Robust Bayesian inference via coarsening

Jeff Miller

Joint work with David Dunson

Harvard University T.H. Chan School of Public Health Department of Biostatistics

MIT Machine Learning Colloquium // April 26, 2017

Outline

1 HSPH, Biostatistics, and Current projects

2 Coarsened posterior

3 Examples

- Mixture models with an unknown number of components
- Variable selection in linear regression

4 Theory

Outline

HSPH, Biostatistics, and Current projects

- Mixture models with an unknown number of components
- Variable selection in linear regression

Longwood Medical Area

You want medical, we got medical: Beth Israel, Brigham & Women's, Dana Farber, Children's, Harvard Medical School, HSPH.

Jeff Miller, Harvard University

Robust Bayesian inference via coarsening

Harvard T.H. Chan School of Public Health

Academic Departments

- Biostatistics
- Environmental Health
- Epidemiology
- Genetics and Complex Diseases
- Global Health and Population
- Health Policy and Management
- Immunology and Infectious Diseases
- ~ Nutrition

Social and Behavioral Sciences

Jeff Miller, Harvard University

Biostatistics department — broad range of topics

- Genomics of complex diseases
- Environmental statistics
- Causal inference
- Cancer genomics
- Neurostatistics
- HIV, infectious diseases
- Epidemiology
- Clinical trials

Digital phenotyping (J.P. Onnela)

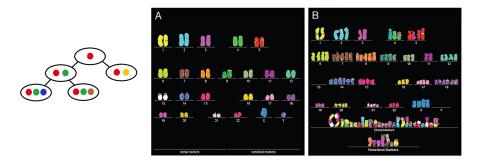
UNDARK Truth, Beauty, Science.

SHARE f 🎽 👼

Jeff Miller, Harvard University

Cancer phylogenetic inference

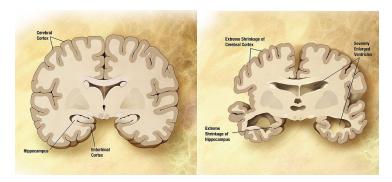
- Cancer evolves into multiple populations within a patient.
- Problem is to deconvolve populations and recover phylogenetic tree.
- Collab. with Scott Carter (DFCI), using whole-exome/whole-genome.
- Using hybrid of Bayes & frequentist VB mixtures, hyp. tests, ...



http://news.berkeley.edu/2011/07/26/are-cancers-newly-evolved-species/

Studying Alzheimer's with whole-genome sequences

- Collaboration with Rudy Tanzi (MGH), Christoph Lange (HSPH).
- 1971 whole-genome seqs from 558 families (NIMH+NIA).
- By using family relations, can condition away many confounders.
- Using Generalized Higher Criticism for powerful GWAS tests.
- Working on moving beyond traditional GWAS



Inference, Design of experiments, and Experimentation in an Automated Loop (IDEAL) for aging research

- Recently-developed automated parallel experimentation devices.
- e.g., Fontana lab at HMS built "Lifespan machine" performing experiments on 10,000s of C. elegans worms simultaneously.
- Need optimal experimental design methods to fully exploit.

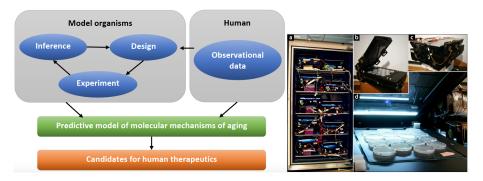


Image from Stroustrup et al., Nature Methods, 2013.

Outline

HSPH, Biostatistics, and Current projects

2 Coarsened posterior

Examples

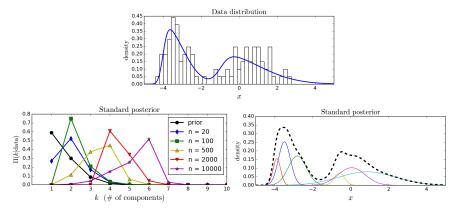
- Mixture models with an unknown number of components
- Variable selection in linear regression

4 Theory

Motivation

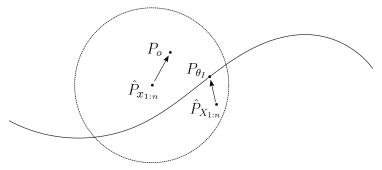
- In standard Bayesian inference, it is assumed that the model is correct.
- However, small violations of this assumption can have a large impact, and unfortunately, "all models are wrong."
- Ideally, one would use a completely correct model, but this is often impractical.

