
Inference using Partial Information

Jeff Miller

Harvard University
Department of Biostatistics

ICERM Probabilistic Scientific Computing workshop
June 8, 2017



Outline

1 Partial information: What? Why?

2 Need for modular inference framework

3 Cancer phylogenetic inference

4 Coarsening for robustness

Jeff Miller, Harvard University Inference using partial information



What does it mean to use partial information?

Be ignorant.

In other words, ignore part of the data, or part of the model.
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Why use partial info? Speed, simplicity, & robustness

The Neyman–Scott problem is a very simple but nice example:

Suppose Xi, Yi ∼ N (µi, σ
2) indep. for i = 1, . . . , n, and we want to

infer σ2, but the distribution of the µ’s is completely unknown.

Problem: MLE is inconsistent, and using the wrong prior on the µ’s
leads to inconsistency.

Bayesian approach: Put a prior on the distribution of the µ’s, e.g., use
a Dirichlet process mixture and do inference with usual algorithms.

Partial info approach: Let

Zi = Xi − Yi ∼ N (0, 2σ2)

and use p(z1, . . . , zn|σ2) to infer σ2. Way easier!

Partial model gives consistent and correctly calibrated Bayesian
posterior on σ2 — just slightly less concentrated.
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More general example: Composite posterior

Suppose we have a model p(x|θ) (where x is all of the data).

We could do inference based on p(s|t, θ) for some statistics s(x) and
t(x), i.e., ignore info in p(t|θ) and p(x|s, t, θ).

Or, could combine and use
∏
i p(si|ti, θ) for some si(x) and ti(x).

I This is Lindsay’s composite likelihood.

Composite MLE is

θ̂n = argmax
θ

n∏
i=1

p(si|ti, θ).

Can define “composite posterior”:

πn(θ) ∝ p(θ)
n∏
i=1

p(si|ti, θ).

I When is this valid? i.e., correctly calibrated in a frequentist sense?
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Composite posterior calibration

Under regularity conditions, θ̂n is asymptotically normal:

θ̂n ≈ N (θ0, A
−1
n CnA

−1
n )

when X ∼ p(x|θ0), where gi(x, θ) = ∇θ log p(si(x) | ti(x), θ),

An =

n∑
i=1

Cov
(
gi(X, θ0)

)
, Cn = Cov

(∑n
i=1 gi(X, θ0)

)
.

Meanwhile, under regularity conditions, πn is asymptotically normal:

πn(θ) ≈ N (θ | θ̂n, A−1
n ).

When g1(X, θ0), . . . , gn(X, θ0) are uncorrelated, An = Cn.

In this case, the composite posterior is well-calibrated in terms of
frequentist coverage (asymptotically, at least).
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Usage of partial information

Frequentists use partial information all the time:
I Composite likelihoods (partial likelihood, conditional likelihood,

pseudo-likelihood, marginal likelihood, rank likelihood, etc.)
I Generalized method of moments, Generalized estimating equations
I Tests based on insufficient statistics (many methods here)

But Bayesians try to avoid information loss.
I Exceptions:

F Using subsets of data for computational speed
F Scattered usage of composite posteriors: Doksum & Lo (1990),

Raftery, Madigan, & Volinsky (1996), Hoff (2007), Liu, Bayarri, &
Berger (2009), Pauli, Racugno, & Ventura (2011).

I Main issue is ensuring correct calibration of generalized posteriors.
I In recent work, we have developed Bernstein–Von Mises results for

generalized posteriors, to facilitate correct calibration.
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Need for modular inference framework

Large complex biomedical data sets are currently analyzed by ad hoc
combinations of tools, each of which uses partial info.

We need a sound framework for combining tools in a modular way.

Jeff Miller, Harvard University Inference using partial information



Diverse ’omics data types

from Wu et al. JDR 2011, 90:561-572
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Motivation

Biomedical data sets grow ever larger and more diverse.

For example, the TOPMed program of the National Heart, Lung, and
Blood Institute (NHLBI) is collecting:

I whole genome, methylation, gene expression, proteome, metabolome
I molecular, behavioral, imaging, environmental, and clinical data
I for approximately 120,000 individuals

Data collections like this will continue to grow in number and scale.
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Challenge: Specialized methods are required

These data are complex, requiring carefully tailored statistical and
computational methods.

Issues:
I raw data very indirectly related to quantities of interest
I selection effects, varying study designs (family, case-control, cohort)
I missing data (e.g., 80-90% missing in single-cell DNA methylation)
I batch/lab effects make it tricky to combine data sets
I technical artifacts and biases in measurement technology

As a result, many specialized tools have been developed, each of
which solves a subproblem.

