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Motivation

@ In Bayesian nonparametrics, the standard approach is to
» specify a complete probabilistic model,
» perform fully Bayesian inference, and
» use algorithms that are exactly correct (possibly up to MCMC error).
@ However, this can take a lot of time, both in terms of computation
and implementation.
@ Compromising on these standard assumptions can allow for methods
that are faster and easier to use, and behave similarly.
@ Specifically, there can be significant advantages to using

» partially specified models,
» a combination of frequentist and Bayesian inference, and
» analytical approximations to BNP models.
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Analytical approximations to BNP models

@ Often, we are only interested in one part of a model, and the rest is
just necessary to adequately fit the data.

o ldea: Find analytical approximations for dealing with the parts we
don’t care about.

@ Shift the burden from computation to analysis (i.e., invest more time
on derivation & justification instead of running MCMC forever).
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Analytical approximations to BNP models

@ Example: Recent work by Matt Taddy

» Take some functional of interest 3(P), e.g., least squares linear fit.
» Consider the posterior of 5(P) when P ~ DP(a, H) with o — 0.

» Take a first-order Taylor approximation 5(P) ~ S(P), and obtain
analytical expressions for posterior moments of 3(P).

@ Example: C-posterior — analytical approximation to marginal
likelihood under nonparametrically coarsened models.

e Example: Nonparametric Laplace approximation (this talk) —
approximation to marginal likelihood under a nonparametric sieve.
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Hybrid Bayesian-frequentist methods

@ There's some great stuff outside Bayesian statistics.

o Fast non-Bayesian algorithms for key problems

» multivariate density estimation (GMRA, IFGT, Dual trees)

> nearest neighbor search (random k-d tree, k-means tree, LSH)

» clustering (CLIQUE, BIRCH, DBSCAN)

> property testing with sublinear time algorithms

» nonparametric regression, classification, dimensionality reduction,
stochastic optimization, convex optimization, ensemble methods,
randomized algorithms, etc., etc., etc.

@ Can we combine these with Bayes, to obtain fast semi-Bayesian
nonparametric methods?
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Hybrid Bayesian-frequentist methods

@ Example: For conditional density estimation, Petralia, Vogelstein, and
Dunson (2013) use a frequentist method to choose a multiscale
partition, and combine this with a Bayesian model.

@ Example: Nonparametric Laplace approximation (this talk) employs a
frequentist density estimate to approximate a nonparametric Bayesian
marginal likelihood.
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Partial models and generalized posteriors

o Fully Bayesian inference involves specifying a complete model.

@ When little prior knowledge is available about a certain part of the
model, it is common to use BNP for this part.

@ In some cases, another option is to use a partially specified model in
which this part is not modeled at all. This results in a loss of
information, but often the loss is minimal.

@ This is an old idea, but not many Bayesians seem to use it.
“We're Bayesians — we don’t want to lose any information!”
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Partial models and generalized posteriors

@ The Neyman—Scott problem is a simple but really nice example:

e Suppose X;,Y; ~ N (u;,0?%) indep. for i = 1,...,n, and we want to
infer 2, but the distribution of the u's is completely unknown.

@ Problem: Prior on the u's does not go away — using the wrong prior
leads to inconsistency.

o Full BNP approach: put a prior on the distribution of the pu's, e.g., use

a Dirichlet process mixture and do inference with usual algorithms.

Partial model approach: Let Z; = X; — Y; ~ N(0,20?) and use
p(0?|z1,...,2,) to infer 02, Way easier than full BNP!

Partial model gives consistent and correctly calibrated Bayesian
posterior on o2 — just slightly less concentrated.
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Partial models and generalized posteriors

@ There are a variety of ways to obtain a generalized likelihood.

» conditional likelihood, partial likelihood, pseudo-likelihood, composite
likelihood, restricted/marginal likelihood, rank likelihood, etc.

@ Generalized posterior o< generalized likelihood X prior.

