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Introduction
Summary

Dirichlet process mixtures (DPMs) are not consistent for the number
of components in a finite mixture. However, there is a natural alternative
that is consistent and has many of the attractive properties of DPMs.

Overview
For data assumed to come from a finite mixture with an unknown

number of components, it has become common to use Dirichlet process
mixtures (DPMs) not only for density estimation, but also for inferences
about the number of components. The typical approach is to use the
posterior distribution on the number of “occupied tables” — that is, the
posterior on the number of components represented in the observed
data. However, it turns out that this posterior is not consistent — it does
not concentrate at the true number of components.

It is known that in many cases the DPM posterior is consistent for the
density (Ghosal, 2010) as well as for the mixing distribution (Nguyen,
2013), however, the question of consistency for the number of
components has been unanswered until now.

Our general theorem (arXiv:1309.0024) proves this inconsistency for
Pitman–Yor process mixtures over a large class of continuous
exponential families and essentially all discrete families. This result
explains the tiny extra clusters that are often observed in posterior
samples (e.g. West, Müller, and Escobar, 1994).

Solution?
A natural alternative is to simply put a prior on the number of

components in a finite mixture model, and this is known to be consistent
(Nobile, 1994). It has been believed that inference in such a model is
difficult and requires techniques such as reversible jump MCMC
(Richardson & Green, 1997). To the contrary, we have found that this
approach gives rise to a combinatorial stochastic process that closely
parallels that of the DPM, and consequently, efficient approximate
inference can be done in much the same way as for the DPM.

Caution! This remains highly sensitive to misspecification of the
component distributions. In general, we urge researchers interested in
the number of components to be wary of robustness issues.

Setup

Finite mixture model
(π1, . . . , πk) ∼ Dirichlet(γ, . . . , γ)
θ1, . . . , θk

iid∼ H

X1, . . . ,Xn
iid∼ f (x) =

k∑
i=1

πi pθi(x)

5 tables (i.e. components)
3 occupied tables

Dirichlet process mixture model
(π1, π2, . . . ) ∼ Stick(1, α)
θ1, θ2, . . .

iid∼ H

X1, . . . ,Xn
iid∼ f (x) =

∞∑
i=1

πi pθi(x)

∞ tables (i.e. components)
4 occupied tables

Theoretical results
Background

It is known that the posterior concentrates at the true density f0, i.e.

P(‖f − f0‖L1 < ε | X1:n) −−−→
n→∞

1 ∀ε > 0,

in many cases, for any sufficiently regular f0 (usually at the minimax
optimal rate, up to a logarithmic factor).
(Contributions by: Ghosal, van der Vaart, Scricciolo, Lijoi, Prünster, Walker, James,
Tokdar, Dunson, Bhattacharya, Wu, Ghosh, Ramamoorthi, Ishwaran, and others.)

In fact, the posterior on the mixing distribution concentrates (in
Wasserstein distance) at the true mixing distribution (Nguyen, 2013).

On data from a finite mixture, does the posterior on the number of
occupied tables concentrate at the true number of components?

General inconsistency

Theorem
Under mild regularity conditions, if X1,X2, . . . are i.i.d. from a finite
mixture with k0 components, then the DPM posterior on the number of
occupied tables Tn satisfies

lim sup
n→∞

P(Tn = k0 | X1:n) < 1

with probability 1.

The model is assumed to use the same family of component
distributions as in the data distribution.
This implies inconsistency of Dirichlet process mixtures over
essentially all discrete families and a large class of continuous
exponential families (including multivariate Gaussian).
We assume the concentration parameter α is fixed.
This generalizes to Pitman–Yor process mixtures.
See Miller & Harrison (2013) arXiv:1309.0024 for details.

Severe inconsistency
Consider a “standard normal DPM”: pθ(x) = N (x | θ, 1) and H is N (0, 1).

Theorem

If X1,X2, . . . ∼ N (0, 1) i.i.d. then P(Tn = 1 | X1:n)
Pr−→ 0 as n→∞,

under the standard normal DPM with concentration parameter α = 1.

The wrong intuition

It is tempting to think that the
prior on Tn is the culprit, since it
is diverging as n→∞.

However, this is not the main reason why inconsistency occurs.

The right intuition
Given t occupied tables, the conditional distribution of their sizes
n1, . . . , nt is P(n1, . . . , nt | Tn = t) ∝ n−1

1 · · · n−1
t I(

∑
ni = n).

CDF of n1 given Tn = 2 occupied tables

Key observation
As n grows, this becomes concentrated in the “corners”. In other
words, the DPM really likes to have one or more tables with very few
customers.

Empirical evidence
Posterior clustering samples

Tiny extra clusters often appear in posterior samples.

Posterior predictive density

The posterior predictive is accurate, unharmed by such tiny clusters.

Posterior on the number of occupied tables

But the posterior on the number of occupied tables puts significant mass
above the true number of components (four, in this case).

Similar behavior occurs for a wide variety of component families.

A consistent alternative
A mixture of finite mixtures (MFM)
There is a natural alternative to DPMs that is consistent.

(Nobile (1994, 2007), Richardson & Green (1997, 2001), Stephens (2000), etc.)

MFM model
K ∼ q(k), a p.m.f. on {1, 2, . . . }
π ∼ Dirichlet(γk1, . . . , γkk) (given K = k)
θ1, . . . , θk

iid∼ H (given K = k)
X1, . . . ,Xn

iid∼ f (x) =
∑K

i=1 πi pθi(x) (given K, π, θ). n

K π

θ Xi

For convenience, we suggest q(k) = Poisson(k − 1 | λ) and γij = γ > 0.

Exchangeable partition probability function (EPPF)
This yields an EPPF of Gibbs form (Gnedin and Pitman, 2005).

EPPF (DPM vs MFM) (. . . with α = 1 and γ = 1 for simplicity)
If C is a partition of {1, . . . , n} into t parts, then

PDPM(C) =
1
n!

∏
c∈C

(|c| − 1)! PMFM(C) = vn(t)
∏
c∈C
|c|!

where vn(t) =
∑∞

k=1
k(t)
k(n) q(k).

Here, k(t) = k(k − 1) · · · (k − t + 1) and k(n) = k(k + 1) · · · (k + n− 1).
The numbers vn(t) can be efficiently precomputed, numerically.

Restaurant process and Gibbs sampling
This leads to a simple “restaurant process” closely resembling the CRP:

Restaurant process (DPM vs MFM)
The first customer sits at a table. (At this point, C = {{1}}.)
The nth customer sits. . .

DPM MFM
at table c ∈ C with probability ∝ |c| (|c| + 1) vn(t)

or at a new table with probability ∝ 1 vn(t + 1)

where t = |C| is the number of occupied tables so far.

Thus, Gibbs sampling for MFMs and DPMs is nearly identical.

Empirical results
As n grows, we observe the posterior concentrating at the true number
of components, the posterior predictive density converging to the true
density, and posterior clustering samples rarely having extra clusters.
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