These tools are combined into analysis “pipelines”.
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Example: Cancer genomics pipeline

from Broad Institute, Genome Analysis Toolkit (GATK) documentation
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Example: Cancer genomics pipeline (continued)

. . . then:
I Indelocator – detect small insertions/deletions (indels)
I MutSig – prioritize mutations based on inferred selective advantage
I ContEst – contamination estimation and filtering
I HapSeg – estimate haplotype-specific copy ratios
I GISTIC – identify and filter germline chromosomal abnormalities
I Absolute – estimate purity, ploidy, and absolute copy numbers
I Manual inspection and analysis

Many of these tools use statistical models and tests, but there is no
overall coherent model.

Jeff Miller, Harvard University Inference using partial information



Pros and cons of using partial info and then combining

Cons:
I Issues with uncertainty quantification
I Loss of information
I Potential biases, lack of coherency

Pros:
I Computational efficiency
I Robustness to model misspecification
I Reliable performance
I Modularity, flexibility, and ease-of-use
I Facilitates good software design

Write programs that do one thing and do it well.
Write programs to work together.

I Division of labor (both in development and use)

Ideally, we would use a single all-encompassing probabilistic model.
But this is not practical for a variety of reasons.
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Moral: We need a framework for modular inference

Monolithic models are not well-suited for large complex data.

The (inevitable?) alternative is to use modular methods based on
partial information.

Question: How to combine methods in a coherent way?

We need a sound statistical framework for combining methods that
each solve part of an inference problem.
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Cancer phylogenetic inference (Joint work with Scott Carter)

Cancer evolves into multiple populations within each person.

Genome sequencing of tumor tissue samples is used for treatment.

In bulk sequencing, each sample has cells from multiple populations.

Goal: Infer the number of populations, their mutation profiles, and
the phylogenetic tree.

from Zaccaria, Inferring Genomic Variants and their Evolution, 2017
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Cancer phylogenetic inference

Parameters / latent variables:

K = number of populations.

Tree T on populations k = 1, . . . ,K.

Copy numbers: qkm = # copies of segment m in a cell from pop k.

Proportions: psk = proportion of cells in sample s from population k.

Model (leaving several things out, to simplify the description):

Branching process model for T and K

Markov process model for copy numbers Q

Dirichlet priors for proportions P

Data:
X = PQ+ ε

where εsm ∼ N (0, σ2sm).
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Cancer phylogenetic inference

Inference:

MCMC and Variational Bayes do not work well (believe me, I tried!)

Difficulty: Large combinatorial space with many local optima.

We really care about the true tree – not just fitting the data.
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New(?) idea: Method of sufficient parameters

Idea: Temporarily ignore some dependencies among parameters.

Consider a model p(x|θ) (where x is all of the data).

Suppose β = β(θ) is such that X ⊥ θ | β(θ).

θ β X

Method:
1 Infer β using p(x|β).

I Ignore constraints on β due to its definition as a function of θ.
I Use a convenience prior on β (not the induced prior from p(θ)).

2 Infer θ from β.
I e.g., use p(θ|β).

3 Use 1 and 2 to construct an importance sampling (IS) distn for θ.
I Use IS for posterior inference from the exact posterior p(θ|x).
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Sufficient parameters for cancer phylo problem

Recall our data model: X = PQ+ ε where εsm ∼ N (0, σ2sm).

Given P , the columns of X are draws from a Gaussian mixture model
with component means µi = Pvi ∈ RS for some v1, v2, . . . ∈ ZK .

We take β = (µ,Z) as our sufficient parameters, where
Z = (Z1, . . . , ZM ) is the component assignments, and θ = (T, P,Q).

T

P Q

X

T

P Q

µ Z

X
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Sufficient parameters for cancer phylo problem

Can infer the means µ and component assignments Z from X using a
standard Gaussian mixture model algorithm.

I The means form a lattice, but we ignore this constraint in this step.
I More generally, we ignore the prior on (µ,Z) induced by (T, P,Q).

Instead, we use Gaussian and Dirichlet-Categorical priors on µ and Z.

We can then infer (T, P,Q) from (µ,Z) using other methods.
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Demo

True tree: τ = [0, 1, 1, 3, 3] where τi = parent of i.

Ranked list of trees that are consistent with the data:

rank tree score
1: [0,1,1,3,3] 0.305 (true)
2: [0,3,1,3,1] 0.176
3: [0,1,1,3,1] 0.000

97% of mutation profile correctly estimated.

(This example uses point mutations – similar but slightly different.)
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Demo

True tree: τ = [0, 1, 2, 2, 3, 2, 4, 4] where τi = parent of i.

Ranked list of trees that are consistent with the data:

rank tree score
1: [0,1,2,2,3,2,4,4] 0.007525 (true)
2: [0,1,2,2,3,4,2,4] 0.004130
3: [0,1,2,2,3,7,2,4] 0.000260
4: [0,1,2,2,3,7,4,2] 0.000260
5: [0,1,2,2,3,7,4,4] 0.000260
6: [0,1,2,2,3,4,4,2] 0.000007

92% of mutation profile correctly estimated.

