0. Then for all θ ∈ E, |f ′′′n (θ)k`m| ≤ cd where
c = sup{|κ′′′(θTx)| : x ∈ {−1, 0, 1}D, θ ∈ Ē}, and c < ∞ because κ′′′ is continuous and Ē
is compact. Thus, for all θ ∈ E, ‖f ′′′n (θ)‖2 =

∑
k,`,m |f ′′′n (θ)k`m|2 ≤ c2d2D3. Hence, (f ′′′n ) is

uniformly bounded on E.
Now, we show that f ′′(θ0) is positive definite. First, f ′′(θ0) =

∑d
j=1 E

(
κ′′(θT0Xij)XijX

T
ij

)
because differentiating under the integral sign is justified by the bounds |κ(η)| ≤ |η|+ log 2,
|κ′(η)| ≤ 1, |κ′′(η)| ≤ 2, and |Xijk| ≤ 1 (Folland, 2013, 2.27). Let θ ∈ RD be nonzero and
let A, b be the corresponding parameters such that θ = θ(A, b). Then by Equation 7.1,
ATYi + AYi + b = (θTXi1, . . . , θ

TXid)
T ∈ Rd. If A 6= 0, then Var(θTXij′) > 0 for some j′ by

assumption 2, and hence, θTf ′′(θ0)θ =
∑d

j=1 E
(
κ′′(θT0Xij)|θTXij |2

)
> 0 because κ′′(η) > 0

and P(|θTXij′ | > 0) > 0. Meanwhile, if A = 0, then bj′ 6= 0 for some j′ (because θ 6= 0), and
again θTf ′′(θ0)θ > 0 because |θTXij′ | = |bj′ | > 0. Therefore, f ′′(θ0) is positive definite.
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7.4 Ising Model

The Ising model is a classical model of ferromagnetism in statistical mechanics and has
gained widespread use in many other applications such as spatial statistics (Banerjee et al.,
2014) and image processing (Geman and Geman, 1984). Pseudolikelihood-based posteriors
for the Ising model and Potts model, more generally, have been used by Zhou and Schmidler
(2009) for protein modeling.

Consider the m-dimensional integer lattice Zm and let v : N→ Zm be a bijection from N
to Zm. Let y1, y2, . . . ∈ Y := {−1, 1} be variables associated with the points of Zm such that
yi is the value at v(i). The Ising model is a Markov random field with singleton potentials
exp(θ1yi) for each i ∈ N and pairwise potentials exp(θ2yiyj) for each pair i, j ∈ N such that
v(i) and v(j) are adjacent in Zm, that is, such that |v(i) − v(j)| = 1. This motivates the
use of the pseudolikelihood (Besag, 1975),

LIsing
n (θ) =

n∏
i=1

exp(θ1yi + θ2
∑

j∈Ni yiyj)∑
y∈Y exp(θ1y + θ2

∑
j∈Ni yyj)

for θ ∈ Θ := R2, where Ni = {j ∈ N : v(j) is adjacent to v(i)}. By defining q(y|η) =
exp(ηy − κ(η)) for y ∈ {−1, 1} and η ∈ R, where κ(η) = log(eη + e−η), the Ising model
pseudolikelihood can be written as LIsing

n (θ) =
∏n
i=1 q(yi | θ1 + θ2

∑
j∈Ni yj).

Theorem 22 Let ~Y = (Y1, Y2, . . .) be a sequence of random variables in {−1, 1} and define

Xi =
(
1,
∑

j∈Ni Yj
)T ∈ R2. Suppose (X1, Y1), (X2, Y2), . . . are identically distributed, but not

necessarily independent. Define fn(θ) = − 1
n

∑n
i=1 log q(Yi | θTXi) and f(θ) = −E log q(Yi |

θTXi) for θ ∈ Θ. Assume:

(1) for all θ ∈ Θ, fn(θ)
a.s.−−→ f(θ) as n→∞,

(2) f ′(θ0) = 0 for some θ0 ∈ Θ, and

(3) Var
(∑

j∈Ni Yj
)
> 0.

Then for any open ball E such that θ0 ∈ E, fn satisfies the conditions of Theorem 5 with
probability 1.

Assumption 1 is that a strong law of large numbers holds for the log-likelihood terms. In
Theorem 23, we show that assumption 1 holds whenever the true distribution is a stationary,
ergodic process on Zm satisfying a certain moment condition. Assumption 2 is that a
maximum pseudolikelihood estimate exists, asymptotically. Assumption 3 is simply that
the distribution of the neighbors is not degenerate, in the sense that their support is not
restricted to an affine subspace orthogonal to the vector (1, . . . , 1)T.

Proof of Theorem 22 We apply Theorem 18. Define X =
{

(1, z)T : z ∈ {−2m, . . . , 2m}
}

,
noting that Xi ∈ X . It is easy to check that Condition 17 holds. For all θ ∈ Θ, f(θ) is
finite since |X × Y| < ∞. If aTXi

a.s.
= 0 then a = 0, since aTXi = a1 + a2

∑
j∈Ni Yj and

Var
(∑

j∈Ni Yj
)
> 0. Let E be an open ball containing θ0, and let c = sup{|κ′′′(θTx)| : x ∈

X , θ ∈ Ē}. Then c <∞ since κ′′′ is continuous, |X | is finite, and Ē is compact. Therefore,
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for all θ ∈ E, |f ′′′n (θ)jk`| ≤ 1
n

∑n
i=1 |κ′′′(θTXi)XijXikXi`| ≤ c(2m)3, and thus, (f ′′′n ) is a.s.

uniformly bounded on E. Finally, f ′′(θ0) = E
(
κ′′(θT0Xi)XiX

T
i

)
because differentiating under

the integral sign is justified by the bounds |κ(η)| ≤ |η|+ log 2, |κ′(η)| ≤ 1, |κ′′(η)| ≤ 2, and
|Xij | ≤ 2m (Folland, 2013, 2.27).

Theorem 23 Let v : N → Zm be a bijection such that R(v(1)) ≤ R(v(2)) ≤ · · · where
R(j) = max{|j1|, . . . , |jm|} for j ∈ Zm. Let T1, . . . , Tm denote the shift transformations on
Zm. Suppose (Y1, Y2, . . .) is a stochastic process such that the random field (Yv−1(j) : j ∈ Zm)
is stationary with respect to T1, . . . , Tm and ergodic with respect to at least one of T1, . . . , Tm.
Assume that Var

(
log q(Y1 | θ1 + θ2

∑
j∈N1

Yj)
)
< ∞ for all θ ∈ Θ. Then assumption 1 of

Theorem 22 holds.

The proof is the same as Theorem 20, except with Zi = log q(Yi | θ1 + θ2
∑

j∈Ni Yj) −
E
(

log q(Yi | θ1 + θ2
∑

j∈Ni Yj)
)
.

7.5 Cox Proportional Hazards Model

The Cox proportional hazards model (Cox, 1972) is widely used for survival analysis. The
proportional hazards model assumes the hazard function for subject i is λ0(y) exp(θTxi)
for y ≥ 0, where λ0(y) ≥ 0 is a baseline hazard function shared by all subjects, xi ∈ RD
is a vector of covariates for subject i, and θ ∈ RD is a vector of coefficients. To perform
inference for θ in a way that does not require any modeling of λ0 and elegantly handles
censoring, Cox (1972, 1975) proposed using the partial likelihood,

LCox
n (θ) =

n∏
i=1

(
exp(θTxi)∑n

j=1 exp(θTxj)1(yj ≥ yi)

)zi
where yi ≥ 0 is the outcome time for subject i and zi ∈ {0, 1} indicates whether yi is
an observed event time (zi = 1) or a right-censoring time (zi = 0). When zi = 1, the
ith factor in the partial likelihood can be interpreted as the conditional probability that
subject i has an event at time yi, given the risk set {j : yj ≥ yi} (the set of subjects that
have not yet had an event or been censored up until time yi) and given that some subject
has an event at time yi. See Efron (1977) for an intuitive explanation of the Cox partial
likelihood based on a discrete approximation. Formally, the Cox partial likelihood coincides
with the likelihood of a certain generalized linear model with categorical outcomes, however,
asymptotic analysis is complicated by the dependencies between the factors of the partial
likelihood. A number of authors have studied the asymptotics of the Cox partial likelihood;
we mention, in particular, the result of Lin and Wei (1989) on asymptotic normality of the
maximum partial likelihood estimator for the Cox model under misspecification.

The generalized posterior πn(θ) ∝ LCox
n (θ)π(θ) based on the Cox partial likelihood

has been considered by several authors (Raftery et al., 1996; Sinha et al., 2003; Kim and
Kim, 2009; Ventura and Racugno, 2016). Sinha et al. (2003) show that πn approximates
the standard posterior under a semiparametric Bayesian model, extending the results of
Kalbfleisch (1978). Here, we provide sufficient conditions for πn to exhibit concentration,
asymptotic normality, and an asymptotically correct Laplace approximation.
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Theorem 24 Suppose (X,Y, Z), (X1, Y1, Z1), (X2, Y2, Z2), . . . are i.i.d., where X ∈ X ⊆
RD, Y ≥ 0, and Z ∈ {0, 1}. Define f(θ) = E

(
hY (θ)Z

)
− θTE(XZ) for θ ∈ Θ := RD where

hy(θ) = log E
(

exp(θTX)1(Y ≥ y)
)
. Assume:

(1) X is bounded,

(2) the c.d.f. of Y is continuous on R,

(3) P(Z = 1) > 0 and Var(aTX) > 0 for all nonzero a ∈ RD,

(4) P(Y ≥ y | X = x) > 0 for all x ∈ X , y ≥ 0, and

(5) f ′(θ0) = 0 for some θ0 ∈ RD.

Then for any open ball E such that θ0 ∈ E, fn(θ) := − 1
n logLCox

n (θ) − 1
n

∑n
i=1 Zi log n

satisfies the conditions of Theorem 5 with probability 1.

See Section E for the proof. Note that exp(−nfn(θ)) ∝ LCox
n (θ) since 1

n

∑n
i=1 Zi log n

does not depend on θ; the purpose of introducing this term is so that fn converges. For
interpretation, in words, the assumptions of Theorem 24 are that: (1) the covariates are
bounded, (2) the time outcome is a continuous random variable, (3) the probability of ob-
serving an uncensored outcome is nonzero, and there is no lower-dimensional affine subspace
that always contains the covariates (which is necessary for identifiability), (4) the survival
function is nonzero, and (5) the maximum partial likelihood estimate exists, asymptotically
(or more precisely, the asymptotic partial likelihood function has a critical point). These
conditions are fairly mild and can be expected to hold in many practical applications.

7.6 Median-based Posterior for a Location Parameter

Suppose we wish to perform robust Bayesian inference for the parameter θ of a location
family model Gθ(x) = G(x− θ) where G is a cumulative distribution function (c.d.f.) on R.
If G is misspecified, then the posterior on θ can be poorly behaved, and may even fail to
converge at all. For instance, if Gθ is the c.d.f. of N (θ, σ2) and the data are X1, X2, . . . i.i.d.
∼ Cauchy(0, 1), then the posterior on θ is concentrated near 1

n

∑n
i=1Xi when n is large,

but 1
n

∑n
i=1Xi ∼ Cauchy(0, 1); thus, the posterior does not converge to any fixed value.

Doksum and Lo (1990) propose to use the conditional distribution of θ given the sample
median (or some other robust estimate of location) to perform robust Bayesian inference
for θ. More precisely, let M(x1:n) be a sample median of x1:n = (x1, . . . , xn) and assume
Gθ has a density gθ. Then when n is odd,

p
(
θ
∣∣M(X1:n) = m

)
∝ π(θ) p(M(X1:n) = m | θ)

∝ π(θ)gθ(m)Gθ(m)(n−1)/2
(
1−Gθ(m)

)(n−1)/2

= π(θ) exp
(

1
2(n− 1) logG(m− θ)(1−G(m− θ)) + log gθ(m)

)
where π is the prior on θ. Here, the conditional densities are under the model in which θ ∼ π
and X1, . . . , Xn|θ i.i.d. ∼ Gθ. Doksum and Lo (1990) show that p(θ |M(X1:n) = M(x1:n))
and generalizations thereof have desirable properties as robust posteriors for θ; in particular,
they provide consistency and asymptotic normality results.
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With this as motivation, consider the generalized posterior πn(θ) ∝ π(θ) exp(−nfn(θ))
where fn(θ) = −1

2 logG(mn−θ)(1−G(mn−θ)) and mn = M(x1:n); this approximates p(θ |
M(X1:n) = mn) and is somewhat simpler to analyze. The following theorem strengthens
the Doksum and Lo (1990) asymptotic normality result by showing convergence in total
variation distance, rather than convergence in the weak topology. Further, our conditions
are simpler, but we do assume greater regularity of G and we only consider the median.