Example: Mixture models



- Mixtures are often used for clustering.
- But if the data distribution is not exactly a mixture from the assumed family, the posterior will often introduce more and more clusters as n grows, in order to fit the data.
- As a result, the interpretability of the clusters may break down.

Our proposal: Coarsened posterior



- Assume a model $\{P_{\theta} : \theta \in \Theta\}$ and a prior $\pi(\theta)$.
- Suppose $\theta_I \in \Theta$ represents the *idealized distribution* of the data. The interpretation here is that θ_I is the "true" state of nature about which one is interested in making inferences.
- Suppose X_1, \ldots, X_n i.i.d. $\sim P_{\theta_I}$ are unobserved *idealized data*.
- However, the observed data x_1, \ldots, x_n are actually a slightly corrupted version of X_1, \ldots, X_n in the sense that $d(\hat{P}_{X_{1:n}}, \hat{P}_{x_{1:n}}) < R$ for some statistical distance $d(\cdot, \cdot)$.

Jeff Miller, Harvard University

Our proposal: Coarsened posterior

• If there were no corruption, then we should use the standard posterior

$$\pi(\theta \mid X_{1:n} = x_{1:n}).$$

- However, due to the corruption this would clearly be incorrect.
- Instead, a natural approach would be to condition on what is known, giving us the coarsened posterior or c-posterior,

$$\pi(\theta \mid d(\hat{P}_{X_{1:n}}, \hat{P}_{x_{1:n}}) < R).$$

- Since R may be difficult to choose a priori, put a prior on it: $R \sim H$.
- More generally, consider

$$\pi \big(\theta \mid d_n(X_{1:n}, x_{1:n}) < R \big)$$

where $d_n(X_{1:n}, x_{1:n}) \ge 0$ is some measure of the discrepancy between $X_{1:n}$ and $x_{1:n}$.

Jeff Miller, Harvard University

Connection with ABC

- The c-posterior $\pi(\theta \mid d_n(X_{1:n}, x_{1:n}) < R)$ is mathematically equivalent to the approximate posterior resulting from *approximate Bayesian computation* (ABC).
- Tavaré et al. (1997), Marjoram et al. (2003), Beaumont et al. (2002), Wilkinson (2013)
- However, there are some crucial distinctions:
 - ABC is for intractable likelihoods, not robustness.
 - We assume the likelihood is tractable, facilitating computation.
 - For us, the c-posterior is an asset, not a liability.

Relative entropy c-posteriors

- There are many possible choices of statistical distance . . .

 e.g., KS, Wasserstein, maximum mean discrepancy, various divergences
 . . . but relative entropy (KL divergence) works out exceptionally nicely.
- Define $d_n(X_{1:n}, x_{1:n})$ to be a consistent estimator of $D(p_o || p_{\theta})$ when $X_i \stackrel{\text{iid}}{\sim} p_{\theta}$ and $x_i \stackrel{\text{iid}}{\sim} p_o$. (Recall: $D(p_o || p_{\theta}) = \int p_o(x) \log \frac{p_o(x)}{p_o(x)} dx$.)
- When $R \sim \operatorname{Exp}(\alpha)$, we have the *power posterior* approximation,

$$\pi\left(\theta \mid d_n(X_{1:n}, x_{1:n}) < R\right) \propto \pi(\theta) \prod_{i=1}^n p_\theta(x_i)^{\zeta_n}$$

where $\zeta_n = \alpha/(\alpha + n)$. This approximation is good when either $n \gg \alpha$ or $n \ll \alpha$, under mild conditions.

• The power posterior enables inference using standard techniques:

- analytical solutions in the case of conjugate priors
- Gibbs sampling when using conditionally-conjugate priors
- Metropolis–Hastings MCMC, more generally

Recent work on Bayesian robustness

- Gibbs posteriors (Jiang and Tanner, 2008)
- restricted posteriors (Lewis, MacEachern, and Lee, 2014)
- disparity-based posteriors (Hooker and Vidyashankar, 2014)
- learning rate adjustment (Grünwald and van Ommen, 2014)
- nonparametric approaches (Rodríguez and Walker, 2014)

There are interesting connections between these methods and ours, but our approach seems to be novel.

Previous work on power likelihoods

- Power likelihoods of the form $\prod_{i=1}^n p_\theta(x_i)^\zeta$ have been used previously.
- Usually, this is done for reasons completely unrelated to robustness.
 - marginal likelihood approximation (Friel and Pettitt, 2008)
 - improved MCMC mixing (Geyer, 1991)
 - consistency in nonparametrics (Walker and Hjort, 2001; Zhang, 2006a)
 - discounting historical data (Ibrahim and Chen, 2000)
 - objective Bayesian model selection (O'Hagan, 1995)
- Sometimes, this is done to ensure appropriate concentration at the minimal KL point when the model is misspecified.
 - Royall and Tsou (2003)
 - Grünwald and van Ommen (2014)
- However, the form of power we use, and its theoretical justification, seem novel.

