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Abstract

Principal variables analysis (PVA) is a technique for selecting a subset of variables
that capture as much of the information in a dataset as possible. Existing approaches
for PVA are based on the Pearson correlation matrix, which is not well-suited to de-
scribing the relationships between non-Gaussian variables. We propose a generalized
approach to PVA enabling the use of different types of correlation, and we explore
using Spearman, Gaussian copula, and polychoric correlations as alternatives to Pear-
son correlation when performing PVA. We compare performance in simulation studies
varying the form of the true multivariate distribution over a wide range of possibili-
ties. Our results show that on continuous non-Gaussian data, using generalized PVA
with Gaussian copula or Spearman correlations provides a major improvement in per-
formance compared to Pearson. Meanwhile, on ordinal data, generalized PVA with
polychoric correlations outperforms the rest by a wide margin. We apply generalized
PVA to a dataset of 102 clinical variables measured on individuals with X-linked dys-
tonia parkinsonism (XDP), a rare neurodegenerative disorder, and we find that using
different types of correlation yields substantively different sets of principal variables.

1 Introduction

Principal variables analysis (PVA) is technique for selecting a subset of variables that retain
the properties of the complete data as well as possible. Different variants of PVA have be
used to reduce dimensionality in a way that retains the structure of the original feature space,
preserves the relative distance between data points, or explains the variability of features that
are not chosen. While principal variables analysis is closely related to principal components
analysis (PCA), the main difference is that PVA selects a subset of variables, rather than
linear combinations of variables (McCabe, 1984; Beale et al., 1967). In comparison to PCA,
PVA is particularly useful for deciding which variables are worth collecting in future studies.

Approaches to PVA have tended to take on three forms. Criterion-based approaches,
such as those presented by McCabe (1984) and Cadima et al. (2004), apply best subset
algorithms or sequential greedy algorithms to maximize a pre-defined optimality criterion
(Brusco, 2014; Cumming and Wooff, 2007). PCA-based approaches, such as those discussed
by Jolliffe (1972, 1973), select variables sequentially based on their contributions to important
principal components. Clustering-based approaches identify clusters of correlated variables,
then select one or more variables from each cluster so that each cluster is represented in the
reduced data. Despite their differences, all of these methods share a key feature, which is
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that they are based on the sample Pearson correlation matrix. For instance, an appealing
criterion-based approach is to minimize the trace of the conditional covariance matrix of the
omitted variables given the chosen variables, while holding the number of chosen variables
constant (McCabe, 1984). If the variables are multivariate Gaussian, that is, multivariate
normal (MVN), and have been normalized to unit variance, this is equivalent to maximizing
the “variance explained” — that is, the amount of variance of the omitted variables explained
by the chosen variables.

However, a major limitation of these existing methods is that on non-Gaussian data, the
Pearson correlation is not a very natural measure of interdependence. For example, it is well-
known that two binary variables cannot have correlation 1 unless their marginal probabilities
are equal. Similarly, variables may be highly dependent in an unobserved latent space, but
exhibit lower correlation in the observed data due to discretization or other transformations
that occur in the measurement process. This can cause PVA methods based on the Pearson
correlation to miss out on important features.

In this article, we propose a generalized PVA method for handling non-Gaussian data,
including ordinal and continuous cases. The basic idea is simply to replace the Pearson
correlation matrix with an alternative correlation matrix when running PVA. We investigate
using three alternatives: (1) Spearman correlation, which is based on the observed ranks;
(2) polychoric correlation, which is designed for ordinal variables (Choi et al., 2010); and (3)
Gaussian copula correlation, which can capture arbitrary latent correlation structure and
arbitrary marginals (Trivedi and Zimmer, 2005). We evaluate each approach under diverse
simulation conditions with varying assumptions about the true multivariate distribution. We
focus on the criterion-based method for PVA described above, in which we seek to minimize
the trace of the conditional covariance matrix of the omitted variables given the chosen
variables. To the best of our knowledge, this is the first study to directly examine the
limitations of using the Pearson correlation matrix for PVA, while presenting alternatives
that are robust to changes in the true data-generating mechanism.

The article is organized as follows. In Section 2, we describe the PVA algorithm based
on the residual trace criterion, and we extend the method beyond Pearson to Spearman,
polychoric, and Gaussian copula correlations. In Section 3, we evaluate the performance
of these methods on Gaussian and non-Gaussian data in a range of simulation studies. In
Section 4, we apply the methods to a dataset containing 102 clinical variables from individuals
with X-linked dystonia parkinsonism (XDP), a rare and under-studied genetic disease. We
conclude in Section 5 with a brief discussion.