Theorem 25 Suppose G : R → (0, 1) is a c.d.f. such that G′′′ exists and is continuous,
G(−x) = 1 − G(x) for all x ∈ R, (logG)′′(x) ≤ 0 for all x ∈ R, and (logG)′′(0) < 0.
If θ0 ∈ R and m1,m2, . . . ∈ R such that θ0 = limn→∞mn, then for any open ball E
containing θ0, fn(θ) := −1

2 logG(mn−θ)(1−G(mn−θ)) satisfies the conditions of Theorem 5
on R.

Proof By the chain rule, fn(θ) has a continuous third derivative since log(x) and G(x) have
continuous third derivatives and G(x) ∈ (0, 1). Define f(θ) = −1

2 logG(θ0−θ)(1−G(θ0−θ))
for θ ∈ R. Then for all θ ∈ R, fn(θ)→ f(θ) as n→∞ since mn → θ0, log(x) and G(x) are
continuous, and G(x) ∈ (0, 1). Further,

f(θ) = −1
2 logG(θ0 − θ)− 1

2 logG(θ − θ0),

f ′(θ) = 1
2(logG)′(θ0 − θ)− 1

2(logG)′(θ − θ0),

f ′′(θ) = −1
2(logG)′′(θ0 − θ)− 1

2(logG)′′(θ − θ0).

Thus, f ′(θ0) = 0 and f ′′(θ0) = −(logG)′′(0) > 0. Similarly, f ′′n(θ) = −1
2(logG)′′(mn − θ)−

1
2(logG)′′(θ −mn) ≥ 0 since (logG)′′(x) ≤ 0. Thus, fn is convex. Finally, for any bounded
open interval E containing θ0, (f ′′′n ) is uniformly bounded on E by Proposition 26 with
h(θ, s) = −1

2 logG(s− θ)G(θ − s), K = Ē, and S = [inf mn, supmn] ⊆ R.

In cases where fn(θ) = h(θ, sn) for some finite-dimensional statistic sn, the following
simple proposition can make it easy to verify the uniform boundedness condition.

Proposition 26 Let K ⊆ RD and S ⊆ Rd be compact sets. Suppose fn(θ) = h(θ, sn) for
θ ∈ K, n ∈ N, where h : K × S → R and s1, s2, . . . ∈ S. If (∂3h/∂θi∂θj∂θk)(θ, s) exists and
is continuous on K × S for all i, j, k ∈ {1, . . . , D}, then (f ′′′n ) is uniformly bounded on K.

Proof Let h′′′(θ, s) denote the tensor of third derivatives with respect to θ, and let c =
sup{‖h′′′(θ, s)‖ : θ ∈ K, s ∈ S}. For all θ ∈ K, n ∈ N, we have ‖f ′′′n (θ)‖ = ‖h′′′(θ, sn)‖ ≤ c,
and c <∞ since (θ, s) 7→ ‖h′′′(θ, s)‖ is continuous and K × S is compact.

8. Previous Work

In this section, we provide a discussion comparing our assumptions, results, and proof tech-
niques with those in previous work. Our discussion focuses primarily on asymptotic nor-
mality (Bernstein–von Mises), and we discuss work on posterior consistency in Section 8.7.
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8.1 Overview of Previous BvM Results

The origins of the Bernstein–von Mises (BvM) theorem go back to Laplace (1810), Bern-
stein (1917), and Von Mises (1931). Rigorous formulations of the theorem were developed
by Le Cam (1953), Bickel and Yahav (1969), Walker (1969), and Dawid (1970). These
works employed “classical conditions” involving second, third, or even fourth-order deriva-
tives of the log-likelihood; see the texts by Lehmann and Casella (2006) and Ghosh and
Ramamoorthi (2003).

Le Cam (1970) discovered that the classical differentiability assumptions could be re-
placed by a less stringest condition referred to as differentiability in quadratic mean (DQM),
which yields the benefits of a quadratic expansion while only requiring a certain first-order
derivative; also see Le Cam (1986), Pollard (1997), Van der Vaart (2000), and Le Cam and
Yang (2000) for background. Le Cam and Schwartz (1960) and Schwartz (1965) developed
the assumption of the existence of uniformly consistent tests (UCTs) as a way of guaran-
teeing that θ0 is distinguishable. In combination, the DQM and UCT assumptions form the
basis for an elegant BvM theorem in the i.i.d. setting (Van der Vaart, 2000).

The works listed above focus on the canonical setting of a correctly specified, i.i.d. prob-
abilistic model in which the dimension of parameter is fixed and finite. Going beyond this
canonical setting, a number of authors have provided extensions of the theory. For instance,
BvM theorems have been established for non-i.i.d. models such as Markov processes (Bor-
wanker et al., 1971) and the Cox proportional hazards model with a prior on the baseline
hazard function (Kim, 2006). More recently, Kleijn and Van der Vaart (2012) provide a
BvM for cases in which the assumed model is misspecified, focusing primarily on the i.i.d.
setting. Bochkina and Green (2014) provide an interesting BvM result when the true pa-
rameter is on the boundary of the parameter space, and their result is also applicable under
misspecification.

For semiparametric and nonparametric models, BvM results have been established by a
number of authors (Shen, 2002; Kim and Lee, 2004; Leahu, 2011; Castillo and Nickl, 2013;
Bickel and Kleijn, 2012; Castillo and Rousseau, 2013). A very general result is provided
by Panov and Spokoiny (2015), who establish a finite-sample BvM theorem for non-i.i.d.
semiparametric models under misspecification, allowing the dimension of the parameter to
grow with the sample size. While the theorem of Panov and Spokoiny (2015) is very general,
their conditions are quite abstract and may be challenging for non-experts to employ.

For more references of early BvM contributions, see Bernardo and Smith (2000).

8.2 Categories of BvM Conclusions and Conditions

While all BvM results show that “the posterior converges to a normal distribution”, each
result can be placed along various axes in terms of the strength of the conclusions obtained
and the generality of the conditions assumed.

Strength of the conclusions. First, the topology with respect to which convergence is
shown to occur is usually either the weak topology (that is, convergence in distribution)
or the “strong topology”, that is, the metric topology induced by total variation (TV)
distance. Second, in either topology, one can prove convergence in probability or almost
sure convergence. In our results, we prove almost sure convergence in TV distance, which
is the stronger conclusion in both respects.
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Generality of the conditions. We group the conditions commonly assumed in BvM
theorems as follows. The key conditions fall into two categories:

(A) regularity of the log-likelihood or generalized log-likelihood, and

(B) separation conditions enabling θ0 to be distinguished.

Other conditions often assumed are that:

(C) the limiting Hessian at θ0 is positive definite,

(D) the prior density is continuous and positive at θ0,

(E) the dimension of parameter is fixed and finite,

(F) a consistent root of the likelihood exists (such as the MLE),

(G) the posterior arises from a probabilistic model,

(H) the data are independent and identically distributed, and

(I) the model is correctly specified.

8.3 Abstract BvM Conditions

To discuss how our Theorem 4 relates to the existing literature, we compare with Van der
Vaart (2000, Theorem 10.1) (VdV, for short) as an example of a modern BvM theorem.

VdV assumes conditions G, H, and I (that is, the posterior arises from a correctly
specified, i.i.d. probabilistic model), whereas Theorem 4 does not require these conditions—
our results hold in misspecified, non-i.i.d. settings and do not even require that the posterior
arise from a probability model. Theorem 4 and VdV both assume condition C (the limiting
Hessian at θ0, which coincides with the Fisher information matrix in VdV, is positive
definite), condition D (the prior is continous and positive at θ0), and condition E (the
parameter dimension is fixed and finite). Meanwhile, neither theorem explicitly assumes
condition F (consistent root), but both work with a sequence θn that converges to θ0.

In category A (regularity conditions), VdV assumes differentiability in quadratic mean
(DQM) whereas Theorem 4 assumes the quadratic approximation in assumption 1. DQM
implies a particular quadratic expansion referred to as local asymptotic normality (LAN)
(Van der Vaart, 2000, Theorem 7.2). The LAN property is roughly similar to assumption 1 of
Theorem 4, except that it is centered at θ0 and the remainder is formulated probabilistically
(Pollard, 1997). In Theorem 4, having a deterministic (rather than probabilistic) bound
on the remainder facilitates applications to generalized posteriors, since it decouples the
deterministic convergence result from the (possibly complex) distribution of the data.

In category B (separation conditions), VdV assumes there exists a sequence of uniformly
consistent tests (UCTs) for H0 : θ = θ0 versus H1 : ‖θ − θ0‖ ≥ ε, for every ε > 0.
Correspondingly, Theorem 4 employs assumption 2. The UCT assumption is less stringent
in the i.i.d. setting, but not as broadly applicable in general; see our discussion of Schwartz’s
theorem in Section 8.7.

Finally, VdV establishes convergence in probability with respect to TV distance, whereas
Theorem 4 enables us to obtain almost sure convergence in TV. Thus, while our assumptions
in categories A and B may be stronger than VdV’s in the correctly specified i.i.d. model
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setting, our conditions apply to much more general settings and we also obtain the stronger
conclusion of almost sure convergence. Exploring whether DQM and UCT-like conditions
can be extended to generalized posteriors is a potential area for future work.

8.4 Concrete BvM Conditions

To relate our Theorem 5 to the existing literature, we compare with Ghosh and Ramamoor-
thi (2003, Theorem 1.4.2) (G&R, for short) as an example of a BvM theorem employing
more concrete, classical conditions.

G&R assume conditions F, G, H, and I (the posterior arises from a correctly specified,
i.i.d. probabilistic model with a consistent root), whereas Theorem 5 does not assume any
of these conditions. Theorem 5 and G&R both assume conditions C, D, and E.

In category A (regularity), G&R assume the third derivatives of the log-likelihood terms
are dominated, uniformly over a neighborhood of θ0, by an integrable function of the data.
Similarly, Theorem 5 assumes the third derivatives of fn are uniformly bounded in a neigh-
borhood of θ0. In the i.i.d. setting, the G&R domination condition is slightly weaker, but
it is not clear how to extend it to arbitrary generalized posteriors. In category A, G&R
also assume that the densities have common support, that the first and second derivatives
of the log-likelihood at θ0 are integrable, and that differentiation under the integral sign
is justified; meanwhile, we only additionally require that fn converges pointwise and has
continuous third derivatives. In both G&R and Theorem 5, the role of these category A
conditions is to bound the error term in a second-order Taylor expansion as in assumption
1 of Theorem 4; this is formalized on page 37 of G&R and in our Theorem 6. This es-
tablishes that near θ0, the log posterior density approaches a quadratic form. Note that
condition C is necessary to ensure that, when exponentiated, the limiting quadratic form
can be normalized to a probability density.

In category B (separation), G&R assume that for any δ > 0, there exists ε > 0 such
that P

(
inf |θ−θ0|>δ(fn(θ)− fn(θ0)) ≥ ε

)
−→ 1 as n→∞, where the probability P(·) is with

respect to the randomness in fn due to the data. Meanwhile, in Theorem 5, we employ
assumption 1, which is more stringent but is helpful in obtaining almost sure convergence
rather than just convergence in probability. The role of the category B conditions is to
ensure that negligible mass is placed outside a neighborhood of θ0, asymptotically.

Like VdV, G&R prove convergence in probability with respect to TV distance, whereas
Theorem 5 enables us to obtain a.s. convergence in TV. Thus, overall, we obtain a stronger
and more general conclusion while assuming fewer conditions. In the special case of correctly
specified i.i.d. models, our third derivative bounds and our separation condition are more
stringent than the corresponding G&R conditions, however, our conditions extend readily
to generalized posteriors.

8.5 BvM under Misspecification

Relatively recently, Kleijn and Van der Vaart (2012) extended the BvM theory to handle
misspecification, that is, to apply to cases in which the assumed model is incorrect; also
see Bochkina and Green (2014). Kleijn and Van der Vaart (2012, Theorem 2.1) (K&V, for
short) establish a BvM result assuming (i) the LAN property holds at rate δn and (ii) the
posterior concentrates (in probability) at θ0 at the same rate, δn. Additionally, like our
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Theorem 4, K&V assume conditions C, D, and E above. (Note that our H0 corresponds to
their Vθ∗ .) Further, K&V assume condition G (whereas Theorem 4 does not), however, this
assumption might not be essential for their proof.