@ Generalized posteriors can have advantages over the standard
posterior in terms of computation and robustness.
» Doksum & Lo (1990) — Using p(6 | median(z;.,)) fixes the Diaconis
& Freedman (1986) inconsistency issue.
Raftery, Madigan, & Volinsky (1996)
Hoff (2007)
Liu, Bayarri, & Berger (2009)
Pauli, Racugno, & Ventura (2011)
Lewis, MacEachern, & Lee (2014)

@ Main issue is ensuring correct calibration of generalized posteriors.
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@ In recent work, we have developed Bernstein—Von Mises results for
generalized posteriors, to facilitate correct calibration.
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Nonparametric Laplace approximation — Motivation

@ A common usage of BNP models is as a prior on an unknown
“nuisance” distribution.

@ Examples

> Regression with unknown error distribution(s).

» Many parameters with a common unknown distribution (e.g.,
Neyman—Scott problem).

» Nonparametric alternative for Bayesian model checking.

» Comparing groups for equality of distribution (two-sample testing).

In such cases, we don't care about the unknown distribution itself.

Using something like a DPM for this is slow and tedious.

The DP is (often) inapplicable if the data is continuous.
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Nonparametric Laplace approximation — Motivation

@ It would be nice to be able to integrate out the unknown distribution
and have an analytical expression for the resulting marginal likelihood.
@ Polya trees (Lavine, 1992) are often used for this reason.
» Berger & Guglielmi (2001) — Bayesian model checking
» Hanson and Johnson (2002) — nonparametric regression error
» Holmes, Caron, Griffin, & Stephens (2015) — two-sample testing
@ However, Polya trees strongly depend on a rather arbitrary choice of
partition sequence (especially in multiple dimensions). Mixtures of
Polya trees are better, but require additional computation. Polya
trees also tend to generate spiky distributions.

@ We are working on a new approach, with the aim of developing a
nonparametric analogue of the Laplace approximation.
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Nonparametric Laplace approximation

@ Recall the Laplace approximation to the marginal likelihood:
D/2 7(f)
m(Z1m Z/(HP%W) d0~<prZ| )( > W

|1/2

where 6 is the MLE and D is the dimensionality of 6.

@ When 6 is infinite-dimensional, this is clearly inapplicable. However,
by using a sieve (i.e., let model complexity grow with n), perhaps we
can mimic the infinite-dimensional case.

@ Thus, to obtain an infinite-dimensional analogue, we consider a sieve
of continuous coarsenings of DP(«a, H), leading to:

N(Hm)( 2 )G )

where f(ac) is a nonparametric density estimate and D is the
“effective dimensionality.”
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Nonparametric Laplace approximation

@ In more detail,
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» f(z) is a nonparametric density estimate,

» D=3%" D;and D; = 1/ (wnf (),
» w is a complexity parameter of the density estimate (e.g., bandwidth),

> « is the concentration parameter, and
» h is the density of the base distribution H.

@ Given a nonparametric density estimate f this is easy to compute.
o It applies in the multivariate case.
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Example 1: Bayesian model checking

@ Are human heights normally distributed? (Well, obviously not, since
height is nonnegative. But how good is the normal model for my set
of n datapoints?)

014 Heights of 10293 adult men (NHANES data)
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@ Hy: Normal model, Hi: Nonparametric alternative.

-1
o Pr(Holarn) = (1-+ Kl

@ p(x1.,|/Hp) = Normal-NormalGamma marginal likelihood

o p(x1.,|H1) = mnpL(21.,) = NP Laplace approx
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Example 1: Bayesian model checking

Results as the sample size n increases, for three different datasets:

Posterior probability of H, (normal model)

1.0
—— std normal
—— uniform
+4—— heights
00 1 Il 1
10! 102 103 10

n (sample size)

@ std normal: Data is x1,..., 2, iid. ~ N(0,1).
e uniform: Data is z1,...,x, i.i.d. ~ Uniform(—1,1).

@ heights: x1,...,x, are the heights of adult men (NHANES data).
The normal model appears to be adequate for the given sample size.