2 Methods

2.1 PVA algorithm

The variant of PVA we will consider is based on the McCabe “variance-explained” criterion,
which selects the subset of variables that explains as much of the variance in the other
variables as possible. Let X denote a random vector of length p and let S ⊆ {1, . . . , p} such
that |S| = q. We write XS to denote the sub-vector XS = (Xj : j ∈ S) ∈ Rq, and XSc to
denote the complementary sub-vector XSc = (Xj : j ̸∈ S) ∈ Rp−q. Then the optimal subset
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is defined as

S∗ = argmin
S : |S|=q

tr
(
Cov(XSc | XS)

)
(1)

where tr(·) is the trace of a matrix. Other criteria for PVA have considered minimizing the
determinant of Cov(XSc | XS) or the Frobenius norm (McCabe, 1984; Cumming and Wooff,
2007).

The covariance matrix in Equation (1) is straightforward to compute when the data
follow a multivariate Gaussian distribution. If [XT

S, X
T
Sc ]T ∼ MVN(µ, Σ) where

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
such that Σ11 = Cov(XS) and Σ22 = Cov(XSc), then the conditional covariance matrix of
XSc given XS is

ΣSc|S := Cov(XSc | XS) = Σ22 −Σ21Σ
−1
11 Σ12. (2)

As a special case of this formula, if Xj is the jth entry of X, and −j denotes {j}c, then the
conditional covariance of all the other variables in X given Xj is given by

Σ−j|j := Cov(X−j | Xj) = Σ−j −Σ−j,jΣ
T
−j,j/σ

2
j , (3)

where σ2
j = Var(Xj), Σ−j = Cov(X−j), and Σ−j,j is a vector of the covariance between each

entry of X−j and Xj.
To avoid a computationally intensive search over sub-vectors of X, we employ a greedy al-

gorithm for finding an approximate solution to the optimization problem; see Algorithm 2.1.
Briefly, starting with an estimated covariance matrix, the first step in the algorithm is to
find the variable Xj that yields a conditional covariance matrix with the smallest trace
based on Equation (3). This j becomes the first index j1 to be included in our selected set
S̃∗ = {j1, . . . , jq}, and the algorithm repeats with Σ−j|j as the new covariance matrix.

Algorithm 2.1.

Input: Σ ∈ Rp×p positive definite.

Output: Indices of selected variables, j1, . . . , jq.

(1) Initialize S ← {1, . . . , p}.
(2) For k = 1, . . . , q:

(a) i← argminj tr(Σ−j|j)

(b) jk ← Si

(c) Σ← Σ−i|i

(d) S ← S \ {jk}.

Note that this algorithm can be run without directly observing the data, since the only
required input is a matrix Σ. In addition, since the scale of each variable is not relevant
to the dependency between variables, a natural input to this algorithm is the correlation
matrix rather than the covariance matrix. In the next section, we discuss the limitations of
using the Pearson correlation matrix for this purpose and consider more robust alternatives
for the choice of Σ.
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2.2 Generalized PVA using alternative correlations

It is widely recognized that Pearson correlation has drawbacks when measuring the inter-
dependence of non-Gaussian data. For example, it is not invariant to monotone transfor-
mations of the data, it is constrained by the marginal distributions, and it is incapable of
describing bivariate tail dependence. We consider three alternatives to Pearson correlation
in the context of PVA: Spearman correlation, polychoric correlation, and Gaussian copula
correlation.

Spearman correlation is equivalent to the Pearson correlation of the ranks. Ties are
handled by averaging the ranks of each set of tied points and assigning this average rank
to those points, which is equivalent to averaging over all permutations of the ties (Dodge,
2008). An attractive feature of Spearman correlation is that it is invariant to monotonically
increasing transformations of the data; thus, it is nonparametric with respect to the marginal
distributions. However, since the ranks of the data are uniformly distributed, the conditional
covariance is not given by the formula in Equation (2), since this formula is based on the
multivariate Gaussian assumption.

Polychoric correlation extends the Pearson correlation to ordinal variables by assuming
the variables have a latent multivariate Gaussian structure (Choi et al., 2010). Specifically,
suppose [Z1, Z2]

T ∈ R2 is bivariate Gaussian with unit variances and correlation ρ, and Y1, Y2

are ordinal variables defined by unknown monotonic transformations of Z1, Z2, respectively.
Then ρ is referred to as the polychoric correlation of Y1, Y2, and it can be estimated via
an iterative maximum-likelihood approach given observations of Y1, Y2 (Olsson, 1979). The
estimation procedure can also be applied when we have observations of Z1, Y2 rather than
Y1, Y2.