In category A, condition (i) of K&V is roughly similar to assumption 1 of Theorem 4,
as discussed in Section 8.3. In category B, condition (ii) of K&V roughly corresponds to
assumption 2 of Theorem 4, except that K&V assume concentration at a particular rate (to
match the LAN rate), whereas our condition does not require a rate. On the other hand,
(ii) is less stringent in the sense that it only involves posterior probabilities and convergence
in probability, whereas we require strict separation of θ0 in terms of the values of fn(θ).

To facilitate application of their theorem, Kleijn and Van der Vaart (2012) focus in
particular on the i.i.d. setting, providing concrete conditions under which (i) and (ii) hold,
assuming differentiability, a Lipschitz condition, a second-order Taylor expansion, non-
singular Fisher information, and existence of UCTs. These conditions generalize VdV to
the misspecified setting.

Regarding the strength of the conclusions, like VdV, K&V show convergence in probabil-
ity (in TV), whereas our results show a.s. convergence (in TV). Thus, while our conditions
are stronger in some respects, they are weaker in other respects, and we obtain a stronger
conclusion in a more general setting.

8.6 BvM for Generalized Posteriors

Much previous work on generalized posteriors relies on Bernardo and Smith (2000, Propo-
sition 5.14) to establish asymptotic normality; for instance, see Lazar (2003), Greco et al.
(2008), Pauli et al. (2011), and Ventura and Racugno (2016). Thus, to relate our results to
this literature, we compare our Theorem 4 to Bernardo and Smith (2000, Proposition 5.14)
(B&S, for short), which is originally due to Chen (1985).

First, in terms of the strength of the conclusions, B&S only show convergence in distri-
bution (that is, convergence in the weak topology), whereas Theorem 4 shows convergence
in TV distance, which is much stronger. On the other hand, both theorems consider an
arbitrary deterministic sequence of distributions (playing the role of generalized posteriors
indexed by n), and thus, both are conducive for establishing almost sure BvM results.

In category A (regularity), B&S assume that (i) fn is twice differentiable, (ii) the smallest
eigenvalue of nf ′′n(θn) tends to ∞ as n→∞, and (iii) for all ε > 0, there exists δ > 0 such
that for all n sufficiently large, for all θ ∈ Bδ(θn), the Hessian f ′′n(θ) satisfies I − A(ε) �
f ′′n(θ)f ′′n(θn)−1 � I + A(ε) where I is the identity matrix and A(ε) is a symmetric positive
semidefinite matrix whose largest eigenvalue tends to 0 as ε → 0. Here, A � B denotes
that B − A is positive definite. Meanwhile, Theorem 4 employs assumption 1, which does
not require any differentiability, but may require stronger control on the remainder term in
Equation 3.1 compared to (iii) above (which B&S use to derive a quadratic approximation).
B&S’s eigenvalue condition in (ii) above is related to our assumption that Hn → H0 positive
definite; indeed, the latter implies the former if r′′n(0) → 0 as n → ∞, where rn is the
remainder term in Equation 3.1.

In category B (separation), B&S assume that (iv) fn has a strict local minimum θn, and
(v) for any δ > 0, the posterior probability of Bδ(θn) converges to 1 as n→∞. Meanwhile,
Theorem 4 obtains posterior concentration as a conclusion rather than assuming it, but
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Theorem 4 does employ assumption 2. Both theorems assume condition E (the dimension
of parameter is fixed and finite), however, neither theorem requires any of the additional
conditions F, G, H, or I. Theorem 4 assumes condition D, while B&S does not since their
assumptions are placed directly on the posterior density.

Overall, while Theorem 4 assumes more stringent conditions than B&S in terms of
remainder control and separation, Theorem 4 does not require differentiability and yields a
considerably stronger result in terms of TV distance rather than convergence in distribution.

8.7 Posterior Consistency

Doob (1949) used martingales to prove a very general result on posterior consistency for
correctly specified i.i.d. models (also see Miller, 2018), however, it seems difficult to extend
this proof technique, especially to generalized posteriors. Further, Doob’s theorem is only
guaranteed to hold on a set of prior probability 1. Schwartz (1965) established a powerful
theorem on posterior consistency based on the UCT assumption along with an assumption
that the prior puts positive mass in Kullback–Leibler neighborhoods of θ0; see Ghosh and
Ramamoorthi (2003, Theorem 4.4.1) for a clear exposition. Schwartz’s theorem forms the
basis for many modern results on posterior consistency in nonparametric Bayesian models
(Ghosal, 2010). Schwartz’s approach improves upon Doob’s theorem by guaranteeing con-
sistency at all points, and it is also conducive to generalization. Other notable early results
on posterior consistency are due to Le Cam (1953) and Freedman (1963).

To interpret our posterior consistency theorems in the context of these well-known re-
sults, we first relate our Theorem 2 to Schwartz’s theorem as presented by Ghosh and
Ramamoorthi (2003, Theorem 4.4.1). Schwartz considers the setting of an i.i.d. probabil-
ity model with densities p(x|θ), and assumes the data Xi are i.i.d. from some P0. In this
setting, fn(θ) = − 1

n

∑n
i=1 log p(Xi|θ) and fn(θ)→ f(θ) = EP0(− log p(Xi|θ)) almost surely

by the strong law of large numbers (SLLN), assuming EP0 | log p(Xi|θ)| < ∞. Further, if
the model is correctly specified, so that P0 = Pθ0 for some θ0, then f(θ)− f(θ0) equals the
Kullback–Leibler divergence, D(Pθ0‖Pθ).

Thus, in the correctly specified i.i.d. setting, the interpretation of Theorem 2 is as
follows: assumption 1 essentially amounts to assuming a SLLN holds, assumption 2 is that
the prior puts positive mass on Kullback–Leibler neighborhoods of θ0 (just like Schwartz
assumes), and roughly speaking, assumption 3 is that outside neighborhoods of θ0, the log-
likelihood does not get too close to the log-likelihood at θ0 when n is sufficiently large. The
main difference between Theorem 2 and Schwartz’s theorem is that Theorem 2 employs
assumption 3 instead of the UCT condition. In the i.i.d. setting, it seems inevitable that
the UCT assumption is less stringent than assumption 3, however, it is not obvious how
to extend the UCT approach to our setting of arbitrary generalized posteriors where we do
not even assume there exists a data distribution. Thus, although in the i.i.d. setting, our
condition is more stringent, we obtain the benefit of much broader applicability in general.

8.8 Proof Techniques

The proofs in this paper involve several new or non-standard techniques. First, in our main
results in Sections 2 and 3, a major shift in technique is to study deterministic sequences
of posterior distributions, rather than the usual approach of studying sequences of random
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posterior distributions obtained from random data. By showing that the conditions of the
theorems hold with probability 1, we obtain almost sure convergence. This device enables
one to separate the problem into a real analysis part (involving asymptotics of functions)
and a probability part (involving the randomness in the data), which is particularly useful
when considering generalized posteriors and misspecified models. This decoupling technique
may facilitate future work on each part, separately. Bernardo and Smith (2000, Proposition
5.14) and Chen (1985) also considered deterministic sequences of distributions, but only for
showing weak convergence rather than in total variation.

The proof of Theorem 2 has the same core structure as the proof of Schwartz’s theorem
(Ghosh and Ramamoorthi, 2003, Theorem 4.4.1), however, to handle generalized posteriors,
we use assumption 3 rather than the UCT assumption in order to employ the deterministic
sequence technique and enable application to generalized posteriors.

The proof technique for Theorem 4 differs from previous BvM proofs in some key re-
spects — specifically, this formulation of the conditions facilitates a succinct proof using
the generalized dominated convergence theorem. Further, we use the deterministic sequence
technique described above. On the other hand, certain aspects of the proof are adapted
from Ghosh and Ramamoorthi (2003, Theorem 1.4.2), such as how we break up the integral
into regions.

The proof technique for Theorem 5 involves innovations as well, encapsulated primarily
in Theorem 7. Specifically, regularity properties of f , f ′, f ′′, fn, f ′n, and f ′′n are obtained
via Theorem 7, rather than having to be assumed. This simplifies several aspects of the
proof, such as interchanging the order of derivatives and limits or expectations. Another
advantage of our proof technique is that there is no need for a common support condition,
which is sometimes assumed (Ghosh and Ramamoorthi, 2003, Theorem 1.4.2), because we
deal with fn directly, rather than with a probability model.
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Appendix A. Proofs of Concentration Results

Proof of Theorem 2 Let ε > 0. Define µn(E) =
∫
E e
−nfn(θ)Π(dθ) for E ⊆ Θ. Recall

that µn(Θ) = zn <∞ by assumption. For any β ∈ R,

1−Πn(Aε) = Πn(Acε) =
µn(Acε)

µn(Θ)
=
en(f(θ0)+β)µn(Acε)

en(f(θ0)+β)µn(Θ)
,

so prove the result, it suffices to show that for some β, the numerator is bounded and the
denominator goes to ∞.

First, consider the numerator. Assumption 3 implies that there exists β > 0 such that
for all n sufficiently large, infθ∈Acε fn(θ) ≥ f(θ0) +β. Then for all n sufficiently large, for all
θ ∈ Acε, we have exp

(
− n(fn(θ)− f(θ0)− β)

)
≤ 1. Hence, for all n sufficiently large,

en(f(θ0)+β)µn(Acε) =

∫
Acε

exp
(
− n(fn(θ)− f(θ0)− β)

)
Π(dθ) ≤

∫
Acε

Π(dθ) ≤ 1.

Now, consider the denominator. For any θ ∈ Aβ/2, fn(θ)− f(θ0)−β −→ f(θ)− f(θ0)−
β < −β/2 < 0, and thus, exp

(
− n(fn(θ) − f(θ0) − β)

)
−→ ∞ as n → ∞. Therefore, by

Fatou’s lemma,

liminf
n→∞

en(f(θ0)+β)µn(Aβ/2) = liminf
n→∞

∫
Aβ/2

exp
(
− n(fn(θ)− f(θ0)− β)

)
Π(dθ) =∞

since Π(Aβ/2) > 0. Hence, en(f(θ0)+β)µn(Θ)→∞ since µn(Θ) ≥ µn(Aβ/2).

Lemma 27 Suppose Θ ⊆ RD, E ⊆ Θ is convex and open in RD, and θ0 ∈ E. Let
fn : Θ→ R be convex, and assume fn → f pointwise on E for some f : E → R.

(1) If f ′ exists in a neighborhood of θ0, f ′(θ0) = 0, and f ′′(θ0) exists and is positive
definite, then f(θ) > f(θ0) for all θ ∈ E \ {θ0}.

(2) If f(θ) > f(θ0) for all θ ∈ E \ {θ0}, then liminfn infθ∈Θ\Bε(θ0) fn(θ) > f(θ0) for any
ε > 0.

Proof (1) As the pointwise limit of convex functions on a convex open set, f is convex
on E (Rockafellar, 1970, 10.8). Let R > 0 such that f ′(θ) exists for all θ ∈ BR(θ0). Let
u ∈ RD with |u| = 1, and define g(r) = f(θ0 +ru) for r ∈ [0, R). Then g′(r) = f ′(θ0 +ru)Tu
and g′′(0) = uTf ′′(θ0)u. Since

g′(r)

r
=
g′(r)− g′(0)

r
−−−→
r→0

g′′(0) = uTf ′′(θ0)u > 0,

then g′(r) > 0 for all r > 0 sufficiently small, say, all r ∈ (0, ε]. Then for any s ∈ (0, ε], we
have

f(θ0 + su)− f(θ0) = g(s)− g(0) =

∫ s

0
g′(r)dr > 0. (A.1)

31



Miller

Meanwhile, for any s > ε such that θ0 + su ∈ E, we have

1

s
(f(θ0 + su)− f(θ0)) ≥ 1

ε
(f(θ0 + εu)− f(θ0)) > 0

by the convexity of f and by Equation A.1 with s = ε. Hence, for any s > 0 such that
θ0 + su ∈ E, f(θ0 + su) > f(θ0). Since u is arbitrary, the result follows.