@ (Curves shown are averaged over multiple permutations of the data.)
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Example 2: Two-sample testing (Group comparison)

Do groups A and B have the same distribution? This question is
ubiquitous in scientific and industrial applications, e.g.,

» Does the treatment have any effect?
» Does knocking out gene G affect disease D?
» Does using material M affect product quality?

Assume Xi,...,X,|Piid. ~Pand Yy,...,Y,|Q iid. ~ Q.

Ho: P=Q, H1: P#Q
BNP approach: Put nonparametric priors on P and Q.

We can approximate a nonparametric marginal likelihood using NPL.
P(Z1:, Y1:m[Ho) = MNPL(Z1:0, Y1:m)
P(Z1:0, Y1:m[H1) = p(21:0|H1)p(Y1:m[H1) = mnpL(Z10)MNPL(Y1:m)
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Example 2: Two-sample testing (Group comparison)

Simulated data from two randomly-chosen normal mixtures, P and Q
P Q
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Example 2: Two-sample testing (Group comparison)
Results as the sample size n increases (averaged over multiple runs):

Posterior probability of Hy: P=Q

— truth: P=@Q
—— truth: P£Q

10! 102 103
n (sample size)

@ When the truth is P = (), we observe f’\;(P = Q|z1:m, Y1:m) — L.
@ When the truth is P # (), we observe f’\f(P = Q|Z1:n,Y1:m) — 0.

@ The NPL approach seems to be working as expected.
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Example 3: Regression with unknown error distributions

@ Consider HHS data on pneumonia treatment quality in US hospitals.

» Covariate vector z;; € RP for each hospital j in each state <.
» y;; = percent of patients given correct treatment (logit-transformed).

@ Residuals from a pooled linear regression indicate non-normal errors:
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e Following Rodriguez, Dunson, & Gelfand (2008), we model the error
distribution for each state nonparametrically.
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Example 3: Regression with unknown error distributions

o Model:
B ~ multivariate normal
fi,..., fr ~ nonparametric prior on densities
p(Yijlwij, B, fi) = filyis — BTij).

@ Suppose we're interested in 3, but not fi,..., fx.

@ We can use NPL to construct an approximate marginal likelihood:

p(ylz, B) ~ HmNPL ri1(B),- - s Tin, (B))

where 17;;(8) = yij — B 4.
@ We can then run Metropolis—Hastings to sample 5.
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Example 3: Regression with unknown error distributions

Posterior densities of the coefficients 3;, for simulated data

— nonparam
ﬁl — pooled ﬁZ
— true
-1 0 i -1 0 1
Bs Ba
-1 0 1 -1 0 1

@ As one might expect, a pooled linear regression model doesn't work
well — the posterior on 3 is not concentrating at the true values.

@ Meanwhile, the nonparametric Laplace (NPL) approach seems to
work quite well — the true values are well-supported by the posterior.

@ (A hierarchical normal model should be added to this comparison.)
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Example 3: Regression with unknown error distributions

CDFs for results on hospital data (blue=nonparam, red=pooled):
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B Be B3 Ba
-1 0 1 -1 0 1 -1 0 1 -1 0 1
Government - District Non-profit - Private Proprietary Government - State
Bs Bs Br Bs
-1 0 1 -1 0 1 -1 0 1 -1 0 1

Non-profit - Other

Government - Local

Non-profit - Church

Government - Federal

By

Bio

/611

Jeff Miller, Harvard University

-1 0 1 -1 0 1 -1 0 1
Government Federal Physician Emergency Services
Bis Bia Bi6

-1 0 1 -1 0 1 -1 0 1
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Conclusion

@ These preliminary results suggest that the nonparametric Laplace
approximation idea is promising as a computationally-efficient
alternative to a full Bayesian nonparametric marginal likelihood.

@ More generally, non-standard approaches to BNP provide interesting
opportunities for advances in terms of computation, ease-of-use, and
robustness.
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