Gaussian copulas are tractable models of multivariate dependence with arbitrary marginal
distributions, popular in economics (Trivedi and Zimmer, 2005). Suppose the data comprise
n observations of a multivariate random vector X = (X1, X2, . . . , Xp)

T, with an unknown
cumulative distribution function FX(x1, x2, . . . , xp). A Gaussian copula provides an approx-
imation to FX of the form

F̂X(x1, x2, . . . , xp) = Φp

(
Φ−1(F̂1(x1)),Φ

−1(F̂2(x2)), . . . ,Φ
−1(F̂p(xp))

∣∣ 0, Σ̂)
,

where Φ is the cumulative distribution function (CDF) of a standard normal distribution,
Φp(· | µ,Σ) is the CDF of a multivariate Gaussian distribution with mean µ and covariance

matrix Σ, and F̂1, F̂2, . . . , F̂p are estimated CDFs of the p variables. To fit this model, the

approximations F̂j can be obtained parametrically by specifying a functional form of the dis-
tributions and applying maximum likelihood, or non-parametrically by taking the empirical
CDF of the observed data. Finally, the estimate Σ̂ can be defined as the sample Pearson
correlation matrix of the transformed variables Φ−1(F̂1(X1)),Φ

−1(F̂2(X2)), . . . ,Φ
−1(F̂p(Xp)).

The interpretation of Σ̂ is the covariance matrix of a multivariate Gaussian distribution
that can be constructed by applying monotonic transformations to the observed variables.
However, the validity of this interpretation depends on the strong assumption that the trans-
formed variables Φ−1(F1(X1)),Φ

−1(F2(X2)), . . . ,Φ
−1(Fp(Xp)) are multivariate Gaussian.

Each of these three approaches (Spearman, polychoric, and Gaussian copula) produces
an estimated correlation matrix Σ that can be used to perform PVA using Algorithm 2.1.
Importantly, the conditional covariance formula in Equation (2) is valid for the polychoric
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and Gaussian copula approaches, since Σ is the correlation matrix of multivariate Gaussian
latent variables in these approaches. The implied assumption of these approaches is that we
are interested in the dependence structure of the latent variables rather than the observed
variables, which may or may not be appropriate depending on the application. In the
application in Section 4, for instance, this is a natural assumption since the ordinal variables
represent continuous traits that were measured on ordinal scales for practical reasons.

3 Simulations

In this section, we evaluate the performance of PVA using the Spearman, Gaussian copula,
and polychoric correlation approaches compared to the standard approach using the Pearson
correlation. To simulate data, we generate latent variables from a multivariate Gaussian dis-
tribution and transform them by applying monotonic functions to each variable separately, in
order to evaluate the effect of non-Gaussianity on PVA performance. The latent multivariate
Gaussian distribution serves as ground truth for defining the ideal value of the optimality
criterion that would be used if the latent distribution were known. We consider a variety of
monotonic transformations (yielding a variety of non-Gaussian marginal distributions) and
we assess performance in two ways: (1) the proportion of ideal variables selected, and (2)
the variance explained by the selected variables, quantified in terms of relative explanatory
efficiency.

3.1 Proportion of ideal variables selected

For the first set of simulations, we consider examples in which non-Gaussianity causes Pear-
son correlation-based PVA to miss variables that are important for capturing latent multi-
variate structure. The general setup is to simulate a latent data matrix X = [Xij] ∈ Rn×p

comprising n points sampled i.i.d. from a MVNp(0,Σ) distribution, and determine an “ideal”
set of q latently important variables by performing PVA on Σ. We then generate Y , the
observed data matrix, by the transformation

Yij =

{
fj(Xij) if j ∈ H

Xij if j /∈ H

where f1, . . . , fp are monotonic functions andH ⊆ {1, 2, . . . , p} is a fixed subset ofK variables
that will be transformed. We evaluate the performance of PVA with different correlation
matrices (Pearson, Spearman, Gaussian copula, and polychoric) estimated from the data
Y by contrasting the sets of variables obtained from those methods with the ideal set of
variables obtained by PVA on Σ. The more these two sets of variables overlap, the better
PVA is performing.

We run simulations using the following settings. With p = 10, we randomly generate
Σ by sampling from a Wishart distribution with p degrees of freedom and scale matrix I,
then normalize this matrix to have ones on the diagonal so it is a correlation matrix. We
then perform PVA on this ground truth Σ to identify the ideal set of q = 5 variables, say
j∗1 , . . . , j

∗
5 , that capture the most variance in the latent multivariate distribution. We then
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sample latent data X from MVNp(0,Σ), and generate the observed data Y by transform-
ing variables H = {j∗1 , . . . , j∗5} in one of three different ways: (A) no transformation, (B)
continuous transformation, or (C) ordinal transformation. (That is, the five variables that
are most important latently are the variables that are transformed). In each case, for each
n ∈ {50, 150, 400, 1200, 3500, 10000}, we perform 1000 replicate simulations of the process of
generating Σ,X,Y , running the PVA methods, and comparing the chosen sets of variables
to the latently ideal set, {j∗1 , . . . , j∗5}.

(A) No transformation. To compare performance when the data are indeed multivariate
Gaussian, we run the suite of simulations without any transformation of X, so that Y = X.
We run PVA using Pearson, Spearman, and Gaussian copula correlations; polychoric is not
considered here since it is designed for ordinal variables.

