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1. Introduction
Summary

Many of the commonly-used nonparametric models (such as the Dirichlet
process mixture (DPM), hierarchical Dirichlet process (HDP), and Indian buffet
process (IBP)) can be interpreted as an infinite-dimensional limit of finite-dimensional
models. A less common approach is simply to put a prior on the dimension — that is,
to take a “dimension mixture” of finite-dimensional models. This is very natural from
the Bayesian perspective, however, it has been believed that inference in such
models is difficult and requires techniques such as reversible jump MCMC.

To the contrary, we have found that this approach gives rise to combinatorial
stochastic processes that closely parallel those of the DPM, HDP, and IBP.
Consequently, efficient approximate inference for such dimension mixture models
can be done in much the same way as for these standard nonparametric models.

Although more experimentation needs to be done, the method of dimension
mixtures appears to be an attractive and widely-applicable approach to constructing
nonparametric Bayesian models.

Similarities with standard nonparametric models

1 Approximate inference techniques (e.g. Gibbs sampling) are nearly identical
2 Interpretation in terms of “restaurant processes”
3 Exchangeability properties
4 Posterior predictive performance appears to be nearly identical

Advantages

1 Interpretability and conceptual simplicity
2 Natural Bayesian approach (if something is unknown, put a prior on it)
3 Cleaner clusters/topics/features (no tendency to make tiny superfluous groups)
4 Complete control over the distribution on the number of clusters/topics/features
5 Consistency typically holds automatically (assuming identifiability)

Disadvantages

1 MCMC mixing time may be longer
2 Slightly more complicated formulas
3 More parameters (due to item 4 above)

2. Mixture of finite mixtures (MFM)
Generative model description
Many researchers have considered the following natural alternative to DPMs.

(e.g. Nobile (1994, 2007), Richardson & Green (1997, 2001), Stephens (2000), etc.)

Instead of G ∼ DP(α,H), choose the mixing measure G to put mass on a
randomly-selected number S of (randomly-selected) parameter values θ1, . . . , θS:

Mixture of finitely-supported measures (MF)
S ∼ q(s), a p.m.f. on {1, 2, . . . }
π ∼ Dirichlets(γ, . . . , γ) (given S = s)
θ1, . . . , θs

iid∼ H (given S = s)
G =

∑S
i=1 πi δθi =⇒ G ∼ MF(γ,H, q). n
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Then, draw X1,X2, . . .
iid∼ fG(x) =

∑S
i=1 πi pθi(x). We call this a MFM.

Partition distribution (DP vs MF)
A partition C of {1, . . . , n} into t = |C| parts has probability

P(n)
DP(C) =

αt

α(n)

∏
c∈C

(|c| − 1)! P(n)
MF(C) = vn(t)

∏
c∈C

γ(|c|)

where x(k) = x(x− 1) · · · (x− k + 1), x(k) = x(x + 1) · · · (x + k − 1), and vn(t) =
∑∞

s=1
s(t)

(γs)(n)
q(s).

Both PDP and PMF are “EPPFs” of Gibbs form (as in Pitman, 2006).
The numbers vn(t) can be efficiently precomputed to arbitrary precision.
This leads to a simple “restaurant process” closely resembling the CRP.
Gibbs sampling for MFMs and DPMs is nearly identical.

Demonstration: bivariate Gaussian mixture
Typical clustering Posterior on # of clusters

3. Hierarchical MFM (HMFM)
Generative model description
Similarly, we can construct an alternative to the Hierarchical DP (HDP) of Teh et al.
(2006) by drawing G0 in this way, and drawing a “lower level” of mixing measures
G1, . . . ,Gm using G0 as their base measure:

Hierarchical MF (HMF)
G0 ∼ MF(γ,H, q)

G1, . . . ,Gm
iid∼ MF(γ,G0, q) (given G0) nim

G0 Gi Xij

Then, draw Xij ∼ fGi(x) indep. for j ∈ {1, . . . , ni}, i ∈ {1, . . . ,m}. We call this a HMFM.

Hierarchical partition distribution (HDP vs HMF)
For i = 1, . . . ,m, let Ci be a partition of {1, . . . , ni}, and let ti = |Ci|. Let C0 be a partition
of {1, . . . ,N} where N =

∑
ti, and let t0 = |C0|. Then letting C = (C0, C1, . . . , Cm),

PHDP(C) = P(N)
DP (C0)

m∏
i=1

P(ni)
DP (Ci) PHMF(C) = P(N)

MF(C0)

m∏
i=1

P(ni)
MF(Ci)

with PDP and PMF as above. (Note that C0 depends on C1, . . . , Cm through N =
∑

ti.)

This leads to a simple “franchise process” closely resembling that of the HDP.
Gibbs sampling for HMFMs and HDPs is nearly identical.
Since N is not fixed, caching vN(t0) is more memory-efficient than precomputing.

Demonstration: toy topic model
Typical topic distributions Posterior on # of topics

4. Mixture of finite feature models (MFFM)
Generative model description
In the same way, we can construct an alternative to the Indian Buffet Process (IBP)
of Griffiths and Ghahramani (2005) by making the number of features S random.

A distribution on binary matrices
S ∼ q(s), a p.m.f. on {0, 1, 2, . . . }
π1, . . . , πs

iid∼ Beta(a, b) (given S = s)
For j ∈ {1, . . . , s} (given S = s and π):

Z1j, . . . ,Znj
iid∼ Bernoulli(πj).

S π

Z X

Then, draw (X1, . . . ,Xn) according to the feature matrix Z. We call this a MFFM.

Equivalence class distribution (IBP vs MFFM)
Consider two binary matrices equivalent if they are the same after removing any
columns containing only zeros. The probability of obtaining Z̄ ∈ {0, 1}n×t with column
sums m1, . . . ,mt > 0 after removing any zero columns from Z is

PIBP(Z̄) =
αte−αHn

t!

t∏
i=1

(mi − 1)! (n− mi)!

n!
PMFFM(Z̄) = v′n(t)

t∏
i=1

a(mi) b(n−mi)

(a + b)(n)

where x(n) = x(x + 1) · · · (x + n− 1) and v′n(t) =
∑∞

s=0

(s
t

)
cs−t

n q(s), with cn = b(n)
(a+b)(n)

.

If q(s) = Poisson(s | λ) then v′n(t) = eλcn Poisson(t | λ).
In general, v′n(t) can be efficiently precomputed to arbitrary precision.
This leads to a simple “restaurant process” closely resembling that of the IBP.
Gibbs sampling for MFFMs and IBPs is nearly identical.

Demonstration: toy linear-Gaussian feature model
Typical feature assignments Posterior on # of features
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