Interpretation of power posterior

- Using the power posterior $\propto \pi(\theta) \prod_{i=1}^{n} p_{\theta}(x_i)^{\zeta}$ corresponds to adjusting the sample size from n to $n\zeta$, in the sense that the posterior will only be as concentrated as if there were $n\zeta$ samples.
- Thus, by setting $\zeta = \alpha/(\alpha + n)$, one makes the power posterior tolerant (asymptotically) of all θ 's for which a sample of size α could plausibly have come from P_{θ} .

How to choose the "precision" α ?

- Strategy #1. Set the mean neighborhood size $\mathbb{E}R = 1/\alpha$ to match the amount of misspecification we expect.
- Strategy #2. Rule of thumb: to be robust to perturbations that would require at least N samples to distinguish, set α ≈ N.
- Strategy #3. Consider a range of α values, for sensitivity analysis or exploratory analysis.

Outline

- Mixture models with an unknown number of components
- Variable selection in linear regression

Example: Gaussian mixture with a prior on k

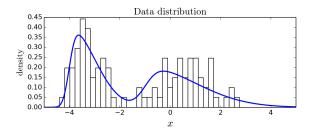
- Model: $X_1, \ldots, X_n | k, w, \varphi$ i.i.d. $\sim \sum_{i=1}^k w_i f_{\varphi_i}(x)$
- Prior $\pi(k, w, \varphi)$ on # of components k, weights w, and params φ .
- Relative entropy c-posterior is approximated by the power posterior,

$$\pi(k, w, \varphi \mid d_n(X_{1:n}, x_{1:n}) < R) \propto \pi(k, w, \varphi) \prod_{j=1}^n \left(\sum_{i=1}^k w_i f_{\varphi_i}(x_j)\right)^{\zeta_n}$$

where $\zeta_n = \alpha/(\alpha + n)$.

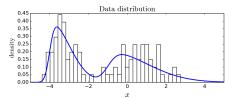
• Could use Antoniano-Villalobos and Walker (2013) algorithm or RJMCMC (Green, 1995). For simplicity, we reparametrize in a way that allows the use of plain-vanilla Metropolis-Hastings.

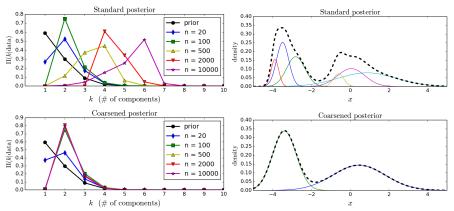
Gaussian mixture applied to skew-normal mixture data



- Data: x_1, \ldots, x_n i.i.d. $\sim \frac{1}{2}SN(-4, 1, 5) + \frac{1}{2}SN(-1, 2, 5)$, where $SN(\xi, s, a)$ is the skew-normal distribution with location ξ , scale s, and shape a (Azzalini and Capitanio, 1999).
- Use strategy #2: Choose $\alpha = 100$, to be robust to perturbations to P_o that would require at least 100 samples to distinguish, roughly speaking.

Gaussian mixture applied to skew-normal mixture data

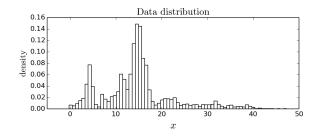




Jeff Miller, Harvard University

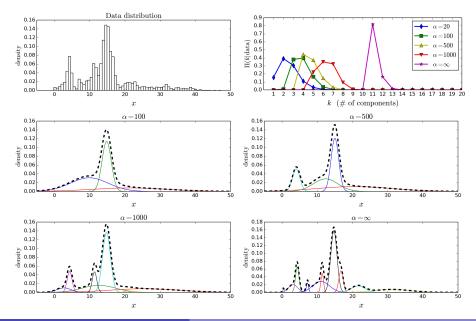
Robust Bayesian inference via coarsening

Velocities of galaxies in the Shapley supercluster



- Velocities of 4215 galaxies in a large concentration of gravitationally-interacting galaxies (Drinkwater et al., 2004).
- Gaussian mixture assumption is probably wrong.
- Use strategy #3: By considering a range of α values, we can explore the data at varying levels of precision.