(B) Continuous transformation. In this case, we transform the ideal variables j∗1 , . . . , j
∗
5

with the five monotonically increasing functions

Yij∗1
= min(F̂j∗1

(Xij∗1
)2, 0.62)

Yij∗2
= min(F̂j∗2

(Xij∗2
)6, 0.66)

Yij∗3
= F−1

Gamma(F̂j∗3
(Xij∗3

), 0.5, 1)

Yij∗4
= F−1

Pareto(F̂j∗4
(Xij∗4

), 2, 1)

Yij∗5
= exp

(
F̂j∗5

(Xij∗5
)
)
[1 + 1(F̂j∗5

(Xij∗5
) > 0.9)]

for i ∈ {1, 2, . . . , n}, where F̂k is the empirical CDF of X1k, . . . , Xnk, times n/(n+1), so that

F̂k(Xik) =
Rank(Xik)

n+ 1
.

Here, Rank(Xik) is the ranking (from least to greatest) of Xik in Xk, the kth column of
X. (Ties in the rank are handled by taking the average rank over all permutations of the
column.) Meanwhile, 1(·) is the indicator function, F−1

Gamma(·, a, b) is the inverse CDF of
the gamma distribution with shape a and scale b, and F−1

Pareto(·, a, b) is the inverse CDF of a
Pareto distribution with shape a and scale b. The empirical CDFs transform the variables
to be approximately Uniform(0, 1), marginally, after which they are mapped through an
inverse CDF to produce one of five marginal distributions. These inverse CDFs are chosen
to reduce the Pearson correlation between the ideal variables and the non-ideal variables,
while creating marginal distributions that could realistically be observed in practice. For
these simulations, we again use Pearson, Spearman, and Gaussian copula correlations, but
not polychoric since it is designed for ordinal variables.

(C) Ordinal transformation. In this case, we transform the ideal variables j∗1 , . . . , j
∗
5 from

Gaussian to ordinal variables by applying the following functions, respectively:

Yij∗1
= 1 + 1(F̂j∗1

(Xij∗1
) > 0.2)

Yij∗2
= 1 + 1(F̂j∗2

(Xij∗2
) > 0.4) + 1(F̂j∗2

(Xij∗2
) > 0.6)

Yij∗3
= 1 + 1(F̂j∗3

(Xij∗3
) > 0.2) + 1(F̂j∗3

(Xij∗3
) > 0.3)

Yij∗4
= 1 + 1(F̂j∗4

(Xij∗4
) > 0.3) + 1(F̂j∗4

(Xij∗4
) > 0.5) + 1(F̂j∗4

(Xij∗4
) > 0.7)

Yij∗5
= 1 + 1(F̂j∗5

(Xij∗5
) > 0.1) + 1(F̂j∗5

(Xij∗5
) > 0.2) + 1(F̂j∗6

(Xij∗5
) > 0.3).
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This makes Yij∗1
∈ {1, 2}, Yij∗2

, Yij∗3
∈ {1, 2, 3}, and Yij∗4

, Yij∗5
∈ {1, 2, 3, 4, 5}. Here, we run

PVA with polychoric correlations in addition to Pearson, Spearman, and Gaussian copula,
since polychoric correlations are designed specifically for the case of ordinal variables.

Figure 1: Proportion of latently ideal variables identified by PVA. Value shown is
the mean proportion over 1,000 replicate simulations, and error bars show ± two standard
errors. The x-axis is on a logarithmic scale.

3.1.1 Results for proportion of ideal variables selected

Results for these simulations are shown in Figure 1. The y-axis shows the mean proportion
of the latently ideal variables that were selected by PVA when using each method (Pearson,
Spearman, Gaussian copula, or polychoric). In case A (no transformation), where the ob-
served data are Gaussian, there is effectively no difference between the performance of the
Pearson and Gaussian copula correlation approaches; both perform very well with the pro-
portion nearing 100% as the sample size exceeds 10,000. Spearman correlations also perform
well but slightly worse. This makes sense since Pearson and Gaussian copula correlations
either implicitly or explicitly employ Gaussian assumptions, whereas Spearman is a fully
nonparametric approach that is expected to entail some loss of information.

In case B (continuous transformation), Spearman and Gaussian copula correlations per-
form moderately well—with the proportion of ideal variables chosen exceeding 80%—whereas
Pearson is unable to reach even 60%. This accords with intuition since the Spearman and
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Gaussian copula approaches are designed to handle non-Gaussian marginals, whereas Pear-
son is not robust to departures from Gaussianity. The performance of Pearson correlations
improves slightly with increasing n, but appears to plateau below 60%.