(2) By Rockafellar (1970, 10.8), fn → f uniformly on any compact subset of E, and f
is convex on E. Further, f is continuous on E, as a convex function on a convex open set
(Rockafellar, 1970, Theorem 10.1). Let ε > 0 small enough that the ε-sphere Sε = {θ ∈ RD :
|θ−θ0| = ε} is contained in E. Let αn = infθ∈Sε fn(θ)−fn(θ0) and α = infθ∈Sε f(θ)−f(θ0).
By uniform convergence, αn → α. Note that α > 0, as the minimum of the continuous
positive function f(θ)− f(θ0) on the compact set Sε. For any θ ∈ Θ \Bε(θ0), letting ξθ be
the point of Sε on the line from θ to θ0, we have, by the convexity of fn,

fn(θ)− fn(θ0) ≥ |θ − θ0|
fn(ξθ)− fn(θ0)

|ξθ − θ0|
≥ αn

whenever αn ≥ 0, since |θ − θ0| ≥ |ξθ − θ0|. Since αn → α > 0, then for all n suf-
ficiently large, for all θ ∈ Θ \ Bε(θ0), fn(θ) ≥ fn(θ0) + αn −→ f(θ0) + α. Therefore,
liminfn infθ∈Θ\Bε(θ0) fn(θ) ≥ f(θ0) + α > f(θ0). Note that this also implies the same in-
equality for any ε′ > ε.

Proof of Theorem 3
(Part 1) Defining Aε as in Theorem 2, it suffices to show that

(a) for any ε > 0 there exists δ > 0 such that Aδ ⊆ Nε, and

(b) for any δ > 0 there exists ε′ > 0 such that Nε′ ⊆ Aδ,

since for any ε > 0, choosing δ by (a), we have Πn(Nε) ≥ Πn(Aδ); meanwhile, for any
δ > 0, choosing ε′ by (b), we have Π(Aδ) ≥ Π(Nε′) > 0 and liminfn infθ∈Acδ fn(θ) ≥
liminfn infθ∈Nc

ε′
fn(θ) > f(θ0), and hence, by Theorem 2, Πn(Aδ)→ 1.

(a) Let ε > 0. Pointwise convergence and the liminf condition imply infθ∈Nc
ε
f(θ) >

f(θ0), hence, letting δ = infθ∈Nc
ε
f(θ)− f(θ0), we have δ > 0 and Aδ ⊆ Nε.

(b) Let δ > 0. By the continuity of f at θ0, choose ε′ > 0 such that |f(θ) − f(θ0)| < δ
for all θ ∈ Nε′ . Then for any θ ∈ Nε′ , f(θ) < f(θ0) + δ, hence, θ ∈ Aδ.

(Part 2) We show that 2 implies 1. By Lemma 36, fn → f uniformly on K. Conse-
quently, f |K is continuous, as the uniform limit of continuous functions (Rudin, 1976, 7.12).
In particular, f is continuous at θ0, since θ0 is an interior point of K. For any ε > 0,

liminf
n

inf
θ∈K\Nε

fn(θ) = inf
θ∈K\Nε

f(θ) > f(θ0),

the first step holding since fn → f uniformly on K, and the second step since f |K is
continuous, K \ Nε is compact, and f(θ) > f(θ0) for all θ ∈ K \ {θ0}. Therefore, since
N c
ε ⊆ (K \Nε) ∪Kc,

liminf
n

inf
θ∈Nc

ε

fn(θ) ≥ liminf
n

min
{

inf
θ∈K\Nε

fn(θ), inf
θ∈Kc

fn(θ)
}
> f(θ0).
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(Part 3) We show that 3 implies 1. Denote Bε = {θ ∈ RD : |θ − θ0| < ε}. Let r > 0
small enough that Br ⊆ Θ. As the pointwise limit of convex functions, f is convex, and
thus, it is continuous on Br (Rockafellar, 1970, 10.1). By Lemma 27 with E = Br, in either
case (a) or (b), we have

liminf
n

inf
θ∈Θ\Bε

fn(θ) > f(θ0)

for any ε > 0. Since Θ \Bε = Θ \Nε = N c
ε , this proves the result.

Appendix B. Proofs of Asymptotic Normality Results

Lemma 28 Let θn ∈ RD such that θn → θ0 for some θ0 ∈ RD, let πn be a density with
respect to Lebesgue measure on RD, and let qn be the density of

√
n(θ − θn) when θ ∼ πn.

If
∫
|qn(x)− q(x)|dx −→ 0 for some probability density q, then πn concentrates at θ0.

Proof Let Πn, Qn, and Q denote the probability measures corresponding to πn, qn, and
q, respectively. For any ε > 0 and δ > 0,

Qn(Bδ(0)) = Πn(Bδ/
√
n(θn)) ≤ Πn(Bε(θ0))

for all n sufficiently large. Hence, since Qn → Q in total variation,

Q(Bδ(0)) = lim
n
Qn(Bδ(0)) ≤ liminf

n
Πn(Bε(θ0)).

Taking the limit as δ →∞ shows that limn Πn(Bε(θ0)) = 1.

Proof of Theorem 4 Note that qn(x) = πn(θn + x/
√
n)n−D/2. Define

gn(x) = exp
(
− n[fn(θn + x/

√
n)− fn(θn)]

)
π(θn + x/

√
n)

= qn(x)enfn(θn)nD/2zn, (B.1)

recalling that zn <∞ by assumption, and define

g0(x) = exp(−1
2x

TH0x)π(θ0).

Let α ∈ (0, λ), where λ is the smallest eigenvalue of H0. Let ε > 0 small enough that
ε < α/(2c0), ε < ε0, and π(θ) ≤ 2π(θ0) for all θ ∈ B2ε(θ0) (which we can do since π
is continuous at θ0). Let δ = liminfn infθ∈Bε(θn)c

(
fn(θ) − fn(θn)

)
, noting that δ > 0 by

assumption. Letting An = Hn − αI and A0 = H0 − αI, define

hn(x) =

{
exp(−1

2x
TAnx)2π(θ0) if |x| < ε

√
n,

e−nδ/2π(θn + x/
√
n) if |x| ≥ ε

√
n,

h0(x) = exp(−1
2x

TA0x)2π(θ0).

We will show that
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(a) gn → g0 and hn → h0 pointwise,

(b)
∫
hn →

∫
h0,

(c) gn = |gn| ≤ hn for all n sufficiently large, and

(d) gn, g0, hn, h0 ∈ L1 for all n sufficiently large.

By the generalized dominated convergence theorem, this will imply that
∫
gn →

∫
g0 and∫

|gn − g0| → 0 (e.g., Folland, 2013, exercises 2.20, 2.21). Supposing this for the moment,
we show how the result follows. Since

∫
qn = 1, by Equation B.1 we have

enfn(θn)nD/2zn =
∫
gn −→

∫
g0 = π(θ0)

(2π)D/2

|H0|1/2
, (B.2)

where |H0| = |detH0|, and hence,

zn ∼
e−nfn(θn)π(θ0)

|H0|1/2
(2π

n

)D/2
as n→∞; this proves Equation 3.3. For any an → a ∈ R, we have

∫
|angn−ag0| → 0 since∫

|angn−ag0| ≤
∫
|angn−ang0|+

∫
|ang0−ag0| = |an|

∫
|gn− g0|+ |an−a|

∫
|g0| −→ 0.

Thus, letting 1/an = enfn(θn)nD/2zn and 1/a = π(θ0) (2π)D/2

|H0|1/2
, we have an → a by Equa-

tion B.2, and thus, ∫ ∣∣∣qn(x)− |H0|1/2

(2π)D/2
exp(−1

2x
TH0x)

∣∣∣dx −→ 0,

proving Equation 3.4. Equation 3.2 (concentration at θ0) follows by Lemma 28, since
θn → θ0. It remains to show (a)–(d) above.

(a) Fix x ∈ RD. First, consider hn. For all n sufficiently large, |x| < ε
√
n, and thus,

hn(x) = exp(−1
2x

TAnx)2π(θ0) −→ exp(−1
2x

TA0x)2π(θ0) = h0(x)

since An → A0. Now, for gn, first note that π(θn + x/
√
n)→ π(θ0) since π is continuous at

θ0 and θn → θ0, x/
√
n→ 0. By the assumed representation of fn (Equation 3.1),

n(fn(θn + x/
√
n)− fn(θn)) = 1

2x
THnx+ nrn(x/

√
n) −→ 1

2x
TH0x

since Hn → H0 and for all n sufficiently large (to ensure that |x/
√
n| < ε0 and the assumed

bound on rn holds),

|nrn(x/
√
n)| ≤ nc0|x/

√
n|3 = c0|x|3/

√
n→ 0 (B.3)

as n→∞. Hence, gn(x)→ g0(x).
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(b) By the definition of hn, letting Bn = Bε
√
n(0),

∫
hn =

∫
Bn

exp(−1
2x

TAnx)2π(θ0)dx+

∫
Bcn

e−nδ/2π(θn + x/
√
n)dx.

Since An → A0 and A0 is positive definite, then for all n sufficiently large, An is also positive
definite and the first term equals

2π(θ0)
(2π)D/2

|An|1/2
P(|A−1/2

n Z| < ε
√
n) −→ 2π(θ0)

(2π)D/2

|A0|1/2
=
∫
h0

where Z ∼ N (0, I). The second term goes to zero, since it is nonnegative and upper
bounded by ∫

RD
e−nδ/2π(θn + x/

√
n)dx = e−nδ/2nD/2 −→ 0,

using the fact that π(θn + x/
√
n)n−D/2 is the density of X =

√
n(θ − θn) when θ ∼ π.

(c) For all n sufficiently large, |θn − θ0| < ε, the bound on rn applies, and
infθ∈Bε(θn)c fn(θ) − fn(θn) > δ/2. Let n large enough that these hold, and let x ∈ RD.
If |x| ≥ ε

√
n, then fn(θn + x/

√
n)− fn(θn) > δ/2, and thus,

gn(x) ≤ e−nδ/2π(θn + x/
√
n) = hn(x).

Meanwhile, if |x| < ε
√
n, then π(θn + x/

√
n) ≤ 2π(θ0) (by our choice of ε, since |(θn +

x/
√
n)− θ0| ≤ |θn − θ0|+ |x/

√
n| < 2ε), and

n(fn(θn + x/
√
n)− fn(θn)) = 1

2x
THnx+ nrn(x/

√
n) ≥ 1

2x
THnx− 1

2αx
Tx = 1

2x
TAnx

since |nrn(x/
√
n)| ≤ c0|x|3/

√
n ≤ c0ε|x|2 ≤ 1

2α|x|
2, by the fact that |x/

√
n| < ε < ε0 and

ε < α/(2c0). Therefore,

gn(x) ≤ exp(−1
2x

TAnx)2π(θ0) = hn(x).

(d) Since H0 and A0 are positive definite,
∫
g0 and

∫
h0 are finite. By (b) and (c), since∫

hn →
∫
h0 < ∞, we have

∫
gn ≤

∫
hn < ∞ for all n sufficiently large. Measurability of

gn and hn follows from measurability of fn and π.

Proof of Theorem 5 Without loss of generality, we may assume E is convex, since
otherwise we can choose E′ ⊆ E to be an open ball around θ0, and proceed with E′ in
place of E throughout the proof. First, we show that under case 2, the conditions for
case 1 hold. By Lemma 27(1), f(θ) > f(θ0) for all θ ∈ E \ {θ0} since f ′ exists on E
by Theorem 7. Letting K = Bε(θ0) where ε > 0 is small enough that K ⊆ E, we have
liminfn infθ∈Θ\K fn(θ) > f(θ0) by Lemma 27(2). Thus, it suffices to prove the result under
case 1.

Consider case 1. Extend π, fn, and f to all of RD by defining π(θ) = 0 and f(θ) =
fn(θ) = f(θ0) + 1 for all θ ∈ RD \Θ. Then all the conditions of Theorem 5 (under case 1)
still hold with RD in place of Θ. We will show that:

(a) (fn) is equicontinuous on E, and f ′′n(θ0)→ f ′′(θ0) as n→∞,
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(b) there exist θn ∈ E such that θn → θ0 and f ′n(θn) = 0 for all n sufficiently large, and

(c) fn(θn)→ f(θ0).