Velocities of galaxies in the Shapley supercluster



Jeff Miller, Harvard University

Robust Bayesian inference via coarsening

Example: Variable selection in linear regression

• Spike-and-slab model:

$$W \sim \text{Beta}(1, 2p)$$

 $\beta_j \sim \mathcal{N}(0, \sigma_0^2)$ with probability W , otherwise $\beta_j = 0$, for $j = 1, \dots, p$
 $\sigma^2 \sim \text{InvGamma}(a, b)$
 $Y_i | \beta, \sigma^2 \sim \mathcal{N}(\beta^{\mathsf{T}} x_i, \sigma^2)$ independently for $i = 1, \dots, n$.

• For regression, a natural choice of statistical distance is conditional relative entropy. Again, this leads to a power posterior approximation to the c-posterior:

$$\pi(\beta,\sigma^2 \mid d_n(Y_{1:n},y_{1:n}) < R) \propto \pi(\beta,\sigma^2) \prod_{i=1}^n p(y_i \mid x_i,\beta,\sigma^2)^{\zeta_n}.$$

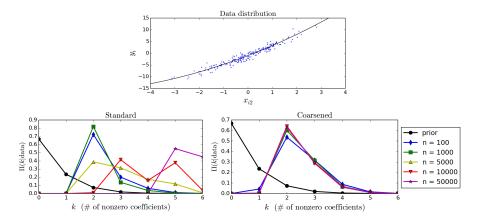
• Since we are using conditionally-conjugate priors, the full conditionals can be derived in closed-form, and we can use Gibbs sampling.

Simulation example for variable selection

• Covariates: $x_{i1} = 1$ to accomodate constant offset, and x_{i2}, \ldots, x_{i6} distributed according to a multivariate skew-normal distribution.

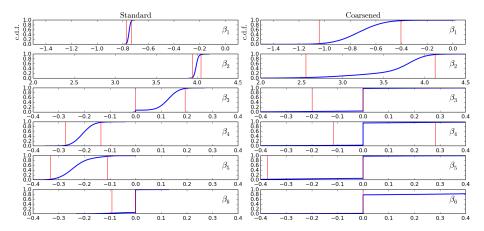
•
$$y_i = -1 + 4(x_{i2} + \frac{1}{16}x_{i2}^2) + \varepsilon_i$$
 where $\varepsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1)$.

• Set $\alpha = 50$, using knowledge of the true amount of misspecification.



Simulation example for variable selection

Posterior c.d.f. for each coefficient (blue), and 95% credible interval (red)



Modeling birthweight of infants

- Pregnancy data from the Collaborative Perinatal Project.
- We use a subset with n = 2379 subjects, and p = 72 covariates that are potentially predictive of birthweight.
 - e.g., body length, mother's weight, gestation time, cigarettes/day smoked by mother, previous pregnancy, etc.
- Not sure how much misspecification there is, so we explore a range of "precision" values α:

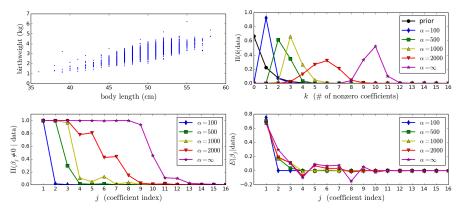
 $\alpha \in \{100, 500, 1000, 2000, \infty\}$

which corresponds roughly to contamination of magnitude

 $\delta \in \{0.045, 0.02, 0.015, 0.01, 0\} \text{ kilograms}$

by the formula for the relative entropy between Gaussians.

Modeling birthweight of infants



Top variables: 1. Body length, 2. Mother's weight at delivery, 3. Gestation time, 4. African-American, etc.

Outline

HSPH, Biostatistics, and Current projects

2 Coarsened posterior

3 Example

- Mixture models with an unknown number of components
- Variable selection in linear regression

4 Theory

Theory

We establish three main theoretical results:

- $\textbf{ large-sample asymptotics of c-posteriors as } n \to \infty,$
- Ismall-sample behaviour of c-posteriors, and
- **o** robustness of c-posteriors to perturbations of the data distribution.

Consider the model

 $\boldsymbol{\theta} \sim \Pi$ $X_1, \dots, X_n | \boldsymbol{\theta} \text{ i.i.d.} \sim P_{\boldsymbol{\theta}}$ $R \in [0, \infty)$ independently of $\boldsymbol{\theta}, X_{1:n}$.

Suppose the observed data x_1, \ldots, x_n are sampled i.i.d. from some P_o .