Finally, in case C (ordinal transformation), polychoric correlations are by far the best
option, roughly similar in efficacy to the best performing methods in the “no transforma-
tion” case. Meanwhile, Pearson, Spearman, and the Gaussian copula struggle in the ordinal
case. These results make sense because polychoric correlation is designed for ordinal vari-
ables, whereas Pearson is best suited for Gaussians, and the Spearman and Gaussian copula
approaches likely break down due to the large number of ties.

Among these simulations, the only case in which PVA with Pearson correlation performs
adequately is when the data are truly multivariate Gaussian, where it performs similarly to
Gaussian copulas and slightly better than Spearman correlations. This indicates that the
standard PVA approaches in the literature are not well suited to non-Gaussian data when
we are interested in the latent relationships among variables, and that significantly better
performance can be obtained with the alternative methods we propose.

3.2 Relative explanatory efficiency

A limitation of measuring performance in terms of the proportion of ideal variables selected
is that the amount of overlap between a given set of variables and the ideal set of variables
is not necessarily indicative of their relative utility, since the correlations among variables
may be complex. For example, it could happen that replacing two of the ideal variables with
two non-ideal variables would yield a set with greater utility than replacing either one of the
two variables alone, even though this would yield a set with a smaller proportion of the ideal
variables.

Thus, we also consider the utility of chosen sets of variables in terms of how much of
the variance of the omitted variables they explain. Borrowing from the language of “relative
efficiency” of statistical estimators, we introduce the “relative explanatory efficiency” of XS

versus XS∗ , defined as

REE(XS, XS∗) =
tr(Cov(X | XS∗))

tr(Cov(X | XS))
, (4)

where XS and XS∗ are potentially overlapping sub-vectors of the random vector X. We
can interpret tr(Cov(X | XS)) as the total remaining marginal variance of the variables in
X conditional on XS; note that tr(Cov(X | XS)) = tr(Cov(XSc | XS)) since the variables
in XS have conditional variance 0. Thus, if REE(XS, XS∗) > 1 then this indicates that
XS is superior to XS∗ in terms of variance explained across all variables, whereas 0 <
REE(XS, XS∗) < 1 indicates the reverse.

Our second suite of simulations evaluates the REE of the chosen sets of variables XS

versus the ideal setXS∗ . We repeat our data-generating set up from Section 3.1, but use REE
as the performance metric instead of the percent the ideal variables chosen. Like before, we
perform 1000 replicated simulations in which Σ is sampled from a Wishart distribution, with
p = 10 degrees of freedom and scale matrix I. Once Σ has been converted to a correlation
matrix, we produce the latent data X = [Xij] ∈ Rn×p by sampling n observations from a
MVNp(0,Σ) distribution. The observed data Y = [Yij] ∈ Rn×p are obtained by transforming
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the 5 ideal latent variables, XS∗ , by the transformations A, B, or C from Section 3.1, where
XS∗ is determined by performing PVA on Σ. Finally, the set of “chosen” variables are
determined by applying PVA to Y using either the Pearson, Spearman, Gaussian copula, or
polychoric correlation matrix. (Polychoric is applied only for transformation C). We compare
the chosen set of variables to the ideal set of variables using Equation (4). The procedure is
repeated for n ∈ {50, 150, 400, 1200, 3500, 10000}.

3.2.1 Results for relative explanatory efficiency

Results for these simulations are shown in Figure 2. The y-axis shows the mean REE
of the chosen variables relative to the ideal variables, expressed as a percentage. In case
A (no transformation), the Pearson correlation method performs slightly better than the
Spearman and Gaussian copula method when is n is small. But as n grows large, the
mean REE of each of the methods appears to converge to 100%, and the gaps between
the methods disappear. In case B (continuous transformation), the mean REE for the
Pearson correlation method plateaus between 95% and 97.5%, while the mean REE for
the Spearman and Gaussian copula methods again approaches 100%. In case C (ordinal
transformation), the Pearson, Spearman, and Gaussian copula approaches struggle for all
choices of n, with their mean REEs plateauing below 97.5%. In contrast, the polychoric
method, which is designed specifically for ordinal variables, yields close to 100% REE with
large enough sample size, similar to how the other methods performed when there was no
transformation. In general, our findings here are similar to those observed in Figure 1, where
we evaluated performance in terms of the proportion of ideal variables selected rather than
REE. However, the performance gaps between methods appear smaller when using REE,
since non-ideal sets of variables may still be effective at capturing latent variance.

3.3 Expanded suite of simulations

Next, we consider an expanded suite of simulations for generating and analyzing the data.
Specifically, we perform simulations under an array of settings in which (1) the number
of variables chosen, q, can vary; (2) the latent distribution that underlies the data is not
necessarily Gaussian, and (3) every latent variable is transformed rather than just the ideal
variables.