Assuming (a)–(c) for the moment, we show how the result follows. Letting H0 = f ′′(θ0),
the conditions of Theorem 6 are satisfied, and thus, assumption 1 of Theorem 4 is satisfied
for all n sufficiently large. Assumption 2 of Theorem 4 holds, since for all ε > 0,

liminf
n

inf
θ∈Bε(θn)c

(fn(θ)− fn(θn)) =
(

liminf
n

inf
θ∈Bε(θn)c

fn(θ)
)
− f(θ0)

≥
(

liminf
n

inf
θ∈Bε/2(θ0)c

fn(θ)
)
− f(θ0) > 0

the first step holding by (c), the second step since θn → θ0 and thus Bε/2(θ0) ⊆ Bε(θn)
for all n sufficiently large, and the third step by the implication 2 ⇒ 1 in Theorem 3.
Thus, the conditions of Theorem 4 are satisfied (except possibly for some initial sequence
of n’s, which can be ignored since the conclusions are asymptotic in nature), establishing
Equation 3.2 (concentration at θ0), Equation 3.3 (the Laplace approximation), and Equation
3.4 (asymptotic normality). To complete the proof, we establish (a), (b), and (c).

(a) By Theorem 7, (fn) is equi-Lipschitz (hence, equicontinuous) on E and f ′′n → f ′′

uniformly on E.
(b) Let ε > 0 small enough that Sε ⊆ K where Sε = {θ ∈ RD : |θ − θ0| = ε}. By

Theorem 7, f is continuous on E (since f ′ exists on E). Thus, f attains its minimum on
the compact set Sε, and since f(θ) > f(θ0) on Sε, we have infθ∈Sε f(θ) > f(θ0). For each
n, since fn is continuous on E, its minimum over the set Bε(θ0) is attained at one or more
points; define θεn to be such a minimizer. Since fn → f uniformly on E (by Theorem 7), then
for all n sufficiently large, any such minimizer cannot be in Sε (since infθ∈Sε f(θ) > f(θ0)).
Hence, for all sufficiently small ε > 0, for all n sufficiently large, we have θεn ∈ Bε(θ0) and
(by Lemma 38) f ′n(θεn) = 0.

Thus, we can choose a sequence εn > 0 such that (a) εn → 0 and (b) for all n sufficiently
large, θεnn ∈ Bεn(θ0) and f ′n(θεnn ) = 0. Therefore, letting θn = θεnn , we have θn → θ0 and
f ′n(θn) = 0 for all n sufficiently large.

(c) We have |fn(θn) − f(θ0)| ≤ |fn(θn) − fn(θ0)| + |fn(θ0) − f(θ0)| → 0, the first term
going to zero since θn → θ0 and (fn) is equi-Lipschitz on E, and the second term since
fn → f pointwise.

For tensors S, T ∈ RD3
, define the inner product 〈S, T 〉 =

∑
i,j,k SijkTijk (noting that

this is just the dot product of the vectorized versions of S and T ). For x ∈ RD, define

x⊗3 = x⊗ x⊗ x =
(
xixjxk

)D
i,j,k=1

∈ RD3
, and note that ‖x⊗3‖ = |x|3.

Proof of Theorem 6 By Lemma 37, (f ′′n) is equi-Lipschitz. Thus,

‖f ′′n(θn)−H0‖ ≤ ‖f ′′n(θn)− f ′′n(θ0)‖+ ‖f ′′n(θ0)−H0‖ ≤ C|θn − θ0|+ ‖f ′′n(θ0)−H0‖ −→ 0,

and hence, Hn → H0. Let C0 = supn supθ∈E ‖f ′′′n (θ)‖. Let n large enough that f ′n(θn) = 0.
For θ ∈ E, by Taylor’s theorem,

fn(θ) = fn(θn) + 1
2(θ − θn)Tf ′′n(θn)(θ − θn) + rn(θ − θn)
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where rn(θ− θn) = 1
6〈f
′′′
n (tn(θ)), (θ− θn)⊗3〉, and tn(θ) is a point on the line between θ and

θn. Then by Cauchy–Schwarz,

|rn(θ − θn)| ≤ 1
6‖f

′′′
n (tn(θ))‖‖(θ − θn)⊗3‖ ≤ 1

6C0‖(θ − θn)⊗3‖ = 1
6C0|θ − θn|3. (B.4)

Choose ε0 > 0 small enough that B2ε0(θ0) ⊆ E, and choose c0 = C0/6. For all n sufficiently
large, |θn − θ0| ≤ ε0 and hence for all x ∈ Bε0(0), we have θn + x ∈ B2ε0(θ0) ⊆ E; thus,
setting θ = θn + x in Equation B.4 yields |rn(x)| ≤ c0|x|3.

Appendix C. Proof of Regular Convergence Theorem

Lemma 29 Let E ⊆ RD be open. If fn : E → R has continuous second derivatives, (fn) is
pointwise bounded, and (f ′′n) is uniformly bounded, then (f ′n) is pointwise bounded.

Proof Let C = sup{‖f ′′n(x)‖ : n ∈ N, x ∈ E} <∞. Fix x ∈ E, and let ε > 0 small enough
that B2ε(x) ⊆ E. By Taylor’s theorem, for any u ∈ RD with |u| = 1,

fn(x+ εu) = fn(x) + εf ′n(x)Tu+ 1
2ε

2uTf ′′n(z)u

for some z on the line between x and x+ εu, and therefore,

|f ′n(x)Tu| ≤ (1/ε)|fn(x+ εu)− fn(x)|+ 1
2εC

since |uTf ′′n(z)u| ≤ ‖f ′′n(z)‖|u|2 ≤ C. Thus, {f ′n(x)Tu : n ∈ N} is bounded, for any u with
|u| = 1. Applying this to each element of the standard basis, we see f ′n(x) is bounded.

Lemma 30 Let E ⊆ RD be open. If fn : E → R has continuous third derivatives, (fn) is
pointwise bounded, and (f ′′′n ) is uniformly bounded, then (f ′′n) is pointwise bounded.

Proof Let C = supn supx∈E ‖f ′′′n (x)‖ < ∞. Fix x ∈ E, and let ε > 0 small enough that
Bε(x) ⊆ E. By Taylor’s theorem, for any u ∈ RD with |u| = 1,

fn(x+ εu) = fn(x) + εf ′n(x)Tu+ 1
2ε

2uTf ′′n(x)u+ 1
6ε

3〈f ′′′n (z+), u⊗3〉

for some z+ on the line between x and x+ εu. Likewise,

fn(x− εu) = fn(x)− εf ′n(x)Tu+ 1
2ε

2uTf ′′n(x)u− 1
6ε

3〈f ′′′n (z−), u⊗3〉

for some z− on the line between x and x− εu. Adding these two equations gives

fn(x+ εu) + fn(x− εu) = 2fn(x) + ε2uTf ′′n(x)u+ 1
6ε

3〈f ′′′n (z+)− f ′′′n (z−), u⊗3〉.

For any tensor T ∈ RD3
, |〈T, u⊗3〉| ≤ ‖T‖‖u⊗3‖ = ‖T‖, by the Cauchy–Schwarz inequality.

Therefore,

|uTf ′′n(x)u| ≤ (1/ε2)|fn(x+ εu) + fn(x− εu)− 2fn(x)|+ 1
3εC.
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Thus, since (fn) is pointwise bounded, this implies that {uTf ′′n(x)u : n ∈ N} is bounded,
for any u with |u| = 1. Let u1, . . . , uk ∈ RD, with |ui| = 1, such that u1u

T
1, . . . , uku

T
k

is a basis for the vector space V ⊆ RD×D of symmetric matrices. (This is possi-
ble since span{uuT : |u| = 1} = V by the spectral decomposition theorem.) With
〈A,B〉 :=

∑
i,j AijBij , V is an inner product space. Since {uTi f ′′n(x)ui : n ∈ N} is bounded

for each i, and uTi f
′′
n(x)ui = 〈uiuTi , f ′′n(x)〉, then by Lemma 31, {f ′′n(x) : n ∈ N} is bounded.

Since x is arbitrary, (f ′′n) is pointwise bounded.

Lemma 31 Suppose V is a finite-dimensional inner product space over R, and let
e1, . . . , ek ∈ V be a basis. If S ⊆ V such that {〈ei, x〉 : x ∈ S} is bounded for each
i = 1, . . . , k, then S is bounded.

Proof Let G be the Gram matrix of (ei), i.e., Gij = 〈ei, ej〉. Note that G is positive
definite, since for any a ∈ Rk,

aTGa =
∑
i,j

aiajGij =
∑
i,j

〈aiei, ajej〉 =
〈∑

i aiei,
∑

j ajej
〉

= ‖
∑

i aiei‖2 ≥ 0, (C.1)

with equality if and only if
∑

i aiei = 0, that is, if and only if a = 0 (since (ei) is a linearly
independent set). For x ∈ V , define a(x) ∈ Rk by the property that

∑
i ai(x)ei = x (noting

that a(x) always exists and is unique, since (ei) is a basis). Define b(x) ∈ Rk such that
bi(x) = 〈ei, x〉. Then for any x ∈ V ,

bi(x) =
〈
ei,
∑

jaj(x)ej
〉

=
∑
j

aj(x)〈ei, ej〉 =
∑
j

aj(x)Gij ,

and thus, b(x) = Ga(x). Hence, a(x) = G−1b(x), so by Equation C.1,

‖x‖2 = a(x)TGa(x) = b(x)TG−1b(x) ≤ ‖G−1‖|b(x)|2.

By assumption, {|b(x)| : x ∈ S} is bounded, hence, {‖x‖ : x ∈ S} is bounded.

Lemma 32 Let E ⊆ RD be open, convex, and bounded. Let fn : E → R have continuous
second derivatives. If fn → f pointwise for some f : E → R, and (f ′′n) is uniformly bounded,
then f ′ exists and is continuous, and f ′n → f ′ uniformly.

Proof First, we show that (f ′n) converges pointwise. Let C = supn supx∈E ‖f ′′n(x)‖ < ∞.
Let x ∈ E, and let ε > 0 small enough that Bε(x) ⊆ E. Then for any u ∈ RD with |u| = 1,
for any m,n, by applying Taylor’s theorem to fm − fn,

fm(x+εu)−fn(x+εu) = fm(x)−fn(x)+(f ′m(x)−f ′n(x))T(εu)+ 1
2(εu)T(f ′′m(z)−f ′′n(z))(εu)

for some z on the line between x and x+ εu. Thus,

|(f ′m(x)− f ′n(x))Tu| ≤ 1

ε
|fm(x+ εu)− fn(x+ εu)|+ 1

ε
|fm(x)− fn(x)|+ 1

2ε‖f
′′
m(z)− f ′′n(z)‖.
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The first two terms on the right go to zero as m,n → ∞ (by pointwise convergence of
fn), and ‖f ′′m(z) − f ′′n(z)‖ ≤ ‖f ′′m(z)‖ + ‖f ′′n(z)‖ ≤ 2C, therefore, limsupm,n→∞ |(f ′m(x) −
f ′n(x))Tu| ≤ εC. Since ε can be arbitrarily small, |(f ′m(x) − f ′n(x))Tu| → 0 as m,n → ∞.
Choosing u = (1, 0, 0, . . . , 0)T, then u = (0, 1, 0, . . . , 0)T, and so on, this implies |f ′m(x) −
f ′n(x)| → 0 as m,n→∞, and hence, f ′n(x) converges.

Next, by Lemma 37, (f ′n) is equi-Lipschitz, and hence, equicontinuous. Thus, in fact,
(f ′n) converges uniformly, by Lemma 36. Finally, we show that f ′ exists and f ′n → f ′

uniformly; it will follow that f ′ is continuous, as the limit of a uniformly convergent sequence
of continuous functions.

Let Cmn = supx∈E |f ′m(x) − f ′n(x)|. Then Cmn → 0 as m,n → ∞, by uniform con-
vergence. To establish the result, it suffices to show that for any x0 ∈ E, f ′(x0) ex-
ists and f ′n(x0) → f ′(x0). Fix x0 ∈ E, and let B = Bε(x0) \ {x0} where ε > 0 is
small enough that B ⊆ E. For x ∈ B, define ϕn(x) = (fn(x) − fn(x0))/|x − x0| and
ϕ(x) = (f(x)− f(x0))/|x− x0|, noting that ϕn → ϕ pointwise. For any x ∈ B, by Taylor’s
theorem applied to fm − fn,

fm(x)− fn(x) = fm(x0)− fn(x0) + (f ′m(z)− f ′n(z))T(x− x0)

for some z on the line between x and x0, and hence,

|ϕm(x)− ϕn(x)| ≤ |f ′m(z)− f ′n(z)| ≤ Cmn −→ 0

as m,n→∞. Therefore, ϕn → ϕ uniformly (on B) (by e.g., Rudin, 1976, 7.8).
Now, define ψn(x) = f ′n(x0)T(x−x0)/|x−x0| and ψ(x) = vT(x−x0)/|x−x0| for x ∈ B,

where v = limn f
′
n(x0). Since |ψn(x) − ψ(x)| ≤ |f ′n(x0) − v| → 0 as n → ∞, then ψn → ψ

uniformly as well. Hence, |ϕn − ψn| → |ϕ− ψ| uniformly (on B).
By the definition of the derivative f ′n(x0),

|ϕn(x)− ψn(x)| = |fn(x)− fn(x0)− f ′n(x0)T(x− x0)|
|x− x0|

−−−→
x→x0

0.

