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Longwood Medical Area

You want medical, we got medical: Beth Israel, Brigham & Women’s,
Dana Farber, Children’s, Harvard Medical School, HSPH.
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Harvard T.H. Chan School of Public Health
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Biostatistics department — broad range of topics

Genomics of complex diseases

Environmental statistics

Causal inference

Cancer genomics

Neurostatistics

HIV, infectious diseases

Epidemiology

Clinical trials
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Digital phenotyping (J.P. Onnela)

Jeff Miller, Harvard University Robust Bayesian inference via coarsening



Cancer phylogenetic inference

Cancer evolves into multiple populations within a patient.

Problem is to deconvolve populations and recover phylogenetic tree.

Collab. with Scott Carter (DFCI), using whole-exome/whole-genome.

Using hybrid of Bayes & frequentist — VB mixtures, hyp. tests, . . .

http://news.berkeley.edu/2011/07/26/are-cancers-newly-evolved-species/
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Studying Alzheimer’s with whole-genome sequences

Collaboration with Rudy Tanzi (MGH), Christoph Lange (HSPH).

1971 whole-genome seqs from 558 families (NIMH+NIA).

By using family relations, can condition away many confounders.

Using Generalized Higher Criticism for powerful GWAS tests.

Working on moving beyond traditional GWAS . . .
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Inference, Design of experiments, and Experimentation in
an Automated Loop (IDEAL) for aging research

Recently-developed automated parallel experimentation devices.

e.g., Fontana lab at HMS built “Lifespan machine” performing
experiments on 10,000s of C. elegans worms simultaneously.

Need optimal experimental design methods to fully exploit.

Image from Stroustrup et al., Nature Methods, 2013.
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Motivation

In standard Bayesian inference, it is assumed that the model is correct.

However, small violations of this assumption can have a large impact,
and unfortunately, “all models are wrong.”

Ideally, one would use a completely correct model, but this is often
impractical.
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Example: Mixture models

Mixtures are often used for clustering.
But if the data distribution is not exactly a mixture from the assumed
family, the posterior will often introduce more and more clusters as n
grows, in order to fit the data.
As a result, the interpretability of the clusters may break down.
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Our proposal: Coarsened posterior

Assume a model {Pθ : θ ∈ Θ} and a prior π(θ).
Suppose θI ∈ Θ represents the idealized distribution of the data.

The interpretation here is that θI is the “true” state of nature about
which one is interested in making inferences.

Suppose X1, . . . , Xn i.i.d. ∼ PθI are unobserved idealized data.
However, the observed data x1, . . . , xn are actually a slightly
corrupted version of X1, . . . , Xn in the sense that d(P̂X1:n , P̂x1:n) < R
for some statistical distance d(·, ·).
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Our proposal: Coarsened posterior

If there were no corruption, then we should use the standard posterior

π(θ | X1:n = x1:n).

However, due to the corruption this would clearly be incorrect.

Instead, a natural approach would be to condition on what is known,
giving us the coarsened posterior or c-posterior,

π(θ | d(P̂X1:n , P̂x1:n) < R).

Since R may be difficult to choose a priori, put a prior on it: R ∼ H.

More generally, consider

π
(
θ | dn(X1:n, x1:n) < R

)
where dn(X1:n, x1:n) ≥ 0 is some measure of the discrepancy between
X1:n and x1:n.
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Connection with ABC

The c-posterior π
(
θ | dn(X1:n, x1:n) < R

)
is mathematically

equivalent to the approximate posterior resulting from approximate
Bayesian computation (ABC).

Tavaré et al. (1997), Marjoram et al. (2003), Beaumont et al.
(2002), Wilkinson (2013)

However, there are some crucial distinctions:
I ABC is for intractable likelihoods, not robustness.
I We assume the likelihood is tractable, facilitating computation.
I For us, the c-posterior is an asset, not a liability.
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Relative entropy c-posteriors

There are many possible choices of statistical distance . . .
e.g., KS, Wasserstein, maximum mean discrepancy, various divergences

. . . but relative entropy (KL divergence) works out exceptionally nicely.

Define dn(X1:n, x1:n) to be a consistent estimator of D(po‖pθ) when

Xi
iid∼ pθ and xi

iid∼ po. (Recall: D(po‖pθ) =
∫
po(x) log po(x)

pθ(x)
dx.)

When R ∼ Exp(α), we have the power posterior approximation,

π
(
θ
∣∣ dn(X1:n, x1:n) < R

)
∝∼ π(θ)

n∏
i=1

pθ(xi)
ζn

where ζn = α/(α+ n). This approximation is good when either
n� α or n� α, under mild conditions.