In this expanded suite of simulations, we again sample a latent correlation matrix Σ that
will be used to define an “ideal” set of variables for that specific q. In addition to multivariate
Gaussian latent variables, we also consider cases in which the latent variables follow either a
multivariate t (MVT) or a multivariate generalized Laplace (MVL) distribution. The MVT
and MVL distributions are convenient for this purpose because they are mixtures of the
multivariate Gaussian distribution with certain univariate distributions, meaning they have
a correlation matrix as one of their parameters. Specifically, if W ∈ Rp ∼ MVNp(0,Σ) and

Z ∈ R ∼ X 2
ν independently, then W/

√
Z/ν ∼ MVTp(ν,0,Σ). Meanwhile, if W ∈ Rp ∼

MVNp(0,Σ) and Z ∈ R ∼ Gamma(r, 1) independently, then W
√
Z ∼ MVLp(r,Σ). These

distributions differ from the multivariate Gaussian not only in their marginal distributions
but also in their dependence structure, since the mixing with Z introduces tail dependence
such that an extreme value in one entry of X increases the probability of extreme values
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Figure 2: Relative explanatory efficiency of the chosen variables compared to
the ideal variables. The y-axis is the variance unexplained by the ideal variables divided
by the variance unexplained by the selected variables, as a percentage. The value shown is
the average over 1,000 simulations, and the error bars show ± two standard errors. Note
that REE > 100% is mathematically possible, since the greedy algorithm is not guaranteed
to find the global optimum.

in the other entries, which is not the case for multivariate Gaussians. Unfortunately, for
these distributions, it is more difficult to compute Cov(X | XS) and, further, Cov(X | XS)
depends on the specific value taken by XS rather than just depending on S and Σ. As
a workaround, we modify the PVA procedure in Algorithm 2.1 by replacing Σ−j|j with
Σ0

−j|j := Cov(X−j | Xj = EXj) = Cov(X−j | Xj = 0), the conditional covariance given that

the selected variable takes its mean value. For the MVTp(ν,0,Σ) case,

Cov(X−j | Xj = 0) =
ν

ν − 1
(Σ−j −Σ−j,jΣ

T
−j,j/Σjj) (5)

by Dodge (2008), and for the MVLp(r,Σ) case,

Cov(X−j | Xj = 0) = (r − 0.5)(Σ−j −Σ−j,jΣ
T
−j,j/Σjj) (6)

by Kotz et al. (2001) and Kozubowski et al. (2013). These formulae can be adapted to induce
a corresponding version of REE, in which tr(Cov(X | XS = 0q)) replaces tr(Cov(X | XS)).

The structure of the expanded simulations is similar to previously. Once the correlation
matrix Σ ∈ Rp×p has been sampled (p = 10), we generate the latent data X by sampling n
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observations independently from either an MVN(0p, Σ), MVT(ν = 2.5, Σ), or MVL(r = 3.1,
Σ) distribution. We produce the observed data, Y , by transforming each of the p variables
by the monotonic transformations (A, B, or C) that were defined in Section 3. Since p = 10,
each of the five transformations is used twice. PVA is then performed to select the best
set of q variables, XS, using either the Pearson, Spearman, Gaussian copula, or polychoric
correlation matrix based on Y . We evaluate the performance of each method in terms of
REE(XS, XS∗), where XS∗ is determined by PVA on Σ. The procedure is repeated 1000
times for each q ∈ {2, 3, 4, 5, 6}, fixing n = 500. The results of this procedure are provided
below. In addition, for completeness, we repeat our analyses from Sections 3.1 and 3.2 in
the cases of multivariate t or multivariate Laplace latent data; see Appendix A.

3.3.1 Results for expanded suite of simulations

Figure 3 shows the results. Each row of the figure is for a different latent distribution, and
each column shows a different transformation type. The y-axis of each plot is the relative
explanatory efficiency (REE) of the chosen set of variables compared to the ideal set as
determined by running PVA on Σ. We report the average REE over 1000 simulations.

When the latent distribution is multivariate Gaussian (Figure 3A) and the variables are
not transformed (left panel), there are no discernible differences between the three correlation
methods (Pearson, Spearman, and Gaussian copula): all three methods perform excellently,
with relative efficiencies close to 100%. However, the performance of the Pearson method
is negatively affected by nonlinear transformations, as seen in the “continuous transforma-
tion” and “ordinal transformation” cases (Figure 3A, middle and right). The Spearman
and Gaussian copula methods behave similarly to one another no matter the transformation
type, performing well when there are continuous transformations but poorly when the data
are ordinal. The ordinal case is best handled by the polychoric method, which clearly out-
performs the other methods. Empirically, we observe that REE decreases with the number
of variables chosen, indicating that the relative performance of the ideal set compared to the
chosen set becomes more prominent as q grows larger.