Therefore (by e.g., Rudin, 1976, 7.11),

0 = lim
n→∞

lim
x→x0

|ϕn(x)− ψn(x)| = lim
x→x0

lim
n→∞

|ϕn(x)− ψn(x)| = lim
x→x0

|ϕ(x)− ψ(x)|

= lim
x→x0

|f(x)− f(x0)− vT(x− x0)|
|x− x0|

.

Hence, f ′(x0) exists and equals v = limn f
′
n(x0).

Proof of Theorem 7 First, suppose (fn) is pointwise bounded. By Lemma 37 with
k = 3, (f ′′n) is equi-Lipschitz, and by Lemma 30, (f ′′n) is pointwise bounded. Thus, since E
is bounded, it follows that (f ′′n) is uniformly bounded. Therefore, by Lemma 37 with k = 2,
(f ′n) is equi-Lipschitz, and by Lemma 29, (f ′n) is pointwise bounded. Thus, likewise, (f ′n)
is uniformly bounded. And lastly, applying Lemma 37 with k = 1, we have that (fn) is
equi-Lipschitz, and hence, uniformly bounded, since it is pointwise bounded by assumption.

Now, assume fn → f pointwise. Then in fact, fn → f uniformly, by Lemma 36, since
(fn) is equi-Lipschitz (as just established), and hence, equicontinuous. By Lemma 32, f ′
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exists and f ′n → f ′ uniformly. To complete the proof, we show that f ′′ exists and f ′′n → f ′′

uniformly. For any i ∈ {1, . . . , D}, if we define hn(x) = f ′n(x)i and h(x) = f ′(x)i, then
hn → h pointwise and (h′′n) is uniformly bounded (since (f ′′′n ) is uniformly bounded and
‖h′′n(x)‖ ≤ ‖f ′′′n (x)‖); hence, by Lemma 32, h′ exists and is continuous, and h′n → h′ uni-
formly. Since this holds for each coordinate i, then f ′′ exists, and f ′′n → f ′′ uniformly.

Appendix D. Proofs of Coverage Results

Proof of Theorem 8 Letting Xn = −
√
n(θn − θ0) and X ∼ Q,

P(θ0 ∈ Sn)
(a)
= P(

√
n(θ0 − θn) ∈ Rn) = P(Xn ∈ Rn)

(b)−→ P(X ∈ R) = Q(R)

where step (a) is by the definition of Rn, and (b) is by Lemma 9, using assumptions 1

(Xn
D−→ X), 3, and 4. To see that Q(R) = ρ, note that Πn(Sn)

a.s.−−→ ρ by assumption and
also Πn(Sn) = Qn(Rn)

a.s.−−→ Q(R) since

|Qn(Rn)−Q(R)| ≤ |Qn(Rn)−Q(Rn)|+ |Q(Rn)−Q(R)|

≤ sup
A∈B
|Qn(A)−Q(A)|+ |Q(Rn)−Q(R)| a.s.−−→ 0

by assumption 2 and assumption 3 plus the dominated convergence theorem (Folland, 2013,
Theorem 2.24).

Proof of Lemma 9 For each k = 1, 2, . . ., define Ak = {x ∈ RD : d(x,Rc) > 1/k}
and Bk = {x ∈ RD : d(x,R) ≤ 1/k}. Note that Ak is open and Bk is closed since
x 7→ d(x,R) and x 7→ d(x,Rc) are continuous. For any k, by Lemma 10 we have that
with probability 1, for all n sufficiently large, Ak ⊆ Rn ⊆ Bk. Thus, with probability 1,
liminfn

(
1(Xn ∈ Rn)−1(Xn ∈ Ak)

)
≥ liminfn infx

(
1(x ∈ Rn)−1(x ∈ Ak)

)
≥ 0. It follows

that

liminf
n

E
(
1(Xn ∈ Rn)− 1(Xn ∈ Ak)

)
≥ E liminf

n

(
1(Xn ∈ Rn)− 1(Xn ∈ Ak)

)
≥ 0

by Fatou’s lemma applied to 1(Xn ∈ Rn) − 1(Xn ∈ Ak) + 1. (The +1 is added to make
the function nonnegative, so that Fatou’s lemma applies directly.) If liminfn(an − bn) ≥ 0
then liminf an = liminf(an − bn + bn) ≥ liminf(an − bn) + liminf bn ≥ liminf bn. Therefore,
liminfn→∞ P(Xn ∈ Ak) ≤ liminfn→∞ P(Xn ∈ Rn). Similarly, by reverse Fatou’s lemma,

limsup
n

E
(
1(Xn ∈ Rn)− 1(Xn ∈ Bk)

)
≤ E limsup

n

(
1(Xn ∈ Rn)− 1(Xn ∈ Bk)

)
≤ 0,

and therefore, limsupn P(Xn ∈ Rn) ≤ limsupn P(Xn ∈ Bk). Hence, by the portmanteau
theorem (Dudley, 2002, Theorem 11.1.1), for all k,

P(X ∈ Ak) ≤ liminf
n

P(Xn ∈ Ak) ≤ liminf
n

P(Xn ∈ Rn)

≤ limsup
n

P(Xn ∈ Rn) ≤ limsup
n

P(Xn ∈ Bk) ≤ P(X ∈ Bk).
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Taking limits as k →∞ and using the fact that
⋃∞
k=1Ak = R◦ and

⋂∞
k=1Bk = R̄, we have

P(X ∈ R◦) = limk P(X ∈ Ak) ≤ liminfn P(Xn ∈ Rn) ≤ limsupn P(Xn ∈ Rn) ≤ limk P(X ∈
Bk) = P(X ∈ R̄) by Folland (2013, Theorem 1.8). Further, P(X ∈ R◦) = P(X ∈ R) =
P(X ∈ R̄) since P(X ∈ ∂R) = 0. Therefore, limn P(Xn ∈ Rn) = P(X ∈ R).

Proof of Lemma 10 First, we establish some initial facts. It is straightforward to check
that R is convex. R◦ is nonempty since m(R̄) ≥ m(R) > 0 and m(∂R) = 0 (Lang, 1986).
It follows that R, A, and B are bounded. For any open cube E such that Ē ⊆ R, we have
E ⊆ Rn for all n sufficiently large, since 1(x ∈ Rn) → 1(x ∈ R) for each corner x of the
cube E.

Next, we show that A ⊆ Rn for all n sufficiently large. For each x ∈ Ā, let Ex be a
nonempty open cube centered at x such that Ēx ⊆ R. Then {Ex : x ∈ Ā} is an open cover
of Ā. Since Ā is compact, there is a finite subcover Ex1 , . . . , Exk . Thus, for all n sufficiently

large, A ⊆ Ā ⊆
⋃k
i=1Exi ⊆ Rn.

Now, we show that Rn ⊆ B for all n sufficiently large. Let Sδ = {x ∈ RD : d(x,R) = δ}
for δ > 0. Let E ⊆ R be a nonempty open cube such that E ⊆ Rn for all n sufficiently
large. For each x ∈ Sε/2, define Cx =

⋃
t>1{tx + (1 − t)z : z ∈ E}. Then Cx is open,

as a union of open sets. Note that y ∈ Cx if and only if x = sy + (1 − s)z for some
s ∈ (0, 1), z ∈ E, i.e., if and only if x is a (strict) convex combination of y and some point
of E. Thus, {Cx : x ∈ Sε/2} is an open cover of Sε (since for any y ∈ Sε, the line between
y and any z ∈ E must pass through Sε/2 by the intermediate value theorem applied to
s 7→ d(sx + (1 − s)z,R)). Since Sε is compact, there is a finite subcover Cx1 , . . . , Cxk for
some x1, . . . , xk ∈ Sε/2. Since xi ∈ Rc for each i = 1, . . . , k, there exists N such that for all
n ≥ N , x1, . . . , xk ∈ Rcn and E ⊆ Rn. Then for all n ≥ N , by the convexity of Rn, we have
Sε ⊆

⋃k
i=1Cxi ⊆ Rcn and hence Rn ⊆ B.

Appendix E. Proofs for Generalized Applications

Proof of Theorem 20 Define Br = {j ∈ Zm : R(j) ≤ r}, that is, Br =
{−r, . . . ,−1, 0, 1, . . . , r}m for r ∈ N. Let rn = R(v(n)), Ln = |Brn−1|, and Mn = |Brn |, for
n ∈ N. Observe that Ln < n ≤ Mn since R(v(1)) ≤ R(v(2)) ≤ · · · . Further, Mn/n→ 1 as
n→∞, since

1 ≤ Mn

n
≤ Mn

Ln
=
|Brn |
|Brn−1|

=
(2rn + 1

2rn − 1

)m
−→ 1

as n→∞ since rn →∞.

Fix k, ` ∈ {1, . . . ,m}, and define Zi = YiXik − E(YiXik) or Zi = XikXi` − E(XikXi`)
where Xi is defined as in Theorem 19; the proof is the same in either case. Then Z1, Z2, . . .
are identically distributed, and in fact, by Lemma 33, (Zv−1(j) : j ∈ Zm) is stationary with
respect to T1, . . . , Tm and ergodic with respect to at least one of T1, . . . , Tm. Note that EZi =
0 and E|Zi|2 = Var(Zi) <∞, since for all i, j, Var(YiYj) ≤ E|YiYj |2 ≤ (E|Yi|4E|Yj |4)1/2 <∞
by the Cauchy–Schwarz inequality.

To prove the result, we need to show that 1
n

∑n
i=1 Zi → 0 almost surely as n → ∞.

The key part is showing that (A) 1
Mn

∑Mn
i=1 Zi → 0 by the multivariate ergodic theorem; the
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remainder of the proof is showing that (B) the difference between 1
n

∑n
i=1 Zi and 1

Mn

∑Mn
i=1 Zi

is negligible.

(A) For the first part, letting Fk denote the invariant sigma-field with respect to Tk,

1

Mn

Mn∑
i=1

Zi =
1

|Brn |
∑
j∈Brn

Zv−1(j)

=
1

(2rn + 1)m

rn∑
j1=−rn

· · ·
rn∑

jm=−rn

Zv−1(j1,...,jm) (E.1)

a.s.−−−→
n→∞

EFm · · ·EF1Z1 = E(Z1 | ∩kFk) = EZ1 = 0

by applying the multivariate ergodic theorem (Kallenberg, 2002, Theorems 10.12 and 10.13)
to each of the 2m orthants of Zm. A few clarifying remarks. The subset {j ∈ Zm :
min{|j1|, . . . , |jm|} = 0} can be handled by shifting each orthant to ensure that, collectively,
they form a partition of Zm. Kallenberg (2002, Theorem 10.12) shows that the limit is
EFm · · ·EF1Z1, and since T1, . . . , Tm are commutative, we have EFm · · ·EF1Z1 = E(Z1 |
∩kFk) by Kallenberg (2002, Theorem 10.13). Ergodicity with respect to Tk means that the
corresponding invariant sigma-field Fk is trivial, that is, the probability of any set A ∈ Fk
is either 0 or 1. So by assumption, at least one of F1, . . . ,Fm is trivial, and hence, ∩kFk is
trivial as well. Therefore, E(Z1 | ∩kFk) = EZ1 = 0.