The power posterior enables inference using standard techniques:
I analytical solutions in the case of conjugate priors
I Gibbs sampling when using conditionally-conjugate priors
I Metropolis–Hastings MCMC, more generally
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Recent work on Bayesian robustness

Gibbs posteriors (Jiang and Tanner, 2008)

restricted posteriors (Lewis, MacEachern, and Lee, 2014)

disparity-based posteriors (Hooker and Vidyashankar, 2014)

learning rate adjustment (Grünwald and van Ommen, 2014)

nonparametric approaches (Rodŕıguez and Walker, 2014)

There are interesting connections between these methods and ours, but
our approach seems to be novel.
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Previous work on power likelihoods

Power likelihoods of the form
∏n
i=1 pθ(xi)

ζ have been used previously.

Usually, this is done for reasons completely unrelated to robustness.
I marginal likelihood approximation (Friel and Pettitt, 2008)
I improved MCMC mixing (Geyer, 1991)
I consistency in nonparametrics (Walker and Hjort, 2001; Zhang, 2006a)
I discounting historical data (Ibrahim and Chen, 2000)
I objective Bayesian model selection (O’Hagan, 1995)

Sometimes, this is done to ensure appropriate concentration at the
minimal KL point when the model is misspecified.

I Royall and Tsou (2003)
I Grünwald and van Ommen (2014)

However, the form of power we use, and its theoretical justification,
seem novel.

Jeff Miller, Harvard University Robust Bayesian inference via coarsening



Interpretation of power posterior

Using the power posterior ∝ π(θ)
∏n
i=1 pθ(xi)

ζ corresponds to
adjusting the sample size from n to nζ, in the sense that the
posterior will only be as concentrated as if there were nζ samples.

Thus, by setting ζ = α/(α+ n), one makes the power posterior
tolerant (asymptotically) of all θ’s for which a sample of size α could
plausibly have come from Pθ.
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How to choose the “precision” α?

Strategy #1. Set the mean neighborhood size ER = 1/α to match
the amount of misspecification we expect.

Strategy #2. Rule of thumb: to be robust to perturbations that
would require at least N samples to distinguish, set α ≈ N .

Strategy #3. Consider a range of α values, for sensitivity analysis or
exploratory analysis.
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Example: Gaussian mixture with a prior on k

Model: X1, . . . , Xn|k,w, ϕ i.i.d. ∼
∑k

i=1wifϕi(x)

Prior π(k,w, ϕ) on # of components k, weights w, and params ϕ.

Relative entropy c-posterior is approximated by the power posterior,

π
(
k,w, ϕ

∣∣ dn(X1:n, x1:n) < R
)
∝∼ π(k,w, ϕ)

n∏
j=1

( k∑
i=1

wifϕi(xj)
)ζn

where ζn = α/(α+ n).

Could use Antoniano-Villalobos and Walker (2013) algorithm or
RJMCMC (Green, 1995). For simplicity, we reparametrize in a way
that allows the use of plain-vanilla Metropolis–Hastings.
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Gaussian mixture applied to skew-normal mixture data

Data: x1, . . . , xn i.i.d. ∼ 1
2SN (−4, 1, 5) + 1

2SN (−1, 2, 5), where
SN (ξ, s, a) is the skew-normal distribution with location ξ, scale s,
and shape a (Azzalini and Capitanio, 1999).

Use strategy #2: Choose α = 100, to be robust to perturbations to
Po that would require at least 100 samples to distinguish, roughly
speaking.
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Gaussian mixture applied to skew-normal mixture data
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Velocities of galaxies in the Shapley supercluster

Velocities of 4215 galaxies in a large concentration of
gravitationally-interacting galaxies (Drinkwater et al., 2004).

Gaussian mixture assumption is probably wrong.

Use strategy #3: By considering a range of α values, we can explore
the data at varying levels of precision.
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Velocities of galaxies in the Shapley supercluster

Jeff Miller, Harvard University Robust Bayesian inference via coarsening



Example: Variable selection in linear regression

Spike-and-slab model:

W ∼ Beta(1, 2p)

βj ∼ N (0, σ20) with probability W, otherwise βj = 0, for j = 1, . . . , p

σ2 ∼ InvGamma(a, b)

Yi|β, σ2 ∼ N (βTxi, σ
2) independently for i = 1, . . . , n.

For regression, a natural choice of statistical distance is conditional
relative entropy. Again, this leads to a power posterior approximation
to the c-posterior:

π
(
β, σ2

∣∣ dn(Y1:n, y1:n) < R
)
∝∼ π(β, σ2)

n∏
i=1

p(yi|xi, β, σ2)ζn .

Since we are using conditionally-conjugate priors, the full conditionals
can be derived in closed-form, and we can use Gibbs sampling.
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Simulation example for variable selection

Covariates: xi1 = 1 to accomodate constant offset, and xi2, . . . , xi6
distributed according to a multivariate skew-normal distribution.

yi = −1 + 4(xi2 + 1
16x

2
i2) + εi where εi

iid∼ N (0, 1).