Figure 3B and Figure 3C show the results when the latent distribution is multivariate t
or multivariate Laplace, respectively. For the multivariate t case, the REEs of the chosen
sets of variables compared to the ideal sets of variables are consistently lower than the
results in the multivariate Gaussian case, across the board, with the Pearson correlation
method appearing to suffer the most. The reduced performance of Pearson compared to
the other methods occurred even when the data were not transformed, which emphasizes
the lack of robustness of Pearson correlations to violations of multivariate normality. In
contrast, the Spearman and Gaussian copula methods were more robust to the change in
latent distribution, exhibiting only slightly decreased REEs. The polychoric method was
again the best performer when the variables were transformed to be ordinal. Finally, in the
multivariate Laplace case, the REEs were only slightly lower across the board compared to
the multivariate Gaussian case, with all the methods being affected similarly. In particular,
the Pearson REEs were only slightly reduced in the multivariate Laplace case.
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Figure 3: Relative explanatory efficiency in the expanded suite of simulations.
The y-axis is the variance unexplained by the ideal variables divided by the variance un-
explained by the selected variables, as a percentage. The value shown is the average over
1,000 simulations, and the error bars show ± two standard errors. Note that REE > 100%
is mathematically possible.
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4 Application

To compare PVAmethods on real data, we consider a dataset of longitudinal clinical measure-
ments from individuals with X-linked dystonia parkinsonism (XDP), a rare neurodegenera-
tive disorder occurring in men with maternal ancestry from the island of Panay, Phillipines
(Lee et al., 1976). As the name suggests, XDP involves symptoms characteristic of both
dystonia (such as muscle contractions, repetitive movements, and abnormal posture) and
parkinsonism (such as bodily tremors, slowed movement, and muted facial expressions) (Lee
et al., 2011). XDP is strongly associated with the insertion of a SINE-VNTR-Alu (SVA)
retrotransposon in the TAF1 gene (Aneichyk et al., 2018; Makino et al., 2007). The SVA
retrotransposon contains repeated nucleotide sequences of the form CCCTCT, and greater
numbers of repeats of this sequence (that is, larger “repeat size”) are associated with earlier
ages of onset (Bragg et al., 2017). In general, XDP symptoms begin in middle age and then
gradually worsen over time.

In preparation for future clinical trials, Acuna et al. (2023) conducted a longitudinal
study of XDP symptoms, using Pearson correlation-based PVA to help define a minimal
battery of clinical measures that could be used to assess the efficacy of a treatment for slow-
ing or reversing XDP symptoms. Acuna et al. (2023) collected data on 29 symptomatic adult
males with XDP, visited at 6-month intervals during an 18-month span. Symptoms were
assessed on several published clinical scales, including the Movement Disorders Society Uni-
fied Parkinson’s Disease Rating Scale (MDS-UPDRS), which measures parkinsonism traits;
the Burke-Fahn-Marsden Dystonia Rating Scale (BFM), which measures dystonia-related
symptoms; the Eating Assessment Tool (EAT-10), which measures swallowing impairment;
and the Communicative Participant Item Bank (CPIB), which measures difficulty commu-
nicating. Other measurements targeted the tongue strength and lip strength of the patients,
and their ability to make and repeat sounds common to their native language. See Acuna
et al. (2023) for further details.

Our analysis focuses on the 29 XDP-positive individuals who were studied by Acuna
et al. (2023), each of whom had measurements taken at up to five distinct visits, amounting
to 105 visits in total. The variables we consider comprise 102 clinical measures taken at
each of those visits; 17 of the variables are continuous and 85 of them are ordinal, with
the ordinal variables taking anywhere from 3 to 10 unique levels. The visits are treated
independently and serve as the experimental units of the analysis (that is, n = 105). We
handle missingness among the measurements by generating a singly-imputed dataset using
predictive mean matching, for which we use the R package MICE (Rubin, 1986; van Buuren
and Groothuis-Oudshoorn, 2011). Following the imputation, we run PVA using Pearson,
Spearman, Gaussian copula, and polychoric correlations, and compare their performance in
terms of finding a small subset of variables that capture as much as possible of the information
present in all 102 measures, that is, in terms of defining a minimal battery for future studies.

4.1 Application results

Table 1 shows the first ten variables chosen by performing PVA based on the Pearson,
Spearman, Gaussian copula, and polychoric correlation matrices, respectively. We also tried
applying polychoric correlations with the continuous variables transformed to be marginally
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uniform or marginally normal, but this did not make any difference in the first ten variables
chosen.

In the first column of Table 1, we see that PVA based on Pearson correlations chose a
variety of variables describing attributes such as speech, swallowing, walking, rigidity, and
tremors—covering both dystonia symptoms (the BFM measures) and parkinsonism symp-
toms (the UPDRS measures). Meanwhile, in the second column, PVA based on Spearman
correlations had a strong preference for UPDRS measures over BFM measures; in fact, the
only two non-UPDRS measures selected were reported age at onset and EAT-10 Q2. In the
third column, we see that the Gaussian copula approach tended to favor UPDRS measures
over BFM measures as well, choosing 7 UPDRS measures and only 1 BFM measure. The
Gaussian copula was also the only method to select SVA repeat size, which is a known
predictor of XDP age at onset. Finally, the fourth column shows results for polychoric
correlations, which like the Spearman and Gaussian copula approaches, strongly preferred
UPDRS variables instead of BFM variables, although one BFM variable was chosen tenth.
Using Gaussian copula or polychoric correlations also resulted in the omission of age at
onset, which both the Pearson and Spearman methods did select, albeit close to last. All
four methods selected at least one variable describing difficulty eating, though the specific
measurement chosen varied.