(This example uses point mutations – similar but slightly different.)
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Motivation

In standard Bayesian inference, it is assumed that the model is correct.

However, small violations of this assumption can have a large impact,
and unfortunately, “all models are wrong.”

Ideally, one would use a completely correct model, but this is often
impractical.
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Example: Mixture models

Mixtures are often used for clustering.
But if the data distribution is not exactly a mixture from the assumed
family, the posterior will often introduce more and more clusters as n
grows, in order to fit the data.
As a result, the interpretability of the clusters may break down.
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Our proposal: Coarsened posterior

Assume a model {Pθ : θ ∈ Θ} and a prior π(θ).
Suppose θI ∈ Θ represents the idealized distribution of the data.

The interpretation here is that θI is the “true” state of nature about
which one is interested in making inferences.

Suppose X1, . . . , Xn i.i.d. ∼ PθI are unobserved idealized data.
However, the observed data x1, . . . , xn are actually a slightly
corrupted version of X1, . . . , Xn in the sense that d(P̂X1:n , P̂x1:n) < R
for some statistical distance d(·, ·).
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Our proposal: Coarsened posterior

If there were no corruption, then we should use the standard posterior

π(θ | X1:n = x1:n).

However, due to the corruption this would clearly be incorrect.

Instead, a natural approach would be to condition on what is known,
giving us the coarsened posterior or c-posterior,

π(θ | d(P̂X1:n , P̂x1:n) < R).

Since R may be difficult to choose a priori, put a prior on it: R ∼ H.

More generally, consider

π
(
θ | dn(X1:n, x1:n) < R

)
where dn(X1:n, x1:n) ≥ 0 is some measure of the discrepancy between
X1:n and x1:n.
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Connection with ABC

The c-posterior π
(
θ | dn(X1:n, x1:n) < R

)
is mathematically

equivalent to the approximate posterior resulting from approximate
Bayesian computation (ABC).

Tavaré et al. (1997), Marjoram et al. (2003), Beaumont et al.
(2002), Wilkinson (2013)

However, there are some crucial distinctions:
I ABC is for intractable likelihoods, not robustness.
I We assume the likelihood is tractable, facilitating computation.
I For us, the c-posterior is an asset, not a liability.
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Relative entropy c-posteriors

There are many possible choices of statistical distance . . .
e.g., KS, Wasserstein, maximum mean discrepancy, various divergences

. . . but relative entropy (KL divergence) works out exceptionally nicely.

Define dn(X1:n, x1:n) to be a consistent estimator of D(po‖pθ) when

Xi
iid∼ pθ and xi

iid∼ po. (Recall: D(po‖pθ) =
∫
po(x) log po(x)

pθ(x)
dx.)

When R ∼ Exp(α), we have the power posterior approximation,

π
(
θ
∣∣ dn(X1:n, x1:n) < R

)
∝∼ π(θ)

n∏
i=1

pθ(xi)
ζn

where ζn = α/(α+ n). This approximation is good when either
n� α or n� α, under mild conditions.

The power posterior enables inference using standard techniques:
I analytical solutions in the case of conjugate priors
I Gibbs sampling when using conditionally-conjugate priors
I Metropolis–Hastings MCMC, more generally

Jeff Miller, Harvard University Inference using partial information



Example: Gaussian mixture with a prior on k

Model: X1, . . . , Xn|k,w, ϕ i.i.d. ∼
∑k

i=1wifϕi(x)

Prior π(k,w, ϕ) on # of components k, weights w, and params ϕ.

Relative entropy c-posterior is approximated by the power posterior,

π
(
k,w, ϕ

∣∣ dn(X1:n, x1:n) < R
)
∝∼ π(k,w, ϕ)

n∏
j=1

( k∑
i=1

wifϕi(xj)
)ζn

where ζn = α/(α+ n).

Could use Antoniano-Villalobos and Walker (2013) algorithm or
RJMCMC (Green, 1995). For simplicity, we reparametrize in a way
that allows the use of plain-vanilla Metropolis–Hastings.
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Gaussian mixture applied to skew-normal mixture data

Data: x1, . . . , xn i.i.d. ∼ 1
2SN (−4, 1, 5) + 1

2SN (−1, 2, 5), where
SN (ξ, s, a) is the skew-normal distribution with location ξ, scale s,
and shape a (Azzalini and Capitanio, 1999).

Choose α = 100, to be robust to perturbations to Po that would
require at least 100 samples to distinguish, roughly speaking.
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Gaussian mixture applied to skew-normal mixture data
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Velocities of galaxies in the Shapley supercluster

Velocities of 4215 galaxies in a large concentration of
gravitationally-interacting galaxies (Drinkwater et al., 2004).

Gaussian mixture assumption is probably wrong.

By considering a range of α values, we can explore the data at
varying levels of precision.
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Velocities of galaxies in the Shapley supercluster
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Thank you!
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