Set α = 50, using knowledge of the true amount of misspecification.
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Simulation example for variable selection

Posterior c.d.f. for each coefficient (blue), and 95% credible interval (red)
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Modeling birthweight of infants

Pregnancy data from the Collaborative Perinatal Project.

We use a subset with n = 2379 subjects, and p = 72 covariates that
are potentially predictive of birthweight.

I e.g., body length, mother’s weight, gestation time, cigarettes/day
smoked by mother, previous pregnancy, etc.

Not sure how much misspecification there is, so we explore a range of
“precision” values α:

α ∈ {100, 500, 1000, 2000,∞}

which corresponds roughly to contamination of magnitude

δ ∈ {0.045, 0.02, 0.015, 0.01, 0} kilograms

by the formula for the relative entropy between Gaussians.
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Modeling birthweight of infants

Top variables: 1. Body length, 2. Mother’s weight at delivery,
3. Gestation time, 4. African-American, etc.
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Theory

We establish three main theoretical results:

1 large-sample asymptotics of c-posteriors as n→∞,

2 small-sample behaviour of c-posteriors, and

3 robustness of c-posteriors to perturbations of the data distribution.

Consider the model

θ ∼ Π

X1, . . . , Xn|θ i.i.d. ∼ Pθθθ
R ∈ [0,∞) independently of θ, X1:n.

Suppose the observed data x1, . . . , xn are sampled i.i.d. from some Po.
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Theory: Large-sample asymptotics
Let G(r) = P(R > r).
Assume P(d(Pθθθ, Po) = R) = 0 and P(d(Pθθθ, Po) < R) > 0.

Theorem (Asymptotic form of c-posteriors)

If dn(X1:n, x1:n)
a.s.−−→ d(Pθθθ, Po) as n→∞, then

Π
(
dθ | dn(X1:n, x1:n) < R

)
====⇒
n→∞

Π
(
dθ | d(Pθθθ, Po) < R

)
∝ G

(
d(Pθ, Po)

)
Π(dθ),

and in fact,

E
(
h(θ) | dn(X1:n, x1:n) < R

)
−−−→
n→∞

E
(
h(θ) | d(Pθθθ, Po) < R

)
=

Eh(θ)G
(
d(Pθθθ, Po)

)
EG
(
d(Pθθθ, Po)

)
for any h ∈ L1(Π).
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Theory: Small-sample behaviour

When n is small, the c-posterior tends to be well-approximated by the
standard posterior.

To study this, we consider the limit as the distribution of R converges
to 0, while holding n fixed.

Theorem

Under regularity conditions, there exists cα ∈ (0,∞), not depending on θ,
such that

cα P
(
dn(X1:n, x1:n) < R/α

∣∣ θ) −−−→
α→∞

n∏
i=1

pθ(xi).

In particular, since ζn ≈ 1 when n� α, the power posterior is a good
approximation to the relative entropy c-posterior in this regime.

Jeff Miller, Harvard University Robust Bayesian inference via coarsening



Theory: Lack of robustness of the standard posterior

The standard posterior can be strongly affected by small changes to
the observed data distribution Po, particularly when doing model
inference. This is because

π(θ | x1:n) ∝ exp
( n∑
i=1

log pθ(xi)
)
π(θ)

.
= exp

(
n
∫
po log pθ

)
π(θ)

∝ exp(−nD(po‖pθ))π(θ).

where
.
= denotes agreement to first order in the exponent, i.e.,

an
.
= bn means (1/n) log(an/bn)→ 0.

Due to the n in the exponent, even a slight change to Po can
dramatically change the posterior.
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Theory: Lack of robustness of the standard posterior
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Theory: Robustness

Roughly, robustness means that small changes to the data
distribution result in small changes to the resulting inferences.

This is formalized in terms of continuity with respect to Po.

The asymptotic c-posterior inherits the continuity properties of
whatever distance d(·, ·) is used to define it.

Theorem (Robustness of c-posteriors)

If P1, P2, . . . such that d(Pθ, Pm) −−−−→
m→∞

d(Pθ, Po) for Π-almost all θ ∈ Θ,

then for any h ∈ L1(Π),

E
(
h(θ) | d(Pθθθ, Pm) < R

)
−→ E

(
h(θ) | d(Pθθθ, Po) < R

)
as m→∞, and in particular,

Π
(
dθ | d(Pθθθ, Pm) < R

)
=⇒ Π

(
dθ | d(Pθθθ, Po) < R

)
.
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Future work

Can we choose α adaptively, to obtain consistency when the model is
correct, and appropriate calibration otherwise?

I (Well, yes, but can we do it in a computationally efficient way?)

Looking at possible applications in causal inference.

Develop inverse specification approach.

We have lots of biomedical data and challenging problems — if anyone is
interested in collaborating let me know!

Thank you!
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