Since the majority of measures in this dataset are ordinal, we would expect the polychoric
method to be better suited at capturing the latent dependency structure of these symptoms.
Therefore, interestingly, the strong preference of the polychoric method for UPDRS over
BFM measures suggests that the diversity of XDP symptoms may be better captured by
parkinsonism-related metrics rather than dystonia-related metrics, in this particular dataset
at least. If forced to choose one of these two measurement scales over the other, this finding
suggests that UPDRS might be of greater value for measuring XDP symptoms—an insight
that is obscured by using Pearson correlations only.

5 Discussion

The standard approach to principal variables analysis depends on Pearson correlation, which
is not well suited for non-Gaussian data. In diverse simulations, we found that PVA using
Pearson correlation performs significantly worse than Spearman, Gaussian copula, and poly-
choric correlation for capturing the latent dependency structure of non-Gaussian data. Fur-
ther, even though the Gaussian copula or polychoric correlation assume a latent multivariate
Gaussian distribution, they still exhibited improved performance over Pearson when the la-
tent distribution was multivariate t or multivariate Laplace, showing that their improved
performance is robust to departures from the assumed model.

On the other hand, it is important to bear in mind that this study involved certain
assumptions that will not always hold, and in practice, we recommend considering which
type of correlation is most relevant to the application at hand. For instance, our simulation
studies assumed that any ordinal variables were discretized approximations to continuous
latent variables, and that our primary interest was in the dependence of those latent variables.
However, if one is using PVA to select variables that will be included in a linear regression
model—where the practical utility of the variables depends on their measurement type—it
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Variable Pearson Spearman
Gaussian
copula

Polychoric

BFM-D: Walking 1
UPDRS 3.5: Left hand 2 5
EAT-10, Q1: Swallowing issues led to weight loss 3 6 4
UPDRS 3.18: Constancy of rest tremor 4 3 3
UPDRS 3.3: Neck rigidity 5 6 6
BFM-M: Left Leg 6
BFM-D: Hygiene 7
UPDRS 2.1: Speech 8 7 9
Reported age at onset 9 8
UPDRS-3: Tremor (postural left) 10
UPDRS 2.4: Eating 1 1 1
UPDRS 2.12: Walking and balance 2 2 2
EAT-10, Q2: Swallowing made going out difficult 4
UPDRS 3.1: Speech 7
UPDRS 3.13: Posture 9
UPDRS 2.7: Handwriting 10 10
UPDRS 3.4: Finger tapping (right) 4 5
UPDRS 3.17: Tremor (left upper extremity) 5
BFM-M: Trunk 8 10
SVA Repeat Size 9
UPDRS 3.17: Tremor (lip) 3
UPDRS 3.17: Tremor (right lower extremity) 7
UPDRS 1.2: Hallucinations 8

Table 1: First 10 measures chosen by each PVA method on the XDP data. The numbers
1-10 indicate the order in which the variables were chosen by each method. Blank entries
are shown for variables not among the top 10 for each method.

may be better to choose variables that capture the structure of the observed data rather
than the latent data. In a situation like this, Pearson correlation may be preferable to
the presented alternatives, since the importance of variables in linear regression modeling
depends on their observed linear correlations.

A direction for future work would be to consider other optimality criteria. Specifically,
in this study we considered only the McCabe “variance-explained” criterion, in which the
objective is to minimize the trace of the conditional covariance matrix of the omitted variables
given the selected variables. Other optimization criteria, as well as PCA-based or clustering
approaches to PVA, might yield different conclusions about the relative performance of
Pearson, Spearman, Gaussian copula, and polychoric correlations for PVA. It would be
interesting to study how the observed distribution of the data affects the performance of
variable selection in a wider variety of PVA methods and algorithms.
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Figure A1: Proportion of latently ideal variables identified by PVA, varying the
latent multivariate distribution. Value shown is the mean proportion over 1,000 replicate
simulations, and error bars show ± two standard errors. The x-axis is on a logarithmic scale.
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Figure A2: Relative explanatory efficiency of chosen variables to ideal variables,
varying the latent multivariate distribution. The y-axis is the variance unexplained
by the ideal variables divided by the variance unexplained by the selected variables, as a
percentage. The value shown is the average over 1,000 simulations, and the error bars show
± two standard errors. Note that REE > 100% is mathematically possible.
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