(B) Now, for the remainder of the proof,

∣∣∣ 1

Mn

n∑
i=1

Zi

∣∣∣ ≤ ∣∣∣ 1

Mn

n∑
i=1

Zi −
1

Mn

Mn∑
i=1

Zi

∣∣∣+
∣∣∣ 1

Mn

Mn∑
i=1

Zi

∣∣∣.
As for the second term, we have 1

Mn

∑Mn
i=1 Zi → 0 a.s. by Equation E.1. As for the first

term, we have

∣∣∣ 1

Mn

n∑
i=1

Zi −
1

Mn

Mn∑
i=1

Zi

∣∣∣ ≤ 1

Mn

Mn∑
i=n+1

|Zi| ≤
1

Mn

Mn∑
i=Ln+1

|Zi| = crnWrn

where cr = |Br \ Br−1|/|Br|, Wr = 1
|Sr|
∑

i∈Sr |Zi|, and Sr = {Ln + 1, . . . ,Mn}. If we can
show that crnWrn → 0 almost surely as n → ∞, then this will prove the result, since then
1
n

∑n
i=1 Zi =

(
Mn
n

)
1
Mn

∑n
i=1 Zi → 0 a.s., using the fact that Mn/n→ 1 as shown above.

We show that crnWrn → 0 using the Borel–Cantelli lemma. For all ε > 0, r ∈ N, by
Markov’s inequality we have

P(crWr ≥ ε) = P(W 2
r ≥ (ε/cr)

2) ≤ (cr/ε)
2E(W 2

r ) ≤ (cr/ε)
2Var(Z1), (E.2)

where the last step holds since E(W 2
r ) ≤ E

(
1
|Sr|
∑

i∈Sr |Zi|
2
)

= E|Z1|2 = Var(Z1) by Jensen’s
inequality. Now, for all r ∈ N, we have the bound

cr =
(2r + 1)m − (2r − 1)m

(2r + 1)m
≤ (2r − 1)m−13m

(2r + 1)m
≤ 3m

r
(E.3)
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where the first inequality holds by the following application of the binomial theorem, taking
x = 2r − 1 and y = 2: for all m ∈ N, x ≥ 1, y ≥ 0,

(x+ y)m − xm =

m∑
k=1

(
m

k

)
xm−kyk ≤ xm−1

m∑
k=0

(
m

k

)
yk = xm−1(1 + y)m.

Therefore, combining Equations E.2 and E.3, we have that for all ε > 0,

∞∑
r=1

P(crWr ≥ ε) ≤
∞∑
r=1

(cr/ε)
2Var(Z1) ≤ (3m/ε)2Var(Z1)

∞∑
r=1

1

r2
<∞.

Hence, by the Borel–Cantelli lemma, for all ε > 0, P(limsupr crWr ≤ ε) = 1. Therefore,
P(lim crWr = 0) = P(∩∞k=1{limsupr crWr ≤ 1/k}) = 1, that is, crWr → 0 a.s. as r →∞.

In the following lemma, we adopt the notational conventions and definitions of Kallen-
berg (2002), page 181.

Lemma 33 Let ξ be a random element in S with distribution µ, and let T : S → S be

µ-preserving (that is, T (ξ)
d
= ξ). Suppose f : S → S is a measurable function such that

f ◦T = T ◦f . Then T (f(ξ))
d
= f(ξ), that is, T preserves the distribution of f(ξ). If, further,

ξ is T -ergodic, then f(ξ) is T -ergodic.

Proof The first part is immediate, since T (f(ξ)) = f(T (ξ))
d
= f(ξ). Suppose ξ is T -

ergodic. In other words, suppose that for any measurable set A such that T−1(A) = A,
we have P(ξ ∈ A) ∈ {0, 1}. (This is also equivalent to saying that the T -invariant
sigma-algebra is trivial under µ.) To show that f(ξ) is T -ergodic, let A such that
T−1(A) = A. Then T−1(f−1(A)) = f−1(T−1(A)) = f−1(A) since f ◦ T = T ◦ f , so we
have P(f(ξ) ∈ A) = P(ξ ∈ f−1(A)) ∈ {0, 1}. Hence, f(ξ) is T -ergodic.

In the proof of Theorem 20, we apply Lemma 33 in the following way. Suppose ξ is a real-
valued stochastic process on Zm, that is, ξ = (ξ(i1, . . . , im) : i ∈ Zm) where ξ(i1, . . . , im) is a
real-valued random variable. Suppose Tk is the shift transformation in coordinate k, that is,
Tkξ = Tk(ξ) = (ξ(i1, . . . , ik +1, . . . , im) : i ∈ Zm). Let ϕ(ξ) ∈ R be a measurable function of
ξ, and define f(ξ) = (ϕ(T j11 · · ·T

jm
m ξ) : j ∈ Zm). Then f(Tkξ) = (ϕ(T j11 · · ·T

jk+1
k · · ·T jmm ξ) :

j ∈ Zm) = Tkf(ξ) and thus, f ◦ Tk = Tk ◦ f . Hence, if ξ is stationary with respect to Tk

(that is, Tkξ
d
= ξ) and ξ is Tk-ergodic, then by Lemma 33, f(ξ) is stationary with respect

to Tk and is Tk-ergodic.

Proof of Theorem 24 For θ ∈ RD,

fn(θ) = − 1

n
logLCox

n (θ)− 1

n

n∑
i=1

Zi log n =
1

n

n∑
i=1

Hn
Yi(θ)Zi − θ

T
(

1
n

∑n
i=1XiZi

)
where Hn

y (θ) = log
(

1
n

∑n
j=1 exp(θTXj)1(Yj ≥ y)

)
. Note that fn is C∞, as a composition

of C∞ functions. Further, fn is convex on RD, since Hn
Yi

(θ) is convex by Lemma 41 with

µ = 1
n

∑
j:Yj≥Yi δXj . By Lemma 35, f ′′(θ0) is positive definite.
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By the strong law of large numbers, 1
n

∑n
i=1XiZi

a.s.−→ E(XZ) as n → ∞, and by

Lemma 34, for all θ ∈ RD, E|hY (θ)Z| <∞ and 1
n

∑n
i=1H

n
Yi

(θ)Zi
a.s.−→ E

(
hY (θ)Z

)
as n→∞.

Therefore, for all θ ∈ RD, with probability 1, fn(θ)→ f(θ). Due to convexity, this implies
that with probability 1, for all θ ∈ RD, fn(θ)→ f(θ).

Let m = sup{|x| : x ∈ X} < ∞. Then by Lemma 41,
∣∣(∂3/∂θj∂θk∂θ`)H

n
Yi

(θ)
∣∣ ≤

(2m)3 = 8m3 for all θ ∈ RD. Thus, ‖f ′′′n (θ)‖2 =
∑

j,k,`

∣∣(∂3/∂θj∂θk∂θ`)fn(θ)
∣∣2 ≤ D3(8m3)2

for all θ ∈ RD, n ∈ N. Hence, (f ′′′n ) is a.s. uniformly bounded on all of RD. Thus, for any
open ball E containing θ0, the conditions of Theorem 5 are satisfied with probability 1.

Note that Hn
Y1

(θ), Hn
Y2

(θ), . . . are not i.i.d., which is why the next lemma is not trivial.

Lemma 34 Suppose (X,Y, Z), (X1, Y1, Z1), (X2, Y2, Z2), . . . are i.i.d., where X ∈ X ⊆ RD,
Y ≥ 0, and Z ∈ {0, 1}. Define hy(θ) = log E

(
exp(θTX)1(Y ≥ y)

)
and Hn

y (θ) =

log
(

1
n

∑n
j=1 exp(θTXj)1(Yj ≥ y)

)
for θ ∈ RD, y ≥ 0. If X is bounded and the c.d.f. of

Y is continuous on R, then for all θ ∈ RD, E|hY (θ)Z| <∞ and

1

n

n∑
i=1

Hn
Yi(θ)Zi

a.s.−−−→
n→∞

E
(
hY (θ)Z

)
.

Proof Let F (y) = P(Y ≤ y), c∗ = sup{y ∈ R : F (y) < 1}, and m = sup{|x| : x ∈ X} <∞.
Since |X| ≤ m and F is continuous, E|hY (θ)Z| ≤ m|θ|−E log(1−F (Y )) = m|θ|+1 because
F (Y ) ∼ Uniform(0, 1). Fix θ ∈ RD and define g(y) = hy(θ) and Gn(y) = Hn

y (θ).
First, we show that for all c ∈ (0, c∗),

sup
y∈[0,c]

|Gn(y)− g(y)| a.s.−−−→
n→∞

0. (E.4)

Let S be a countable dense subset of [0, c] such that 0, c ∈ S. For all y ∈ S, Gn(y)
a.s.−→

g(y) ∈ R by the strong law of large numbers since 0 < E(eθ
TX1(Y ≥ y)) ≤ em|θ| <∞. Next,

Gn is a non-increasing function on [0, c] (that is, if 0 ≤ y < y′ ≤ c then Gn(y) ≥ Gn(y′))
since y 7→ 1(Yj ≥ y) is non-increasing. Further, g(y) is continuous on [0, c] by the dominated

convergence theorem, since |eθTX1(Y ≥ y)| ≤ em|θ| and P(Y = y) = 0 by the continuity of F .
Thus, with probability 1, for all n sufficiently large, Gn is finite on [0, c] since Gn(0)

a.s.−→ g(0)
and Gn(c)

a.s.−→ g(c). It follows that supy∈[0,c] |Gn(y)− g(y)| a.s.−→ 0 by Lemma 39.
Second, we show that for all c ∈ (0, c∗),

1

n

n∑
i=1

Gn(Yi)Zi1(Yi ≤ c)
a.s.−−−→
n→∞

E
(
g(Y )Z1(Y ≤ c)

)
. (E.5)

To see this, observe that by Equation E.4,∣∣∣∣ 1n
n∑
i=1

Gn(Yi)Zi1(Yi ≤ c)−
1

n

n∑
i=1

g(Yi)Zi1(Yi ≤ c)
∣∣∣∣

≤ 1

n

n∑
i=1

|Gn(Yi)− g(Yi)|1(Yi ≤ c) ≤ sup
y∈[0,c]

|Gn(y)− g(y)| a.s.−−−→
n→∞

0
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and 1
n

∑n
i=1 g(Yi)Zi1(Yi ≤ c)

a.s.−−−→
n→∞

E
(
g(Y )Z1(Y ≤ c)

)
by the strong law of large numbers.

Third, we show that for all c ∈ (0, c∗),

limsup
n→∞

∣∣∣∣ 1n
n∑
i=1

Gn(Yi)Zi1(Yi > c)

∣∣∣∣ a.s.
≤ m|θ|pc − pc log pc + pc (E.6)

where pc = P(Y > c). This follows from the fact that∣∣∣∣ 1n
n∑
i=1

Gn(Yi)Zi1(Yi > c)

∣∣∣∣ ≤ 1

n

n∑
i=1

|Gn(Yi)|1(Yi > c)

≤ 1

n

n∑
i=1

(
m|θ| − log

(
1
n

∑n
j=1 1(Yj ≥ Yi)

))
1(Yi > c)

a.s.
= m|θ|Kn/n−

1

n

Kn∑
k=1

log(k/n)

a.s.−−−→
n→∞

m|θ|pc −
∫ pc

0
(log x)dx = m|θ|pc − pc log pc + pc

where Kn =
∑n

i=1 1(Yi > c), using that P(Yi = Yj) = 0 for i 6= j by continuity of F .
Now, we put these pieces together to obtain the result. Writing 1

n

∑n
i=1Gn(Yi)Zi =

1
n

∑n
i=1Gn(Yi)Zi1(Yi ≤ c) + 1

n

∑n
i=1Gn(Yi)Zi1(Yi > c), for all c ∈ (0, c∗) we have∣∣∣∣ 1n

n∑
i=1

Gn(Yi)Zi − E(g(Y )Z)

∣∣∣∣ ≤ ∣∣∣∣ 1n
n∑
i=1

Gn(Yi)Zi1(Yi ≤ c)− E
(
g(Y )Z1(Y ≤ c)

)∣∣∣∣
+

∣∣∣∣E(g(Y )Z1(Y ≤ c)
)
− E(g(Y )Z)

∣∣∣∣+

∣∣∣∣ 1n
n∑
i=1

Gn(Yi)Zi1(Yi > c)

∣∣∣∣,
and therefore, by Equations E.5 and E.6,

limsup
n→∞

∣∣∣∣ 1n
n∑
i=1

Gn(Yi)Zi − E(g(Y )Z)

∣∣∣∣
a.s.
≤
∣∣E(g(Y )Z1(Y ≤ c)

)
− E(g(Y )Z)

∣∣+m|θ|pc − pc log pc + pc. (E.7)

Let c1, c2, . . . ∈ (0, c∗) such that ck → c∗. Then pck → pc∗ = 0 by continuity of F , and thus,
m|θ|pck − pck log pck + pck → 0 as k → ∞. Further, E

(
g(Y )Z1(Y ≤ ck)

)
→ E(g(Y )Z) by

the dominated convergence theorem, since |g(Y )Z1(Y ≤ ck)| ≤ |g(Y )Z|, E|g(Y )Z| < ∞,
and 1(Y ≤ ck)

a.s.→ 1 as k → ∞. Applying Equation E.7 to each ck and taking limits as
k →∞, we have that limsupn→∞

∣∣ 1
n

∑n
i=1Gn(Yi)Zi − E(g(Y )Z)

∣∣ = 0 almost surely.