Theory: Large-sample asymptotics Let $G(r) = \mathbb{P}(R > r)$. Assume $\mathbb{P}(d(P_{\theta}, P_o) = R) = 0$ and $\mathbb{P}(d(P_{\theta}, P_o) < R) > 0$.

Theorem (Asymptotic form of c-posteriors)

If $d_n(X_{1:n}, x_{1:n}) \xrightarrow{\text{a.s.}} d(P_{\theta}, P_o)$ as $n \to \infty$, then

$$\Pi (d\theta \mid d_n(X_{1:n}, x_{1:n}) < R) \xrightarrow[n \to \infty]{} \Pi (d\theta \mid d(P_{\theta}, P_o) < R) \\ \propto G (d(P_{\theta}, P_o)) \Pi (d\theta),$$

and in fact,

$$\mathbb{E}(h(\boldsymbol{\theta}) \mid d_n(X_{1:n}, x_{1:n}) < R) \xrightarrow[n \to \infty]{} \mathbb{E}(h(\boldsymbol{\theta}) \mid d(P_{\boldsymbol{\theta}}, P_o) < R)$$
$$= \frac{\mathbb{E}h(\boldsymbol{\theta})G(d(P_{\boldsymbol{\theta}}, P_o))}{\mathbb{E}G(d(P_{\boldsymbol{\theta}}, P_o))}$$

for any $h \in L^1(\Pi)$.

Jeff Miller, Harvard University

Theory: Small-sample behaviour

- When n is small, the c-posterior tends to be well-approximated by the standard posterior.
- To study this, we consider the limit as the distribution of R converges to 0, while holding n fixed.

Theorem

Under regularity conditions, there exists $c_{\alpha} \in (0, \infty)$, not depending on θ , such that

$$c_{\alpha} \mathbb{P}\left(d_n(X_{1:n}, x_{1:n}) < R/\alpha \mid \theta\right) \xrightarrow[\alpha \to \infty]{} \prod_{i=1}^n p_{\theta}(x_i).$$

• In particular, since $\zeta_n \approx 1$ when $n \ll \alpha$, the power posterior is a good approximation to the relative entropy c-posterior in this regime.

Theory: Lack of robustness of the standard posterior

• The standard posterior can be strongly affected by small changes to the observed data distribution P_o , particularly when doing model inference. This is because

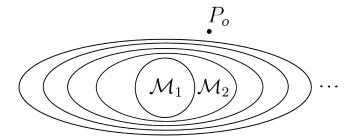
$$\pi(\theta \mid x_{1:n}) \propto \exp\left(\sum_{i=1}^{n} \log p_{\theta}(x_i)\right) \pi(\theta)$$
$$\doteq \exp\left(n \int p_o \log p_{\theta}\right) \pi(\theta)$$

 $\propto \exp(-nD(p_o||p_\theta))\pi(\theta).$

where \doteq denotes agreement to first order in the exponent, i.e., $a_n \doteq b_n$ means $(1/n) \log(a_n/b_n) \rightarrow 0$.

• Due to the n in the exponent, even a slight change to P_o can dramatically change the posterior.

Theory: Lack of robustness of the standard posterior



Theory: Robustness

- Roughly, robustness means that small changes to the data distribution result in small changes to the resulting inferences.
- This is formalized in terms of continuity with respect to Po.
- The asymptotic c-posterior inherits the continuity properties of whatever distance $d(\cdot, \cdot)$ is used to define it.

Theorem (Robustness of c-posteriors)

If P_1, P_2, \ldots such that $d(P_{\theta}, P_m) \xrightarrow[m \to \infty]{} d(P_{\theta}, P_o)$ for Π -almost all $\theta \in \Theta$, then for any $h \in L^1(\Pi)$,

$$\mathbb{E}(h(\boldsymbol{\theta}) \mid d(P_{\boldsymbol{\theta}}, P_m) < R) \longrightarrow \mathbb{E}(h(\boldsymbol{\theta}) \mid d(P_{\boldsymbol{\theta}}, P_o) < R)$$

as $m \to \infty$, and in particular,

$$\Pi (d\theta \mid d(P_{\theta}, P_m) < R) \Longrightarrow \Pi (d\theta \mid d(P_{\theta}, P_o) < R).$$

Future work

- Can we choose α adaptively, to obtain consistency when the model is correct, and appropriate calibration otherwise?
 - (Well, yes, but can we do it in a computationally efficient way?)
- Looking at possible applications in causal inference.
- Develop inverse specification approach.

We have lots of biomedical data and challenging problems — if anyone is interested in collaborating let me know!

Thank you!