Lemma 35 Under the conditions of Theorem 24, f ′′(θ) is positive definite for all θ ∈ RD.

Proof Recall that f(θ) = E
(
hY (θ)Z

)
− θTE(XZ) where hy(θ) = log E(eθ

TX1(Y ≥ y)) for
θ ∈ RD. First, we put hy(θ) in the form of κ(θ) in Lemma 41 by noting that hy(θ) =
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log E(eθ
TXP(Y ≥ y | X)) = log

∫
exp(θTx)µy(dx) where µy(dx) = P(Y ≥ y | X = x)P (dx)

and P is the distribution ofX (Dudley, 2002, 10.2.1-10.2.2). Letm = sup{|x| : x ∈ X} <∞.
We have |hy(θ)| < ∞ for all θ ∈ RD and all y ≥ 0 because exp(−m|θ|) ≤ exp(θTX) ≤
exp(m|θ|), and thus −∞ < −m|θ|+ logP(Y ≥ y) ≤ hy(θ) ≤ m|θ|+ logP(Y ≥ y) <∞ due
to assumptions 1 and 4 of Theorem 24.

For any given θ ∈ RD and y ≥ 0, following Lemma 41, we define a probability measure
P̃ = P̃θ,y on X by P̃ (dx) = exp(θTx − hy(θ))P(Y ≥ y | X = x)P (dx). Note that P and
P̃ are mutually absolutely continuous since exp(θTx − hy(θ))P(Y ≥ y | X = x) is strictly
positive for all x ∈ X . By Lemma 41, h′y(θ) = E(X̃) and h′′y(θ) = Cov(X̃) where X̃ ∼ P̃ .

We claim that for any nonzero a ∈ RD, aTh′′y(θ)a > 0. To see this, suppose a ∈ RD such

that aTh′′y(θ)a = 0. Since aTh′′y(θ)a = Var(aTX̃), it follows that P(aTX̃ = E(aTX̃)) = 1.

But then P(aTX = E(aTX̃)) = 1 since P � P̃ . Hence, aTX is a.s. equal to a constant, so
Var(aTX) = 0, which implies a = 0 by assumption 3 of Theorem 24.

To justify differentiating under the expectation in E(hY (θ)Z), we apply Folland (2013,
Theorem 2.27b) using the following bounds. First, E|hY (θ)Z| < ∞ by Lemma 34. Next,
|X̃| ≤ m because P̃ is supported on X . Thus, | ∂∂θj hy(θ)z| = |E(X̃j)z| ≤ E|X̃j | ≤ E|X̃| ≤ m
and | ∂2

∂θj∂θk
hy(θ)z| = |Cov(X̃j , X̃k)z| ≤ E|X̃j ||X̃k|+ E|X̃j |E|X̃k| ≤ 2m2 for z ∈ {0, 1}.

Hence, f ′′(θ) = E
(
h′′Y (θ)Z

)
, and we have that for any nonzero a ∈ RD, aTf ′′(θ)a =

E
(
aTh′′Y (θ)aZ

)
> 0 because aTh′′Y (θ)a > 0 and P(Z = 1) > 0 due to assumption 3 of Theo-

rem 24. Therefore, f ′′(θ) is positive definite.

Appendix F. Supporting Results

This section contains miscellaneous supporting results used in the proofs. A metric space
E is totally bounded if for any δ > 0, there exist x1, . . . , xk ∈ E, for some k ∈ N, such that
E =

⋃k
i=1{x ∈ E : d(x, xi) < δ}. In particular, any bounded subset of a Euclidean space is

totally bounded.

Lemma 36 Suppose hn : E → F for n ∈ N, where E is a totally bounded metric space and
F is a normed space. If (hn) converges pointwise and is equicontinuous, then it converges
uniformly.

Proof Let ε > 0. Choose δ > 0 by equicontinuity, so that for any n ∈ N, x, y ∈ E,
if d(x, y) < δ then ‖hn(x) − hn(y)‖ < ε. Choose x1, . . . , xk ∈ E by totally boundedness,
and by pointwise convergence, let N such that for all m,n > N , for all i ∈ {1, . . . , k},
‖hm(xi) − hn(xi)‖ < ε. Then, for any x ∈ E, there is some i ∈ {1, . . . , k} such that
d(x, xi) < δ, and thus

‖hm(x)− hn(x)‖ ≤ ‖hm(x)− hm(xi)‖+ ‖hm(xi)− hn(xi)‖+ ‖hn(xi)− hn(x)‖ < 3ε

for any m,n > N . Therefore, (hn) converges uniformly (by e.g., Rudin, 1976, 7.8).

When all the kth order partial derivatives of f exist, let f (k)(x) denote the k-way tensor
of kth derivatives; in particular, f (1) = f ′, f (2) = f ′′, and so on. When these derivatives
are continuous, the order of differentiation does not matter (Rudin, 1976, exercise 9.29).
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Lemma 37 Let E ⊆ RD be open and convex, and let fn : E → R for n ∈ N. For any

k ∈ N, if each fn has continuous kth-order derivatives and (f
(k)
n ) is uniformly bounded,

then (f
(k−1)
n ) is equi-Lipschitz.

Proof First, we prove the case of k = 1. Let C = supn supx∈E |f ′n(x)| < ∞. By Taylor’s
theorem, for any n ∈ N, x, y ∈ E, fn(x) = fn(y) + f ′n(z)T(x − y) for some z on the line
between x and y, and therefore,

|fn(x)− fn(y)| ≤ |f ′n(z)| |x− y| ≤ C|x− y|.

Thus, (fn) is equi-Lipschitz.

For notational clarity, we prove the case of k = 3, and observe that the extension from
this to the general case is immediate. For any i, j ∈ {1, . . . , D}, if we define hn(x) =

f ′′n(x)ij = ∂2

∂xi∂xj
fn(x), then (h′n) is uniformly bounded (since |h′n(x)| ≤ ‖f ′′′n (x)‖ and (f ′′′n )

is uniformly bounded), and hence, (hn) is equi-Lipschitz by the case of k = 1 just proven.
Thus, (f ′′n) is equi-Lipschitz, since if Cij is the equi-Lipschitz constant for entry (i, j), then

‖f ′′n(x)− f ′′n(y)‖2 =
∑
i,j

|f ′′n(x)ij − f ′′n(y)ij |2 ≤ C2|x− y|2

where C2 =
∑

i,j C
2
ij .

Lemma 38 Let B ⊆ RD be open and let f : B → R be differentiable. If x0 ∈ B such that
f(x) ≥ f(x0) for all x ∈ B, then f ′(x0) = 0.

Proof For any u ∈ RD with |u| = 1, f ′(x0)Tu = limε→0(f(x0 + εu) − f(x0)) ≥ 0. If
f ′(x0) 6= 0, then choosing u = −f ′(x0)/|f ′(x0)|, we have 0 ≤ f ′(x0)Tu = −|f ′(x0)| < 0, a
contradiction.

Lemma 39 Let a, b ∈ R such that a < b, let g : [a, b] → R be continuous, and for n ∈ N,
let gn : [a, b] → R be a non-increasing function. If there is a dense subset S ⊆ [a, b] such
that a, b ∈ S and gn(y)→ g(y) for all y ∈ S, then supy∈[a,b] |gn(y)− g(y)| −→ 0 as n→∞.

Lemma 39 is straightforward to verify, so we omit the proof. Lemmas 40 and 41 are
standard well-known results, but we provide precise statements and proofs for completeness.
We write S◦ to denote the interior of S.

Lemma 40 Let µ be a Borel measure on RD and define G(θ) =
∫
RD exp(θTx)µ(dx) for

θ ∈ RD. Let S = {θ ∈ RD : G(θ) < ∞}. Then G is C∞ on S◦ and for all θ ∈ S◦,
k ∈ {0, 1, 2, . . .}, i1, . . . , ik ∈ {1, . . . , D}, we have

∂

∂θi1
· · · ∂

∂θik
G(θ) =

∫
xi1 · · ·xik exp(θTx)µ(dx). (F.1)
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Proof We proceed by induction. By construction, for all θ ∈ S◦,
∫
|eθTx|µ(dx) < ∞

and Equation F.1 holds when k = 0. Fix i1, . . . , ik ∈ {1, . . . , D} and suppose that for
all θ ∈ S◦,

∫
|xi1 · · ·xikeθ

Tx|µ(dx) < ∞ and Equation F.1 holds. Let j ∈ {1, . . . , D} and
θ0 ∈ S◦. Define u = (0, . . . , 0, 1, 0, . . . , 0) ∈ RD where the 1 is in the jth position. Choose
ε > 0 such that θ0 + tu ∈ S◦ for all t ∈ [−2ε, 2ε]. Define f(x, t) = xi1 · · ·xike(θ0+tu)Tx and
F (t) =

∫
f(x, t)µ(dx) for x ∈ RD, t ∈ [−2ε, 2ε]. Note that

∫
|f(x, t)|µ(dx) < ∞ for all

t ∈ [−2ε, 2ε] by the induction hypothesis. Define g(x) = |f(x, 2ε)|/ε + |f(x,−2ε)|/ε. It is
straightforward to verify that |∂f∂t (x, t)| = |xjf(x, t)| ≤ g(x) for all x ∈ RD, t ∈ [−ε, ε], by

using the inequality |xj | ≤ eε|xj |/ε. Further,
∫
|g(x)|µ(dx) <∞ by the induction hypothesis.

Therefore, F is differentiable and F ′(t) =
∫ ∂f

∂t (x, t)µ(dx) for all t ∈ (−ε, ε) by Folland (2013,
Theorem 2.27b).

Putting these pieces together, we have

∂

∂θj

∣∣∣∣
θ=θ0

∂

∂θi1
· · · ∂

∂θik
G(θ) =

∂

∂θj

∣∣∣∣
θ=θ0

∫
xi1 · · ·xik exp(θTx)µ(dx)

=
∂

∂t

∣∣∣∣
t=0

∫
f(x, t)µ(dx) = F ′(0) =

∫
∂f

∂t
(x, 0)µ(dx)

=

∫
xjf(x, 0)µ(dx) =

∫
xjxi1 · · ·xik exp(θT0x)µ(dx)

and
∫
|xjxi1 · · ·xikeθ

T
0x|µ(dx) =

∫
|∂f∂t (x, 0)|µ(dx) ≤

∫
|g(x)|µ(dx) < ∞. Since j ∈

{1, . . . , D} and θ0 ∈ S◦ are arbitrary, this completes the induction step.

Lemma 41 Let µ be a Borel measure on RD and define κ(θ) = log
∫
RD exp(θTx)µ(dx) for

θ ∈ RD. Let Θ = {θ ∈ RD : |κ(θ)| < ∞}, and define Pθ(A) =
∫
A exp(θTx − κ(θ))µ(dx)

for θ ∈ Θ and A ⊆ RD Borel measurable. Then Θ is a convex set and κ is convex on Θ.
Further, for all θ in the interior of Θ, for all i, j, k ∈ {1, . . . , D}, if X ∼ Pθ then

(1)
∂κ

∂θi
(θ) = E(Xi),

(2)
∂2κ

∂θi∂θj
(θ) = E

(
(Xi − EXi)(Xj − EXj)

)
= Cov(Xi, Xj), and

(3)
∂3κ

∂θi∂θj∂θk
(θ) = E

(
(Xi − EXi)(Xj − EXj)(Xk − EXk)

)
.

More succinctly, items 1 and 2 state that κ′(θ) = E(X) and κ′′(θ) = Cov(X) where X ∼ Pθ.
Proof Convexity of Θ and κ is a straightforward application of Hölder’s inequality. Define
G(θ) =

∫
exp(θTx)µ(dx) for θ ∈ RD. By Lemma 40, G is C∞ on the interior of Θ and its

partial derivatives are given by Equation F.1. The identities in items 1 - 3 are straightfor-
ward to derive using Equation F.1 and the chain rule.
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